JPS6366323A - Copper alloy filament and production thereof - Google Patents

Copper alloy filament and production thereof

Info

Publication number
JPS6366323A
JPS6366323A JP21294886A JP21294886A JPS6366323A JP S6366323 A JPS6366323 A JP S6366323A JP 21294886 A JP21294886 A JP 21294886A JP 21294886 A JP21294886 A JP 21294886A JP S6366323 A JPS6366323 A JP S6366323A
Authority
JP
Japan
Prior art keywords
copper alloy
filament
melting point
bamboo
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21294886A
Other languages
Japanese (ja)
Other versions
JPH07103492B2 (en
Inventor
Itsuo Onaka
大中 逸雄
Yoshiki Ono
芳樹 小野
Takaharu Ichiyanagi
隆治 一柳
Hideaki Ishihara
石原 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP21294886A priority Critical patent/JPH07103492B2/en
Publication of JPS6366323A publication Critical patent/JPS6366323A/en
Publication of JPH07103492B2 publication Critical patent/JPH07103492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • B22D11/062Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel

Abstract

PURPOSE:To obtain the titled filament having good tenacity and handleability and useful as a material for a resistance-varying temperature sensor, by injecting molten copper alloy into a cooling liquid in a rotating cylindrical drum and heat-treating the cooled and solidified copper alloy filament at a specific temperature. CONSTITUTION:A molten copper alloy melted in a crucible 1 is injected through a spinning nozzle 2 into a cooling liquid 8 formed in a rotating cylindrical drum 6 by centrifugal force and is cooled and solidified to form a copper alloy filament 4. The filament is heat-treated at a temperature below the melting point of the alloy and above 2/3 of the melting point of the alloy to obtain the objective copper alloy filament having a structure in which single crystals free from dendrite texture are continuously connected with each other in at least a part of the longitudinal direction of the filament and the boundary of the crystals is the crystal grain interface formed in the form of bamboo joint.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は銅合金フィラメント及びその製造法に関し、詳
細には、靭性や取扱い性が良好で特に繊維状磁性材料や
抵抗変化型温度センサー材等として有用な銅合金フィラ
メント及びその製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a copper alloy filament and a method for producing the same, and in particular, it is suitable for use in fibrous magnetic materials, variable resistance temperature sensor materials, etc., which have good toughness and ease of handling. The present invention relates to a copper alloy filament useful as a copper alloy filament and a method for producing the same.

[従来の技術] たとえばCu−Mn−Al系の銅合金は磁性を有してお
り、磁性材料として様々の用途に適用することができ、
また抵抗変化型温度センサー用材料としての有効利用も
期待されている。
[Prior Art] For example, a Cu-Mn-Al based copper alloy has magnetism and can be applied to various uses as a magnetic material.
It is also expected to be used effectively as a material for variable resistance temperature sensors.

ところで上記の様な銅合金をセンサー用材料等として実
用化していこうとすれば、できるだけ小形状化すると共
に更に電気抵抗を高めていく必要があり、そのためには
細線化するのが有効な手段の一つであると考えられる。
By the way, if we are to put the above-mentioned copper alloy to practical use as a material for sensors, etc., it is necessary to make the size as small as possible and further increase the electrical resistance. It is considered to be one.

しかしながら上記銅合金は硬質且つ脆弱であフて加工性
が劣悪であり、機械加工によって細線化することは非常
に困難である。
However, the above-mentioned copper alloy is hard and brittle and has poor workability, and it is very difficult to form it into thin wires by machining.

一方、脆弱な金属材料を細線化する方法の1つとして、
先に本願出願人より開示した特開昭55−84948号
公報記載の回転液中紡糸法が公知となっており、この方
法は極めて有用な方法として期待が寄せられている。
On the other hand, one method for thinning fragile metal materials is to
The spinneret spinning method described in Japanese Unexamined Patent Publication No. 55-84948, which was previously disclosed by the applicant of the present application, is known, and this method is expected to be an extremely useful method.

即ちこの方法は、回転する円筒状中空ドラムの内周面に
冷却用液体を注入し、これを遠心力によって内周面に押
圧し冷却用液体層を形成しておくと共に、該液体層内へ
溶融金属をジェットとして細線状に噴射して急冷凝固さ
せる方法であり、脆弱な金属材料であっても容易に細線
状とすることができる。
That is, in this method, a cooling liquid is injected into the inner peripheral surface of a rotating cylindrical hollow drum, and is pressed against the inner peripheral surface by centrifugal force to form a cooling liquid layer. This is a method in which molten metal is jetted into a thin line and rapidly solidified, and even brittle metal materials can be easily formed into a thin line.

[発明が解決しようとする問題点コ 上記回転液中紡糸法を利用すれば、前述の様な銅合金で
あっても容易に細線状とすることができ、抵抗変化型温
度センサー等の実用化に道を開くことになるのではない
かと期待される。そこで銅合金に上述の回転液中紡糸法
を適用したところ、脆弱な銅合金であっても容易に細線
化できることが確認された。ところがこの様にして得ら
れた銅合金フィラメントのうち、特に太め(150μm
超)のものは非常に脆く、約90度以上曲げたときに簡
単に折断されてしまうため取扱いが困難であり汎用性に
乏しいことが分かった。尚150μm以下のものである
と折り曲げ箇所によっては折り曲げが可能であったり、
或は折り曲げ時に切断されてしまうものがあった。更に
80μm以下程度の細径フィラメントになると、殆んど
確実に180度曲げが可能であった。そこでこの銅合金
フィラメントの内部構造を見ると、上記の様な折り曲げ
切断を生じる箇所では、フィラメント軸に対して直交す
る横断面内には、常に(どの断面を見ても)2個以上の
結晶粒が存在しており、いわゆる多結晶質構造を有する
ものであることが確認された。これに対し竹の節の間状
(中実の柱状構造であって中空ではない)の単結晶質部
分では180度曲げが可能であり、銅合金フィラメント
が細径化するにつれて上述の様な単結晶質部分の比率が
増加し、80μm以下の金属フィラメントになればほぼ
全長に亘って竹の節の間状の単結晶質部が竹の節に相当
する粒界を介して連結されていることを見出した。そこ
で本発明者らは上記多結晶質部のみからなる銅合金フィ
ラメントの物性を改善すべく研究を進め、銅合金フィラ
メントの太さと無関係に当該フィラメントの少なくとも
一部に竹の節の間状の単結晶質部分を作ることができる
ならば、当該部分が優れた靭性を発揮し、当該部分にお
いては180度曲げが可能になるであろうと考えた。即
ち150μmφ以上の銅合金フィラメントであっても、
その中に、一部でも上述の様な単結晶化部分を形成する
ことができれば、機械的性質において靭性が改良され、
また電気的、磁気的性質においても興味のある特性に改
変されるのではないかとの期待が持たれたのである。
[Problems to be solved by the invention] By using the above-mentioned rotating liquid spinning method, even copper alloys such as those mentioned above can be easily made into fine wires, which can be put to practical use in variable resistance temperature sensors, etc. It is hoped that this will pave the way for When we applied the above-mentioned spin-in-spinning method to copper alloys, we confirmed that even brittle copper alloys could be easily made into thin wires. However, among the copper alloy filaments obtained in this way, particularly thick ones (150 μm
It was found that the one with a diameter of 1.5 mm is extremely brittle and easily breaks when bent over about 90 degrees, making it difficult to handle and lacking in versatility. In addition, if it is 150 μm or less, it may be possible to bend it depending on the bending location.
Or, some of them were cut when folded. Furthermore, when the diameter of the filament was reduced to about 80 μm or less, it was almost certainly possible to bend the filament by 180 degrees. When we look at the internal structure of this copper alloy filament, we find that at the point where the above-mentioned bending and cutting occurs, there are always two or more crystals in the cross section perpendicular to the filament axis (no matter which cross section you look at). It was confirmed that grains were present and that it had a so-called polycrystalline structure. On the other hand, the monocrystalline part between the nodes of bamboo (solid columnar structure, not hollow) can be bent 180 degrees, and as copper alloy filaments become thinner, If the ratio of crystalline parts increases and becomes a metal filament of 80 μm or less, the single crystal parts between bamboo nodes are connected through grain boundaries corresponding to bamboo nodes over almost the entire length. I found out. Therefore, the present inventors conducted research to improve the physical properties of copper alloy filaments consisting only of polycrystalline parts, and found that at least part of the copper alloy filaments had bamboo internodal structures, regardless of the thickness of the copper alloy filaments. It was thought that if a crystalline part could be created, that part would exhibit excellent toughness and that it would be possible to bend 180 degrees. That is, even if the copper alloy filament has a diameter of 150 μm or more,
If even a part of it can be formed with a single crystallized part as described above, the toughness will be improved in terms of mechanical properties.
There were also expectations that the electrical and magnetic properties could be modified to create interesting properties.

本発明はこの様な期待を実現しようとするものであって
、具体的には長手方向の少なくとも一部に単結晶質構造
を有し、靭性や取扱い性が良好で且つ電気的、磁気的に
も優れた性質を持った銅合金フィラメントおよびその製
造方法を提供しようとするものである。
The present invention aims to realize such expectations, and specifically, it has a single crystal structure in at least a portion of the longitudinal direction, has good toughness and handleability, and is electrically and magnetically Another object of the present invention is to provide a copper alloy filament with excellent properties and a method for producing the same.

[問題点を解決するための手段] 本発明に係る銅合金フィラメントの構成は、フィラメン
ト長手方向の少なくとも一部に、デンドライト状組織を
有しない単結晶が、竹の節状に形成された結晶粒界を境
にして連続的に連なった構造を有するものであるところ
に要旨を有するものであり、また本発明に係る製造法の
構成は、回転する円筒状ドラム内において遠心力により
形成された冷却液体中に、紡出ノズルを通して溶融鍔合
金を噴射し、冷却固化して得られる銅合金フィラメント
を、該銅合金の融点未満で且つ該融点の273以上の温
度で熱処理するところに要旨を有するものである。
[Means for Solving the Problems] The structure of the copper alloy filament according to the present invention is such that a single crystal having no dendrite structure is formed in at least a part of the longitudinal direction of the filament, and crystal grains are formed in the shape of bamboo nodes. The gist of the invention is that it has a structure that is continuous with boundaries, and the structure of the manufacturing method according to the present invention is such that cooling is generated by centrifugal force within a rotating cylindrical drum. The main feature is that a copper alloy filament obtained by injecting a molten tsuba alloy into a liquid through a spinning nozzle and solidifying it by cooling is heat-treated at a temperature below the melting point of the copper alloy and 273 or more of the melting point. It is.

[作用] 合金を単結晶化させる技術としては、凝固法とひずみ焼
なまし法がよく知られている。即ち凝固法は溶融金属か
らの凝固を利用して単結晶を生成させる方法であり、一
方ひずみ焼なまし法は加工した金属を加熱(焼なまし)
して新しい結晶粒を生成させる再結晶技術を利用するも
のであるから、再結晶法とも呼ばれている。後者のひず
み焼なまし法は、線状あるいは板状に成形した金属材に
適度のひずみを与え、次いでこれを高温に加熱すること
によって行なわれるものである。
[Operation] Solidification methods and strain annealing methods are well known as techniques for single crystallizing alloys. In other words, the solidification method uses solidification from molten metal to produce a single crystal, while the strain annealing method heats (anneals) the processed metal.
It is also called the recrystallization method because it uses recrystallization technology to generate new crystal grains. The latter strain annealing method is carried out by applying an appropriate strain to a metal material formed into a linear or plate shape, and then heating it to a high temperature.

本発明者らは上記の様な知見を生かし、前述の如く多結
晶質で脆弱な銅合金フィラメントを単結晶質で柔軟性の
優れた単結晶質のものに改変することはできないかと考
え、ひずみ焼なまし法等を含めて色々実験を行なった。
The present inventors took advantage of the above knowledge and thought that it would be possible to modify the polycrystalline and brittle copper alloy filament as described above into a single crystalline one with excellent flexibility. We conducted various experiments including annealing methods.

その結果、回転液中紡糸法によって得た多結晶質の銅合
金フィラメントを、予備焼なよしや線引きなどの処理に
よってひずみを与えるといったプロセスなしに、直接語
銅合金の融点未満で且つ該融点の273以上の温度で熱
処理すると、紡糸工程で形成した多結晶構造が改変され
て、フィラメント軸に対して横断し、不均一な間隔を有
する結晶粒界を有し、デンドライト状組織を持たない単
結晶質部分が継がった特徴的な構造のものとなることが
明らかとなった。そしてこの様な構造を有する銅合金フ
ィラメントは靭性が非常に良好であり、180度に密着
曲げした場合でも折断することのない極めて柔軟なもの
であることが確認された。尚木明細書において「竹の節
」とは、フィラメントの横断面方向に形成される結晶粒
界が顕微鏡で観察した場合にあたかも竹の節の様な外観
を呈する状態を槓杵するものであり、紡糸条件や熱処理
条件によって若干異なるが、フィラメントの長手方向に
約0.3〜20 mm (通常はフィラメント直径の約
2倍以上)の不規則な間隔で形成され、詰物の節の間は
デンドライト状組織を持たない単結晶質で構成される。
As a result, polycrystalline copper alloy filaments obtained by spinning in a rotating liquid can be directly produced at a temperature below the melting point of the copper alloy and at 273 mm above the melting point without any process such as pre-annealing or drawing. When heat-treated at temperatures above, the polycrystalline structure formed during the spinning process is modified to form a single crystalline structure that is transverse to the filament axis, has grain boundaries with non-uniform spacing, and does not have a dendrite-like structure. It became clear that it had a characteristic structure in which parts were joined. It was confirmed that the copper alloy filament having such a structure has very good toughness and is extremely flexible without breaking even when it is closely bent at 180 degrees. In Naoki's specification, "bamboo knots" refer to the condition in which the grain boundaries formed in the cross-sectional direction of the filament look like bamboo knots when observed under a microscope. , which vary slightly depending on spinning conditions and heat treatment conditions, are formed at irregular intervals of about 0.3 to 20 mm (usually about twice the filament diameter or more) in the longitudinal direction of the filament, and between the nodes of the filling are dendrites. It is composed of a single crystal with no crystalline structure.

以下この様な構造を竹状構造という。Hereinafter, such a structure will be referred to as a bamboo-like structure.

本発明の銅合金フィラメントは上記の如く、竹状構造を
有するところに特徴を有しているが、フィラメントの全
体がこの様な竹状構造で構成されていなければならない
訳ではなく、フィラメントの少なくとも一部に前述の様
な竹状構造を有するものであれば、従来の多結晶質の銅
合金フィラメントに比べると柔軟性は著しく改善された
ものとなる。
As mentioned above, the copper alloy filament of the present invention is characterized by having a bamboo-like structure, but the entire filament does not have to be composed of such a bamboo-like structure. If a part of the filament has a bamboo-like structure as described above, the flexibility will be significantly improved compared to the conventional polycrystalline copper alloy filament.

尚回転液中紡糸法で得た銅合金フィラメントを何ら予備
処理することなしに熱処理することによって前述の様な
竹状構造が得られる点については、理論的解明はなされ
ておらないが、おそらく紡糸時にフィラメントに導入さ
れたひずみが竹状構造の生成に重要な影響を及ぼし、熱
処理によってこのような竹状構造が生成したためであろ
うと推定される。何れにしても竹状構造を有する銅合金
フィラメントは非常に柔軟性の富んだものとなり、18
0度の密着曲げが可能であるほか引張試験においても伸
びが著しく大きくなり、工業的に見て取扱いの容易な材
料であり、竹状構造を有する銅合金フィラメントは更に
高次の加工が可能であり、伸線や圧延も可能である。ま
た竹状構造の銅合金フィラメントからその一部を切り出
し単結晶として使用することもで診る。この場合、同一
径の銅合金フィラメントより切り出されるので直径の揃
った単結晶が得られ、しかも軸方向に単結晶の方位が異
なったものが得られる。本発明で使用する銅合金として
は様々のものが考えられるが、中でも最も好ましいのは
、Mn:1〜35原子%、Al:5〜35原子%(Mn
とAlの和が6〜60原子%)、残部がCu及び不可避
不純物からなる銅合金である。しかして上記の好適成分
組成を外れる銅合金を用いた場合は、後で詳述する如く
回転液中紡糸法を採用し、その後所定の温度範囲で熱処
理を行なった場合でも、本発明で意図する様な竹状構造
のものが得られ難く、従って柔軟性も十分に改善され難
くなる。
Although it has not been theoretically elucidated that the bamboo-like structure described above can be obtained by heat-treating the copper alloy filaments obtained by the rotating liquid spinning method without any pre-treatment, it is probably due to the spinning process. It is presumed that this is because the strain introduced into the filament has an important effect on the formation of bamboo-like structures, and that such bamboo-like structures are formed by heat treatment. In any case, the copper alloy filament with a bamboo-like structure is extremely flexible, and 18
In addition to being capable of close bending at 0 degrees, the elongation is significantly large in tensile tests, making it an easy material to handle from an industrial perspective, and copper alloy filaments with a bamboo-like structure can be processed to a higher degree. Yes, wire drawing and rolling are also possible. It is also possible to cut out a portion of a copper alloy filament with a bamboo-like structure and use it as a single crystal. In this case, since the copper alloy filaments are cut from copper alloy filaments of the same diameter, single crystals with uniform diameters can be obtained, and single crystals with different orientations in the axial direction can be obtained. Various copper alloys can be considered as the copper alloy used in the present invention, but the most preferable ones are Mn: 1 to 35 at%, Al: 5 to 35 at% (Mn
and Al (6 to 60 atomic %), the balance being Cu and unavoidable impurities. However, in the case of using a copper alloy that does not fall within the above-mentioned preferred composition, even if a spinneret spinning method is adopted as will be detailed later, and then heat treatment is performed within a predetermined temperature range, It is difficult to obtain a bamboo-like structure, and therefore it is difficult to sufficiently improve the flexibility.

つぎに本発明に係る銅合金フィラメントの製造方法につ
いて説明する。本発明で採用される紡糸法の基本的構成
は前記特開昭55−64948号として開示した回転液
中紡糸法に従う。たとえば第1.2図はその方法を例示
する概略正面図及び一部破断側面図であり、回転ドラム
6を高速回転させることによってその内周面側に回転液
膜層8を形成する。そして該液膜層8の液面9に向けて
るつぼ1下面の噴出ノズル2から溶融銅合金をジェット
状に噴出させ、銅合金をフィラメント4状にして急冷凝
固させながら回転ドラム6の内周壁に巻回していく。図
中3は金属を溶融するためのヒーター、5は溶融銅合金
噴出用の不活性ガス、7はモータ、10はベルトを夫々
示す。そして回転液膜層の周速度を、噴出ノズル2から
の溶融銅合金噴出速度と実質的に同一かまたはそれより
やや早くしておけば、断面均一性の良好な銅合金フィラ
メントが得られ易い。またここで使用される冷却液は純
粋な液体、溶液、エマルシコン等のいずれであってもよ
いが、コスト及び冷却効率を総合して最も好ましいのは
水である0回転ドラムは横向きでも縦向きでもよいが、
該ドラム中の液膜層表面速度は400〜900m/zi
n程度、溶融銅合金の液膜層への進入角度は50〜80
°、噴出ノズル2と冷却液面9との距離は0.5〜10
mm程度が夫々好適である。ところで上記の様な回転液
中紡糸法によって得られる銅合金フィラメントは、その
横断面内に2個以上の結晶粒を有い且つフィラメント軸
方向にも多数の結晶粒を有する多結晶構造体であり非常
に脆弱なものであるが、この銅合金フィラメントを、該
銅合金の融点未満で且つ該融点の273以上の温度で0
.2〜5時間時間熱処理すると、竹状構造を有する柔軟
性の富んだものに改質される。しかし上記温度範囲を外
れるときは、その様な改質効果が得られない。尚この熱
処理は不活性ガス雰囲気あるいは真空中で熱処理するの
が好ましい。
Next, a method for manufacturing a copper alloy filament according to the present invention will be explained. The basic structure of the spinning method employed in the present invention follows the rotating liquid spinning method disclosed in the above-mentioned Japanese Patent Application Laid-open No. 55-64948. For example, FIG. 1.2 is a schematic front view and a partially cutaway side view illustrating the method, in which a rotating liquid film layer 8 is formed on the inner peripheral surface of the rotating drum 6 by rotating it at high speed. Then, the molten copper alloy is ejected in a jet form from the ejection nozzle 2 on the lower surface of the crucible 1 toward the liquid surface 9 of the liquid film layer 8, and the copper alloy is formed into a filament 4 and is rapidly solidified while being applied to the inner circumferential wall of the rotating drum 6. Roll it around. In the figure, 3 is a heater for melting metal, 5 is an inert gas for blowing out molten copper alloy, 7 is a motor, and 10 is a belt. If the circumferential speed of the rotating liquid film layer is set to be substantially the same as or slightly faster than the jetting speed of the molten copper alloy from the jetting nozzle 2, copper alloy filaments with good cross-sectional uniformity can be easily obtained. The cooling liquid used here may be pure liquid, solution, emulsion, etc., but water is the most preferable in terms of cost and cooling efficiency.The zero-rotation drum can be oriented horizontally or vertically. Good, but
The surface speed of the liquid film layer in the drum is 400 to 900 m/zi
n degree, the angle of entry of the molten copper alloy into the liquid film layer is 50 to 80
°, the distance between the jet nozzle 2 and the coolant level 9 is 0.5 to 10
Approximately mm is suitable. By the way, the copper alloy filament obtained by the spinning submerged spinning method as described above is a polycrystalline structure having two or more crystal grains in its cross section and a large number of crystal grains in the axial direction of the filament. Although this copper alloy filament is very brittle, it can be heated to zero at a temperature below the melting point of the copper alloy and above 273 points above the melting point.
.. When heat treated for 2 to 5 hours, it is modified into a highly flexible material with a bamboo-like structure. However, when the temperature is outside the above range, such a reforming effect cannot be obtained. Note that this heat treatment is preferably carried out in an inert gas atmosphere or in a vacuum.

[実施例] 実施例1 第1.2図に示した様な回転液中紡糸法を採用し、Cu
 (りo)−Mn (25)−Al  (26)原子%
組成の銅合金溶湯(融点は約920℃)を用いて直径1
80μmの銅合金フィラメントを作製した。冷却液とし
ては10℃の水を使用した。
[Example] Example 1 The rotating liquid spinning method as shown in Fig. 1.2 was adopted, and Cu
(Rio)-Mn (25)-Al (26) atomic%
Using a molten copper alloy with a composition (melting point is approximately 920°C),
An 80 μm copper alloy filament was produced. Water at 10° C. was used as the cooling liquid.

次いでこの銅合金フィラメントを、約0.5 torr
以下の減圧下800℃で3時間又は5時間熱処理した。
The copper alloy filament was then heated to about 0.5 torr.
Heat treatment was performed at 800° C. for 3 or 5 hours under reduced pressure as described below.

熱処理前の銅合金フィラメントは、横断面内に3個の結
晶粒を有し且つフィラメント軸方向にも多数の結晶粒が
並んだ多結晶構造のものであり、曲げると簡単に折れる
脆弱なものであったが、熱処理に付した2種のフィラメ
ントは、長手方向に約0.3〜20ma+の間隔で、フ
ィラメントを横断する方向の結晶粒界を有し、且つ結晶
粒界の間はデンドライト状組織を持たない単結晶質から
なる竹状構造を有するものであり、180度に密着面げ
した場合でも折断することのない柔軟なものであった。
The copper alloy filament before heat treatment has a polycrystalline structure with three crystal grains in the cross section and many crystal grains lined up in the filament axis direction, and is brittle and easily breaks when bent. However, the two types of filaments subjected to heat treatment had grain boundaries in the direction transverse to the filament at intervals of about 0.3 to 20 ma+ in the longitudinal direction, and there was a dendrite-like structure between the grain boundaries. It has a bamboo-like structure consisting of a single crystal without any grains, and it is flexible and does not break even when it is faceted closely at 180 degrees.

実施例2 Cu (60) −Mn (20) −Al (20)
原子%、Cu (55)−Mn (20)−Al (2
5)及びCu (45)−Mn (30) −Al(2
5)原子%の組成を有する3 fiの銅合金溶湯(融点
は夫々約930℃、約920℃及び約950℃)を用い
て、実施例1と同様にして直径180μmの銅合金フィ
ラメントを作製し、次いで約0.5 torr以下の減
圧τ囲気下、900℃で3時間熱処理した。得られた各
熱処理物はほとんど全長に亘って竹状構造を有し、いず
れも180度密若曲げの可能な高柔軟性のものであった
Example 2 Cu (60) -Mn (20) -Al (20)
Atomic %, Cu (55)-Mn (20)-Al (2
5) and Cu(45)-Mn(30)-Al(2
5) A copper alloy filament with a diameter of 180 μm was produced in the same manner as in Example 1 using a molten copper alloy of 3 fi having a composition of atomic% (melting points of about 930 °C, about 920 °C, and about 950 °C, respectively). Then, heat treatment was performed at 900° C. for 3 hours under a reduced pressure τ of about 0.5 torr or less. Each of the obtained heat-treated products had a bamboo-like structure over almost the entire length, and all were highly flexible and capable of 180-degree bending.

実施例3 Cu (65) −Mn (2)−Al (33)原子
%、Cu (58) −Mn (34)−Al (8)
原子%及びCu (92) −Mn (3)−Al (
5)原子%の各組成を有する銅合金(融点は夫々約10
30℃、約890℃、約1060℃)を使用した他は実
施例2と同様にして紡糸及び熱処理を行なった。
Example 3 Cu (65) -Mn (2) -Al (33) atomic %, Cu (58) -Mn (34) -Al (8)
atomic % and Cu(92)-Mn(3)-Al(
5) Copper alloy with each composition of atomic % (melting point is about 10
Spinning and heat treatment were carried out in the same manner as in Example 2, except that temperatures (30°C, about 890°C, about 1060°C) were used.

得られたフィラメントは、いずれもほとんど全長に亘り
デンドライト状組織を持たない単結晶が竹状構造に連な
ったものであり、180度密着曲げ可能な柔軟性のすぐ
れたものであった。
The obtained filaments each had a bamboo-like structure in which single crystals without a dendrite-like structure were connected over almost the entire length, and had excellent flexibility that could be closely bent by 180 degrees.

実施例4 Cu (50) −Mn (25)−Al (25)原
子%の組成を有する銅合金(融点は約920℃)を用い
て、実施例1と同様にして直径180μmのフィラメン
トを作製し、次いで約0.5 torr以下の減圧雰囲
気下、620℃および300℃でそれぞれ3時間又は5
時間の熱処理をした。620℃で熱処理したフィラメン
トはいずれも竹状構造を有し、180度に密着的げので
きる柔軟なものであったが、300℃で熱処理したフィ
ラメントはいずれも竹状構造とはならず、フィラメント
のどの断面においても2個以上の結晶粒を有する多結晶
質になっており、脆弱なものであった。
Example 4 A filament with a diameter of 180 μm was produced in the same manner as in Example 1 using a copper alloy having a composition of Cu (50) -Mn (25) -Al (25) atomic % (melting point is about 920 ° C.). , and then at 620°C and 300°C for 3 hours or 5 hours, respectively, under a reduced pressure atmosphere of about 0.5 torr or less.
Heat treated for an hour. All the filaments heat-treated at 620°C had a bamboo-like structure and were flexible with tight burrs at 180°, but none of the filaments heat-treated at 300°C had a bamboo-like structure, and the filaments It was polycrystalline with two or more crystal grains in every cross section, and was brittle.

[発明の効果] 本発明は以上の様に構成されており、銅合金からなるフ
ィラメント本来の優れた磁気的、電気的特性を保持しつ
つ、その最大の欠点とされる脆弱さを改質して極めて柔
軟で曲げ易い特性を与えることができ、その取扱い性を
著しく改善することがでさた。その結果、たとえば抵抗
変化型温度センサー等への適用も容易となり、応用分野
の大幅な拡大を期待することができる。
[Effects of the Invention] The present invention is constructed as described above, and maintains the excellent magnetic and electrical properties inherent to a filament made of a copper alloy, while improving its fragility, which is considered its biggest drawback. It was possible to impart extremely flexible and bendable characteristics to the material, and its handling properties were significantly improved. As a result, it becomes easy to apply the present invention to, for example, resistance change temperature sensors, and a significant expansion of the field of application can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は回転液中紡糸法を説明するための図であり
、第1図は概略正面図、第2図は一部断面側面図である
。 1:るつぼ      2:OJ!出ノズル3:ヒータ
ー      4:フィラメント5:不活性ガス   
 6:回転ドラム7:モータ      8:冷却液体 9:?!却液面     10:ベルト出願人   大
  中  逸  雄 第1図 第2図
1.2 are diagrams for explaining the spinning method in a rotating liquid, FIG. 1 is a schematic front view, and FIG. 2 is a partially sectional side view. 1: Crucible 2: OJ! Output nozzle 3: Heater 4: Filament 5: Inert gas
6: Rotating drum 7: Motor 8: Cooling liquid 9: ? ! Cooling liquid level 10: Belt applicant Itsuo Ohnaka Figure 1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)フィラメント長手方向の少なくとも一部に、デン
ドライト状組織を有しない単結晶が、竹の節状に形成さ
れた結晶粒界を境にして連続的に連なつた構造を有する
ものであることを特徴とする銅合金フィラメント。
(1) At least part of the longitudinal direction of the filament has a structure in which single crystals without a dendrite-like structure are continuously connected with grain boundaries formed in the shape of bamboo nodes as boundaries. A copper alloy filament featuring:
(2)Cu−Mn−Al系合金が、Mn:1〜35原子
%、Al:5〜35原子%(但しMnとAlの和が6〜
60原子%)、並びに残部がCu及び不可避不純物であ
る特許請求の範囲第1項に記載の銅合金フィラメント。
(2) Cu-Mn-Al alloy has Mn: 1 to 35 at%, Al: 5 to 35 at% (however, the sum of Mn and Al is 6 to 35 at%).
60 atomic %), and the balance is Cu and unavoidable impurities.
(3)溶融銅合金を溶融紡糸法によりフィラメント状と
した後、該銅合金の融点未満で且つ該融点の2/3以上
の温度で熱処理したものである特許請求の範囲第1又は
2項に記載の銅合金フィラメント。
(3) According to claim 1 or 2, the molten copper alloy is formed into a filament by a melt spinning method and then heat-treated at a temperature below the melting point of the copper alloy and at least 2/3 of the melting point. Copper alloy filament as described.
(4)回転する円筒状ドラム内において遠心力により形
成された冷却液体中に、紡出ノズルを通して溶融銅合金
を噴射し、冷却固化して得られる銅合金フィラメントを
、該銅合金の融点未満で且つ該融点の2/3以上の温度
で熱処理することを特徴とする銅合金フィラメントの製
造法。
(4) Copper alloy filaments obtained by injecting molten copper alloy through a spinning nozzle into a cooling liquid formed by centrifugal force in a rotating cylindrical drum and cooling and solidifying the copper alloy filament at a temperature below the melting point of the copper alloy. A method for producing a copper alloy filament, characterized in that the filament is heat treated at a temperature of 2/3 or more of the melting point.
(5)銅合金が、Mn:1〜35原子%、Al:5〜3
5原子%(但しMnとAlの和が6〜60原子%)、並
びに残部がCu及び不可避不純物である特許請求の範囲
第4項に記載の製造法。
(5) Copper alloy has Mn: 1 to 35 at%, Al: 5 to 3
5 atomic % (however, the sum of Mn and Al is 6 to 60 atomic %), and the remainder is Cu and inevitable impurities.
JP21294886A 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method Expired - Lifetime JPH07103492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21294886A JPH07103492B2 (en) 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21294886A JPH07103492B2 (en) 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS6366323A true JPS6366323A (en) 1988-03-25
JPH07103492B2 JPH07103492B2 (en) 1995-11-08

Family

ID=16630948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21294886A Expired - Lifetime JPH07103492B2 (en) 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH07103492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280618A (en) * 1988-09-16 1990-03-20 Asahi Chem Ind Co Ltd Electrically conductive fiber and production thereof
US6710130B2 (en) 2001-03-30 2004-03-23 Chisso Corporation Propylene polymer composition and its foam moldings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280618A (en) * 1988-09-16 1990-03-20 Asahi Chem Ind Co Ltd Electrically conductive fiber and production thereof
US6710130B2 (en) 2001-03-30 2004-03-23 Chisso Corporation Propylene polymer composition and its foam moldings

Also Published As

Publication number Publication date
JPH07103492B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
JP6243275B2 (en) Metal wire made of iridium or iridium alloy
JP2017536327A (en) Single crystal material of TiAl intermetallic compound and method for producing the same
TW201247908A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
CN109652748B (en) Regulating and controlling method for precipitated phase orientation in magnesium alloy
JPH0445246A (en) High strength magnesium-base alloy
JPS6366323A (en) Copper alloy filament and production thereof
JPH0336225A (en) Metallic thin wire having single crystal chain structure and its manufacture
JPH07316755A (en) Al-base amorphous metallic filament
JPH10140267A (en) Copper alloy material with high cr content, having high strength and high electric conductivity, and its production
JPS6368245A (en) Copper alloy filament and its production
JP3885123B2 (en) Method for producing Zn-Al alloy wire
US5534083A (en) Method for producing a reinforcing stainless steel wire-aluminum alloy composite structure and a product thereof
JPS623227B2 (en)
JPH0736942B2 (en) Highly tough and highly flexible metal fibers with unidirectional dendritic structure
JPS6256393A (en) Metallic filament having bamboo-like structure and its production
JPH01150445A (en) Single crystal quality metallic fiber and production thereof
JPH04259359A (en) Manufacture of high purity copper wire constituted of coarse crystalline grain
JPH0331457A (en) Production of filament body of shape memory alloy
JPH0929399A (en) Manufacture of amorphous metallic thin wire
JP2001107164A (en) Ni-Ti SERIES SHAPE MEMORY ALLOY WIRE ROD AND ITS PRODUCING METHOD
JPS6213427B2 (en)
JPH0316218B2 (en)
Got Microstructure and tensile strength of silver-copper alloy filaments produced by glass-coated melt spinning
JPS6375118A (en) Iron type metallic filament and production thereof
JPH03134142A (en) Manufacture of high purity copper wire constituted of coarse crystalline grains

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term