JPH01150445A - Single crystal quality metallic fiber and production thereof - Google Patents

Single crystal quality metallic fiber and production thereof

Info

Publication number
JPH01150445A
JPH01150445A JP62310260A JP31026087A JPH01150445A JP H01150445 A JPH01150445 A JP H01150445A JP 62310260 A JP62310260 A JP 62310260A JP 31026087 A JP31026087 A JP 31026087A JP H01150445 A JPH01150445 A JP H01150445A
Authority
JP
Japan
Prior art keywords
metal
fiber
diameter
alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62310260A
Other languages
Japanese (ja)
Other versions
JPH0688110B2 (en
Inventor
Takaharu Ichiyanagi
隆治 一柳
Yoshiki Ono
芳樹 小野
Hideaki Ishihara
石原 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP62310260A priority Critical patent/JPH0688110B2/en
Priority to US07/280,320 priority patent/US4946746A/en
Priority to DE3841241A priority patent/DE3841241C2/en
Publication of JPH01150445A publication Critical patent/JPH01150445A/en
Publication of JPH0688110B2 publication Critical patent/JPH0688110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/007Pulling on a substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To improve ductility and flexibility of metallic fiber by forming cooling liquid layer in rotating cylindrical drum, injecting molten metal from a nozzle having the specific diameter and forming the single crystal quality metallic fiber having the prescribed diameter and fiber length. CONSTITUTION:The injecting nozzle 2 having <=100mum diameter is arranged in the rotating drum 6 in a molten spinning apparatus of rotating liquid spinning method, etc., and the molten metal composing of Fe-Si based alloy, etc., is injected toward the cooling liquid layer 8. Then, the molten metal is rapidly cooled to form fine fiber 4 having <=100mum diameter and primary arm of the dendritic structure forms the dendritic structure at the angle within 20 deg. to the axial direction. Successively, heat treatment is executed to it, to form single crystal quality having >=40mm fiber length. By this method, as the structure having all the same angle of the primary arm at <=20 deg. is formed, the ductility and flexibility of the metallic fiber are improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は繊維径が極めて微細であると共に全長に亘って
単結晶質であり、靭性が極めて良好であって複合材料の
構成素材として有用である他、磁性材料としての作用が
期待される金属繊維とその製法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The fibers of the present invention have extremely fine fiber diameters, are monocrystalline throughout the entire length, and have extremely good toughness, making them useful as constituent materials for composite materials. In addition, it relates to metal fibers that are expected to function as magnetic materials and their manufacturing methods.

[従来の技術] 金属繊維については新素材の研究あるいは用途開発を含
めて多くの研究、提案がなされており、応用分野はます
ます拡大していく傾向が見られる。
[Prior Art] A lot of research and proposals have been made regarding metal fibers, including research into new materials and application development, and there is a tendency for the fields of application to further expand.

金属繊維を製造する方法としては、次に示す様な色々の
方法が知られている。
Various methods as shown below are known as methods for manufacturing metal fibers.

■棒状の金属材料を、超硬合金やダイヤモンド製のダイ
スによって線引きする方法。
■A method of drawing a rod-shaped metal material into a wire using a die made of cemented carbide or diamond.

この方法では、細径繊維を得るのに多段の伸線処理を行
なわなければならず、また伸線工程で生じる内部歪を除
去するのに焼なまし工程を要する等、工程数が多くて煩
雑であり生産性にも問題がある。
This method requires multiple stages of wire drawing to obtain small-diameter fibers, and an annealing step is required to remove the internal strain that occurs during the wire drawing process. There is also a problem with productivity.

■固形の金属材料を切削して細線状物を切り出す方法。■A method of cutting solid metal materials into thin wires.

この方法は、上記■の方法に比べると簡便で工程数も少
なくて済む。しかしながら繊維の断面形状が不均一であ
るばかりでなく表面に切欠き欠陥等ができ易く、繊維の
均質性などに問題がある。
This method is simpler and requires fewer steps than method (2) above. However, not only the cross-sectional shape of the fibers is non-uniform, but also notch defects etc. are easily formed on the surface, and there are problems with the homogeneity of the fibers.

■溶融金属を細径のノズルから押出して冷却凝固させる
溶融紡糸法。
■A melt spinning method in which molten metal is extruded through a small diameter nozzle and cooled and solidified.

この方法にはガラス被覆紡糸法、水流中紡糸法、回転液
中紡糸法等が含まれ、これらの方法によって様々の金属
あるいは合金よりなる結晶質繊維や非晶質(アモルファ
ス)繊維が製造されており、現在のところ金属繊維の性
能、生産性の何れからしても前記■、■の方法よりも有
利な方法とされている。
These methods include glass-covered spinning, underwater spinning, rotating liquid spinning, etc., and these methods produce crystalline fibers and amorphous fibers made of various metals or alloys. This method is currently considered to be more advantageous than methods (1) and (2) above in terms of both metal fiber performance and productivity.

こうした状況の下で本発明者らもかねてより溶融紡糸法
、殊に回転液中紡糸法を利用した金属繊維の製法につい
て研究を行なっており、かかる研究の一環として先に特
開昭62−56393号公報に記載の発明を開発した。
Under these circumstances, the inventors of the present invention have been conducting research for some time on a method for manufacturing metal fibers using the melt spinning method, particularly the spinning method in a rotating liquid. The invention described in the publication was developed.

この発明は、溶融紡糸における凝固条件等を制御するこ
とによって、色々な長さからなる単結晶が粒界を境にし
て竹状に連続的に連なった構造を有する特殊な組織の金
属繊維を得るものであり、様々の分野への用途開発が進
められている。
This invention obtains metal fibers with a special structure in which single crystals of various lengths are continuously connected in a bamboo-like manner with grain boundaries as boundaries, by controlling the solidification conditions during melt spinning. The development of applications in various fields is progressing.

[発明が解決しようとする問題点] 本発明者らはその後も回転液中紡糸法を主体とする金属
繊維の製法及び物性の改善について研究を進めているが
、特に本発明は、溶融紡糸条件あるいはその後の熱処理
条件等を色々工夫することによって、従来の金属繊維と
は異質の結晶組織を有し、その利用分野を更に拡大して
いくことのできる様な金属繊維及びその製法を提供しよ
うとするものである。
[Problems to be Solved by the Invention] Since then, the present inventors have continued to conduct research on the manufacturing method of metal fibers, mainly using spinning in a rotating liquid, and on improving the physical properties. Alternatively, by variously devising the subsequent heat treatment conditions, etc., we aim to provide a metal fiber and its manufacturing method that has a crystal structure different from that of conventional metal fibers and can further expand its field of use. It is something to do.

[問題点を解決するための手段] 本発明に係る金属繊維の構成は、繊維径が100μm以
下、繊維長が40mm以上であり且つ全長に亘って単結
晶質であるところに要旨を有するものである。そしてこ
の様な単結晶質金属15維は、回転する円筒状ドラムの
内周面に沿って形成された冷却液体層中に、直径100
μm以下のノズルを通して溶融金属を噴出せしめ、急冷
固化した金属繊維を熱処理して均質化することによって
得ることができる。
[Means for Solving the Problems] The structure of the metal fiber according to the present invention is characterized in that the fiber diameter is 100 μm or less, the fiber length is 40 mm or more, and the metal fiber is single crystal over the entire length. be. 15 such single-crystalline metal fibers with a diameter of 100 mm are placed in a cooling liquid layer formed along the inner peripheral surface of a rotating cylindrical drum.
It can be obtained by ejecting molten metal through a micrometer or less nozzle and heat-treating the rapidly solidified metal fiber to homogenize it.

尚本発明にいう単結晶質とは、唯一の核から成長した粒
界のない、しかも分子や原子が規則正しく配列した空間
格子よりなる理想的な単結晶を意味するものではなく、
転位や亜粒界なとの欠陥を内包する結晶を意味する。ま
たここで言う亜粒界とは、数置以下の角度で結晶方位が
異なる境界を意味する。
The term "single crystal" as used in the present invention does not mean an ideal single crystal grown from a single nucleus, without grain boundaries, and consisting of a space lattice in which molecules and atoms are regularly arranged.
A crystal that contains defects such as dislocations and subgrain boundaries. Further, the term "sub-grain boundary" as used herein means a boundary where crystal orientations differ by an angle of several orders of magnitude or less.

[作用コ 周知の通り回転液中紡糸法とは、回転する円筒状中空ド
ラムの内周面側に遠心力によって冷却液体層を形成して
おき、該冷却液体層内へ細径のノズルから溶融金属を細
線状に噴出させて急冷凝固させ、そのまま中空ドラムの
内周面側又は他の適当な装置に巻取っていく方法であり
、種々の金属材料を細い繊維状とすることができる。
[Operations] As is well known, the spinning method in a rotating liquid is a method in which a cooling liquid layer is formed on the inner peripheral surface of a rotating cylindrical hollow drum by centrifugal force, and melting is carried out into the cooling liquid layer from a small diameter nozzle. This is a method in which metal is ejected in a thin wire, rapidly cooled and solidified, and then wound up as it is on the inner peripheral surface of a hollow drum or other suitable device, and various metal materials can be made into thin fibers.

ところで、合金の種類によっては上記回転液中紡糸法に
よって得られる金属繊維の靭性が1ai!l!径によっ
てばらつき、特に大径のものは非常に脆く、約90度以
上に曲げると簡単に折れてしまうため取扱いが困難であ
り汎用性に欠ける場合もある。そしてこの様な靭性の乏
しい従来の金属繊維の内部構造を見ると、繊維軸に対し
て直交する横断面内には常に(どの断面を見ても)2個
以上の結晶粒が存在しており、いわゆる多結晶質構造を
有するものであることが確認されている。これに対した
とえば直径130μm程度の細径金属繊維では、特開昭
62−56393号公報に記載した様に「竹の節の間」
状の単結晶質部分が繊維軸方向に0.1〜5mm程度の
不規則な間隔で継がった構造となり、該単結晶構造を有
する部分の靭性は非常に良好で、180度に密着的げし
た場合でも折断することのない柔軟なものとなる。
By the way, depending on the type of alloy, the toughness of the metal fiber obtained by the above-mentioned spinning liquid spinning method may be 1ai! l! It varies depending on the diameter, and in particular, large diameter ones are very brittle and easily break when bent more than about 90 degrees, making them difficult to handle and sometimes lacking in versatility. Looking at the internal structure of conventional metal fibers with poor toughness, we find that there are always two or more crystal grains in a cross section perpendicular to the fiber axis (no matter which cross section you look at). It has been confirmed that it has a so-called polycrystalline structure. On the other hand, for example, in the case of a thin metal fiber with a diameter of about 130 μm, as described in Japanese Patent Application Laid-open No. 62-56393, there is a "bamboo knot gap".
It has a structure in which single-crystalline parts are joined at irregular intervals of about 0.1 to 5 mm in the fiber axis direction, and the toughness of the part with the single-crystal structure is very good, and it is possible to form a tight target at 180 degrees. It is flexible and will not break even if it is bent.

ところがこの金am維でも、結晶粒界に相当する「竹の
節」の部分における靭性や柔軟性は悪く、該「竹の節」
の部分で180度曲げを行なった場合は切断する恐れが
ある。
However, even with this gold am fiber, the toughness and flexibility of the "bamboo knots" corresponding to grain boundaries are poor, and the "bamboo knots"
If the part is bent 180 degrees, there is a risk of breakage.

そこでこの様な「竹の節」を無くし全長に亘って単結晶
質とすることができれば、靭性や柔軟性を更に改善する
ことができるのであろうと考え、研究を進めた。その結
果、 ■回転液中紡糸用ノズルの直径を100μm以下に設定
し、溶融金属が凝固するときの冷却速度を更に大きくす
ると、繊維軸方向に樹枝状晶群が並んだ集合組織のもの
となること、 ■該紡出ノズル径を小さくして繊維径を小さくすればす
るほど、当該樹枝状晶の一次アームと繊維軸とのなす角
度は小さくなること、 ■iaM軸方向に樹枝状晶群の並んだ該金属Ml維は全
長に亘って非常に均質なものであるが、繊維断面は唯一
つの樹枝状晶からなるものではなく、2個又はそれ以上
の樹枝状晶が観察されること、 ■ところが上記■の金属繊維を熱処理すると、当該mi
aの断面には若干の転位や亜粒界等は観察されるものの
明瞭な結晶粒界は認められなくなり、全長に亘って単結
晶質となること、が明らかとなった。
Therefore, we thought that if we could eliminate these "bamboo knots" and make the material monocrystalline throughout its length, we would be able to further improve its toughness and flexibility, and proceeded with our research. As a result, ■If the diameter of the rotating submerged spinning nozzle is set to 100 μm or less and the cooling rate when the molten metal solidifies is further increased, a texture will be obtained in which dendrite groups are arranged in the fiber axis direction. (2) The smaller the spinning nozzle diameter and the smaller the fiber diameter, the smaller the angle between the primary arm of the dendrite and the fiber axis; (2) The smaller the angle between the primary arm of the dendrite and the fiber axis; Although the aligned metal Ml fibers are very homogeneous over the entire length, the cross section of the fibers does not consist of a single dendrite, but two or more dendrites are observed; However, when the metal fiber of the above (■) is heat-treated, the mi
Although some dislocations and subgrain boundaries were observed in the cross section of point a, clear grain boundaries were no longer observed, and it became clear that the cross section was single-crystalline over the entire length.

上記■〜■の知見を更に定量的に把握する目的で研究を
重ねた結果、回転液中紡糸時の紡出ノズル径を100μ
m以下(より好ましくは90μm以下)に設定すると、
樹枝状晶の一次アームと繊維軸方向とのなす角度は約2
0度以下で一様に揃った樹枝状組織(紡出ノズル径を9
0μm以下とした場合は約10度以下)となり、これを
熱処理すると、全長に亘って単結晶質のものとなること
が明らか、となった。モして該熱処理繊維は熱処理前の
ものに比べて更に優れた柔軟性を示し、180度に密着
的げした場合でも折断する様なことがなくなる。しかも
この金属繊維は、単結晶質であるため繊維軸方向に結晶
が特定の方向性を有しており、磁気的特性においても非
常に優れたものである。
As a result of repeated research for the purpose of further quantitatively understanding the findings from ■ to ■ above, we found that the diameter of the spinning nozzle during spinning in a rotating liquid was 100 μm.
When set to m or less (more preferably 90 μm or less),
The angle between the primary arm of the dendrite and the fiber axis is approximately 2
Uniform dendritic structure below 0 degrees (spinning nozzle diameter 9
When the thickness is 0 μm or less, the temperature is about 10 degrees or less), and it is clear that when this is heat-treated, it becomes a single crystal over the entire length. Furthermore, the heat-treated fibers exhibit superior flexibility compared to those before heat treatment, and do not break even when they are closely targeted at 180 degrees. Moreover, since this metal fiber is single-crystalline, the crystals have a specific orientation in the fiber axis direction, and the magnetic properties are also very excellent.

尚金属よりなる単結晶質の繊維状物としてはウィスカー
が知られている。該ウィスカーなる表現はその形態を示
すものであって明確に定義されている訳ではないが、最
も一般的なのは気相成長法等によって得られる直径数μ
m〜数百μm1長さ数mm〜数十mm程度のものであっ
て、完全度の高い針状結晶よりなる短繊維であり、本発
明の様に転位や亜粒界なとの欠陥を内包する単結晶質の
長繊維(アスペクト比は通常400以上)とは区別され
る。
Note that whiskers are known as single-crystalline fibrous materials made of metal. The expression "whisker" refers to its form and is not clearly defined, but the most common whisker is a whisker with a diameter of several μm obtained by vapor phase growth, etc.
m ~ several hundred μm 1 length of several mm ~ several tens of mm, short fibers made of highly perfect needle-like crystals, and as in the present invention, they contain defects such as dislocations and subgrain boundaries. It is distinguished from single-crystalline long fibers (usually having an aspect ratio of 400 or more).

本発明繊維の製造に使用される金属としては種々のもの
が挙げられるが、中でも本発明の特徴を最も有効に発揮
するのはFe−5L系合金、Fe−Al系合金、Fe−
5L−Al系合金であり、これら鉄合金中に適量の希土
類金属を1種又は2種以上含有せしめたものも好ましい
ものとして挙げられる。尚希土類金属として特に好まし
いのは原子番号が57〜71のランタン系列から選択さ
れるものであって、具体的にはLa、Ce。
There are various metals that can be used to manufacture the fibers of the present invention, but among them, the metals that most effectively exhibit the characteristics of the present invention are Fe-5L alloy, Fe-Al alloy, and Fe-Al alloy.
Preferred examples include 5L-Al alloys, which contain an appropriate amount of one or more rare earth metals in these iron alloys. Particularly preferred rare earth metals are those selected from the lanthanum series having an atomic number of 57 to 71, specifically La and Ce.

Pr、Nd、Pm、Sm、Eu、Gd、Tb。Pr, Nd, Pm, Sm, Eu, Gd, Tb.

Dy、Ho、Er、Tm、Yb、Luであり、これらは
単独で含有させてもあるいは2種以上を複合して含有さ
せることもできる。上記希土類金属の中でも特に好まし
いのはCeである。また本発明を実施するに当たっては
、金属繊維の用途や要求特性に応じて更に他の合金成分
を配合することも可能である。
These are Dy, Ho, Er, Tm, Yb, and Lu, and these can be contained alone or in combination of two or more types. Among the above rare earth metals, Ce is particularly preferred. Further, in carrying out the present invention, it is also possible to further mix other alloy components depending on the use and required characteristics of the metal fiber.

次に本発明に係る金属繊維の製法について説明する。こ
の方法を実施するに当たっては特開昭55−64948
号や前記特開昭62−56393号として開示した回転
液中紡糸法を利用する。たとえば′!J1.2図は回転
液中紡糸法を例示する概略正面図及び一部破断側面図で
あり、回転ドラム6を高速回転させることによってその
内周面側に冷却液体層8を形成する。そして該冷却液体
層8の液面9又は液中に向けてるつぼ1下面の噴出ノズ
ル2から金属溶湯を噴出させ、金属を繊維4状にして急
冷凝固させながら回転ドラム6の内周壁に巻回していく
。図中3は金属を溶融させるためのヒーター、5は溶融
金属噴出用の不活性ガス、7はモータ、10はベルトを
夫々示す。そして冷却液体層の周速度を、噴出ノズル2
からの溶融金属噴出速度と実質的に同一かまたはそれよ
りやや早くしておけば、断面の寸法及び形状が均一な金
属繊維が得られ易い。またここで使用される冷却液体は
純粋な液体、溶液、エマルジョン等のいずれであっても
よいが、コスト及び冷却効率を総合すると最も好ましい
のは水である。回転ドラムは横向きでも縦向きでもよい
が、該ドラム内における冷却液体層の表面速度は300
〜800 m/min程度、金属溶湯の冷却液体層への
進入角度は40〜80°、噴出ノズル2と液面9との距
離は0.5〜4mm程度が夫々好適である。
Next, a method for manufacturing metal fibers according to the present invention will be explained. In carrying out this method, Japanese Patent Application Laid-Open No. 55-64948
The method of spinning in a rotating liquid disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 62-56393 is utilized. for example'! Figure J1.2 is a schematic front view and a partially cutaway side view illustrating the spinning method in a rotating liquid, in which a cooling liquid layer 8 is formed on the inner peripheral surface of the rotating drum 6 by rotating it at high speed. Then, the molten metal is ejected from the ejection nozzle 2 on the lower surface of the crucible 1 toward the liquid surface 9 of the cooling liquid layer 8 or into the liquid, and the metal is rapidly solidified into fibers 4 and wound around the inner circumferential wall of the rotating drum 6. To go. In the figure, 3 is a heater for melting metal, 5 is an inert gas for blowing out molten metal, 7 is a motor, and 10 is a belt. Then, the circumferential velocity of the cooling liquid layer is determined by the jet nozzle 2.
If the speed is set to be substantially the same as or slightly faster than the molten metal jetting speed, it is easy to obtain metal fibers with uniform cross-sectional dimensions and shapes. Further, the cooling liquid used here may be a pure liquid, a solution, an emulsion, etc., but in view of cost and cooling efficiency, water is most preferable. The rotating drum may be oriented horizontally or vertically, but the surface velocity of the cooling liquid layer within the drum is 300
Approximately 800 m/min, the angle of entry of the molten metal into the cooling liquid layer is 40 to 80 degrees, and the distance between the jet nozzle 2 and the liquid surface 9 is approximately 0.5 to 4 mm, respectively.

この回転液中紡糸法を採用する場合特に注意しなければ
ならないのは、噴出ノズル2の口径を100μm以下と
し、紡糸される金属繊維の直径が100μm以下となる
様にしなければならない点である。即ち噴出ノズル2の
口径が1100Alを超える大径のものであると、紡糸
される金属繊維の直径が1100aを超えるものとなっ
て、冷却速度を十分に高めることができなくなり、樹枝
状組織の一次アームと繊維軸とのなす角度が20度以下
の一様な樹枝状組織とならず、その後熱処理を行なった
場合でも全長に亘って単結晶質とすることができず、満
足のいく靭性及び柔軟性のものが得られない。これに対
し100μm以下の小径の噴出ノズルを使用すれば、直
径が100μm以下で樹枝状組織の一次アームが繊維軸
方向に対して20度以下の角度に一様に揃った組織とな
り、その後下記の様な熱処理に付すことによって全長に
亘り単結晶質のものとすることができ、靭性及び柔軟性
の卓越した金属繊維が得られる。
When employing this rotating liquid spinning method, special attention must be paid to the fact that the diameter of the jet nozzle 2 must be 100 μm or less, and the diameter of the spun metal fiber must be 100 μm or less. In other words, if the diameter of the jet nozzle 2 is larger than 1100A, the diameter of the spun metal fiber will exceed 1100A, making it impossible to sufficiently increase the cooling rate, and the primary dendritic structure The angle between the arm and the fiber axis is less than 20 degrees, which does not form a uniform dendritic structure, and even after subsequent heat treatment, it is not possible to form a single crystal over the entire length, resulting in unsatisfactory toughness and flexibility. I can't get anything sexual. On the other hand, if a jet nozzle with a small diameter of 100 μm or less is used, a structure with a diameter of 100 μm or less and a structure in which the primary arms of the dendritic structure are uniformly aligned at an angle of 20 degrees or less with respect to the fiber axis direction is created, and then the following By subjecting the metal fiber to various heat treatments, it can be made into a single crystalline material over its entire length, resulting in a metal fiber with excellent toughness and flexibility.

尚熱処理は、急冷凝固時の樹枝状晶を実質的に消失せし
め、単結晶質の新たな結晶を生成させて均質化せしめ得
る様、金属の種類に応じて適宜窓めるべきであるが、一
般的な基準としては、金属繊維を溶融することなく短時
間で均質化し得る様、[当該金属の固相線温度−10℃
]よりも低く且つ[当該合金の融点の局コ以上の温度の
範囲で行なうのがよい。また熱処理は、金属繊維の酸化
を防止するため真空もしくはアルゴン等の不活性ガス雰
囲気中で行なうことが望まれる。
The heat treatment should be carried out in an appropriate window depending on the type of metal so that dendrites during rapid solidification can be substantially eliminated and new single crystals can be generated and homogenized. As a general standard, in order to homogenize the metal fibers in a short time without melting,
] and above the melting point of the alloy. Further, the heat treatment is preferably performed in a vacuum or in an inert gas atmosphere such as argon in order to prevent oxidation of the metal fibers.

[実施例] 実施例1 第1.2図に示した様な回転液中紡糸法を採用し、F 
e −6,5wt%si合金を原料とし、直径の異なる
種々の紡出ノズルを用いて色々な直径の鉄合金系金属繊
維を作製した。冷却液体としては水(15℃)を使用し
た。尚紡出ノズルの直径が変わると紡糸条件も変化する
が、基本的には回転ドラム中の水層の表面速度が溶融金
属のジェット流速と同等もしくは若干速くなる様に、ド
ラムの回転速度と金属溶湯の噴出速度をコントロールす
ることにより、直径150μm、90μm、70μmの
3種の金属繊維を得、その後電気炉を使用し真空雰囲気
(5X 10−’Torr以下)下に1100℃で2時
間熱処理した。
[Example] Example 1 The rotating liquid spinning method as shown in Fig. 1.2 was adopted, and F
Using e-6.5wt% Si alloy as a raw material, iron alloy metal fibers with various diameters were produced using various spinning nozzles with different diameters. Water (15°C) was used as the cooling liquid. If the diameter of the spinning nozzle changes, the spinning conditions will also change, but basically the rotational speed of the drum and the metal should be adjusted so that the surface speed of the water layer in the rotating drum is equal to or slightly faster than the jet flow speed of the molten metal. By controlling the ejection speed of the molten metal, three types of metal fibers with diameters of 150 μm, 90 μm, and 70 μm were obtained, and then heat-treated at 1100°C for 2 hours in a vacuum atmosphere (5X 10-'Torr or less) using an electric furnace. .

このうち、直径150μmの繊維は、熱処理前の段階で
樹枝状組織が観察されたものの、その−次アームと繊維
軸とのなす角度が大きく、熱処理後も多結晶構造を示し
、全長に亘って柔軟性の乏しいものであった。 これに
対し直径90μmの金属繊維では、樹枝状組織の一部ア
ームが一様に繊維軸に対して約7度の角度で成長してお
り、熱処理後の組織観察では亜粒界は見られるものの明
確な結晶粒界は認められず、全長に亘って柔軟で密着曲
げが可能であった。また直径70μmの繊維は、熱処理
における樹枝状組織の一部アームと繊維軸とのなす角度
が約4度以下の一様に揃った組織を有しており、繊維の
全長に亘って密着曲げが可能であった。
Among these, the fibers with a diameter of 150 μm had a dendritic structure observed before heat treatment, but the angle between the second arm and the fiber axis was large, and even after heat treatment, the fibers exhibited a polycrystalline structure over the entire length. It lacked flexibility. On the other hand, in a metal fiber with a diameter of 90 μm, some arms of the dendritic structure grow uniformly at an angle of about 7 degrees to the fiber axis, and although subgrain boundaries can be seen when the structure is observed after heat treatment. No clear grain boundaries were observed, and the specimen was flexible over its entire length and could be bent in close contact. In addition, fibers with a diameter of 70 μm have a structure in which the angle between some arms of the dendritic structure and the fiber axis during heat treatment is uniformly equal to about 4 degrees or less, and tight bending occurs over the entire length of the fiber. It was possible.

また、直径70μmの金属繊維については、その後繊維
軸方向とその直交方向を湿式研摩し、エッチビット法に
よって試料面に適度に分布した約10〜204mの結晶
学的マイクロビットを作り、該ビットの形状と繊維軸方
向に対する方位を観察したところ、繊維軸方向に対し直
交する断面におけるエッチビットの形状はほぼ同一であ
り、方位も同一であった。
In addition, for metal fibers with a diameter of 70 μm, the fiber axis direction and the orthogonal direction were wet-polished, and crystallographic microbits of approximately 10 to 204 m in length were moderately distributed on the sample surface using the etch bit method. When the shape and orientation with respect to the fiber axis direction were observed, it was found that the shape of the etch bit in a cross section perpendicular to the fiber axis direction was almost the same, and the orientation was also the same.

また繊維軸方向の断面におけるエッチビットの形状及び
方位はいずれもほぼ同一であったが、場所によっては繊
維軸に対して連続的に傾斜していた。これらのことより
、この金属繊維は亜粒界が存在し欠陥は内包するものの
、実質的には単結晶質であることが明らかである。該直
径70μmの金属繊維は、直流磁化測定において飽和磁
束密度は2.4テスラ、保磁力は0.14エルステツド
、比透磁率は121,000 、角形比は0.98と、
優れた軟磁気特性を有するものであった。
In addition, the shape and orientation of the etch bits in the cross section in the fiber axis direction were all almost the same, but in some places they were continuously inclined with respect to the fiber axis. From these facts, it is clear that although this metal fiber has sub-grain boundaries and contains defects, it is substantially single-crystalline. The metal fiber with a diameter of 70 μm has a saturation magnetic flux density of 2.4 Tesla, a coercive force of 0.14 Oersteds, a relative magnetic permeability of 121,000, and a squareness ratio of 0.98 in DC magnetization measurements.
It had excellent soft magnetic properties.

実施例2 実施例1と同様にして溶融Fe−25wt%Alから直
径の異なる2種の鉄系金属繊維(直径160μm及び7
0μm)を紡糸し真空雰囲気(3x 10 ””Tor
r以下)下に1150℃で2時間熱処理して均質化した
。直径160μmの金属繊維には明瞭な結晶粒界が認め
られたが、直径70μmの金属繊維は、部分的に亜粒界
の存在が認められるものの明確な粒界は存在せず、実質
的に単結晶質であった。
Example 2 In the same manner as in Example 1, two kinds of iron-based metal fibers with different diameters (160 μm in diameter and 7
0 μm) was spun in a vacuum atmosphere (3 x 10 ””Tor
The mixture was homogenized by heat treatment at 1,150° C. for 2 hours under (below). Clear grain boundaries were observed in the metal fibers with a diameter of 160 μm, but in the metal fibers with a diameter of 70 μm, although the presence of sub-grain boundaries was partially observed, there were no clear grain boundaries, and the metal fibers were essentially single. It was crystalline.

実施例3 F e −5,2wt%A 1−2.7 wt%Stの
鉄系金属を使用し、実施例1と同様にして直径200μ
m、155μm及び65μmの鉄系金属繊維を作製し、
その後真空霊囲気下(2X10−’Torr)1100
℃で10時間熱処理して均質化した。
Example 3 Fe-5,2wt%A 1-2.7wt%St iron-based metal was used, and the diameter was 200μ in the same manner as in Example 1.
m, 155 μm and 65 μm iron-based metal fibers were prepared,
After that, vacuum atmosphere (2X10-'Torr) 1100
The mixture was homogenized by heat treatment at ℃ for 10 hours.

その結果、直径220μm及び155μmの金属繊維に
はいずれも結晶粒界の存在が認められたが、直径65μ
mの金属繊維には亜粒界は観察されるものの明確な結晶
粒界は存在せず、単結晶質であった。
As a result, the presence of grain boundaries was observed in both metal fibers with diameters of 220 μm and 155 μm, but
Although subgrain boundaries were observed in the metal fiber of No. m, clear grain boundaries did not exist, and the metal fiber was single crystalline.

[発明の効果] 本発明は以上の様に構成されており、金属繊維本来の優
れた特性を保持しつつ、脆弱さを改質して極めて柔軟で
曲げ易い特性を与えることができ、その取扱い性を著し
く改善することができた。しかも単結晶質であって磁気
特性にも優れたものであるので、たとえば磁気センサー
や磁心などへの適用も容易となり、応用分野の大幅な拡
大が期待される。
[Effects of the Invention] The present invention is configured as described above, and while maintaining the original excellent properties of metal fibers, it is possible to modify the brittleness and give extremely flexible and bendable properties, and the handling thereof can be improved. I was able to significantly improve my sexuality. Moreover, since it is single crystal and has excellent magnetic properties, it can be easily applied to magnetic sensors and magnetic cores, for example, and is expected to expand its application fields significantly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は回転液中紡糸法を説明するための図であり
、第1図は概略正面図、第2図は一部断面側面図である
。 1:るつぼ      2:噴出ノズル3:ヒーター 
     4:繊維 5:不活性ガス    6:回転ドラム7:モータ  
    8:冷却液体層9:冷却液面     10:
ベルト 第1図 第2図
1.2 are diagrams for explaining the spinning method in a rotating liquid, FIG. 1 is a schematic front view, and FIG. 2 is a partially sectional side view. 1: Crucible 2: Spout nozzle 3: Heater
4: Fiber 5: Inert gas 6: Rotating drum 7: Motor
8: Cooling liquid layer 9: Cooling liquid surface 10:
Belt Figure 1 Figure 2

Claims (11)

【特許請求の範囲】[Claims] (1)繊維径が100μm以下、繊維長が40mm以上
であり且つ全長に亘って単結晶質であることを特徴とす
る単結晶質金属繊維。
(1) A single-crystalline metal fiber having a fiber diameter of 100 μm or less, a fiber length of 40 mm or more, and being single-crystalline over its entire length.
(2)アスペクト比が400以上である特許請求の範囲
第1項に記載の金属繊維。
(2) The metal fiber according to claim 1, which has an aspect ratio of 400 or more.
(3)金属が、Fe−Si系合金、Fe−Al系合金、
Fe−Si−Al系合金よりなる群から選択されたもの
である特許請求の範囲第1項又は第2項に記載の金属繊
維。
(3) The metal is a Fe-Si alloy, a Fe-Al alloy,
The metal fiber according to claim 1 or 2, which is selected from the group consisting of Fe-Si-Al alloys.
(4)金属がFe−Si−希土類金属系合金、Fe−A
l−希土類金属系合金、Fe−Si−Al希土類金属系
合金よりなる群から選択されたものである特許請求の範
囲第1項又は第2項に記載の金属繊維。
(4) Metal is Fe-Si-rare earth metal alloy, Fe-A
The metal fiber according to claim 1 or 2, which is selected from the group consisting of l-rare earth metal alloy and Fe-Si-Al rare earth metal alloy.
(5)希土類金属が原子番号57〜71のランタン系列
から選択される1種又は2種以上の金属である特許請求
の範囲第4項に記載の金属繊維。
(5) The metal fiber according to claim 4, wherein the rare earth metal is one or more metals selected from the lanthanum series having an atomic number of 57 to 71.
(6)希土類金属がCeである特許請求の範囲第5項に
記載の金属繊維。
(6) The metal fiber according to claim 5, wherein the rare earth metal is Ce.
(7)回転する円筒状ドラムの内周面に沿って形成され
た冷却液体層中に、直径100μm以下のノズルを通し
て溶融金属を噴出せしめ、急冷固化した線材を熱処理し
て均質化することにより繊維径が100μm以上、繊維
長が40mm以上であり全長に亘って単結晶質である金
属繊維を得ることを特徴とする単結晶質金属繊維の製法
(7) Molten metal is jetted through a nozzle with a diameter of 100 μm or less into a cooling liquid layer formed along the inner peripheral surface of a rotating cylindrical drum, and the rapidly solidified wire is heat-treated to homogenize it. A method for producing a single-crystalline metal fiber, characterized in that the metal fiber has a diameter of 100 μm or more, a fiber length of 40 mm or more, and is single-crystalline over its entire length.
(8)金属がFe−Si系合金、Fe−Al系合金、F
e−Si−Al系合金よりなる群から選択されたもので
ある特許請求の範囲第7項に記載の製法。
(8) The metal is Fe-Si alloy, Fe-Al alloy, F
The manufacturing method according to claim 7, wherein the material is selected from the group consisting of e-Si-Al alloys.
(9)金属がFe−Si−希土類金属系合金、Fe−A
l−希土類金属系合金、Fe−Si−Al−希土類金属
系合金よりなる群から選択されたものである特許請求の
範囲第7項に記載の製法。
(9) The metal is Fe-Si-rare earth metal alloy, Fe-A
8. The manufacturing method according to claim 7, wherein the material is selected from the group consisting of l-rare earth metal alloy and Fe-Si-Al-rare earth metal alloy.
(10)希土類金属が原子番号57〜71のランタン系
列から選択される1種又は2種以上の金属である特許請
求の範囲第9項に記載の製法。
(10) The manufacturing method according to claim 9, wherein the rare earth metal is one or more metals selected from the lanthanum series having an atomic number of 57 to 71.
(11)希土類金属がCeである特許請求の範囲第10
項に記載の製法。
(11) Claim 10 in which the rare earth metal is Ce.
The manufacturing method described in section.
JP62310260A 1987-12-08 1987-12-08 Single crystalline metal fiber and method for producing the same Expired - Lifetime JPH0688110B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62310260A JPH0688110B2 (en) 1987-12-08 1987-12-08 Single crystalline metal fiber and method for producing the same
US07/280,320 US4946746A (en) 1987-12-08 1988-12-06 Novel metal fiber and process for producing the same
DE3841241A DE3841241C2 (en) 1987-12-08 1988-12-07 Metal fiber and method of manufacturing a metal fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310260A JPH0688110B2 (en) 1987-12-08 1987-12-08 Single crystalline metal fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01150445A true JPH01150445A (en) 1989-06-13
JPH0688110B2 JPH0688110B2 (en) 1994-11-09

Family

ID=18003107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310260A Expired - Lifetime JPH0688110B2 (en) 1987-12-08 1987-12-08 Single crystalline metal fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0688110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105522128A (en) * 2015-12-16 2016-04-27 北京科技大学 Method for preparing high silicon steel wire through short technological process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105522128A (en) * 2015-12-16 2016-04-27 北京科技大学 Method for preparing high silicon steel wire through short technological process

Also Published As

Publication number Publication date
JPH0688110B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US6749700B2 (en) Method for producing amorphous alloy ribbon, and method for producing nano-crystalline alloy ribbon with same
JP3710226B2 (en) Quench ribbon made of Fe-based soft magnetic metallic glass alloy
JP3494371B2 (en) Method for producing amorphous alloy ribbon and method for producing nanocrystalline alloy ribbon using the same
JPWO2013051729A1 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
JP3364299B2 (en) Amorphous metal wire
US4946746A (en) Novel metal fiber and process for producing the same
US6648994B2 (en) Methods for producing iron-based amorphous alloy ribbon and nanocrystalline material
JPH01150445A (en) Single crystal quality metallic fiber and production thereof
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPH01150444A (en) Metallic fiber having directional dendritic structure and production thereof
JPH07316755A (en) Al-base amorphous metallic filament
JPH06104597B2 (en) Metal filament having a bamboo structure and method for producing the same
JPS5964740A (en) Amorphous metal filament and manufacture thereof
JP3230581B1 (en) Manufacturing method of giant magnetostrictive material under microgravity environment
JPH01150447A (en) Soft magnetic fiber having high square loop hysteresis
US20230127567A1 (en) Superelastic and Shape-Memory Fe-Based Wire and Direct Wire Casting Thereof
Clapp et al. Flexible A‐15 superconducting tape via the amorphous state
US3498851A (en) Method for producing an anisotropic permanent magnet material
JP2001300697A (en) Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon
EP0418023B1 (en) Cobalt-based magnet free of rare earths
JPS6366323A (en) Copper alloy filament and production thereof
JPS6375118A (en) Iron type metallic filament and production thereof
JPH0437442A (en) Apparatus for producing magnetostrictive material
KR20220115577A (en) alloy
CA1178181A (en) Method of making permanent magnets and product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14