JPS6375118A - Iron type metallic filament and production thereof - Google Patents

Iron type metallic filament and production thereof

Info

Publication number
JPS6375118A
JPS6375118A JP21294986A JP21294986A JPS6375118A JP S6375118 A JPS6375118 A JP S6375118A JP 21294986 A JP21294986 A JP 21294986A JP 21294986 A JP21294986 A JP 21294986A JP S6375118 A JPS6375118 A JP S6375118A
Authority
JP
Japan
Prior art keywords
filament
iron
alloy
diameter
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21294986A
Other languages
Japanese (ja)
Inventor
Itsuo Onaka
大中 逸雄
Takaharu Ichiyanagi
隆治 一柳
Hideaki Ishihara
石原 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP21294986A priority Critical patent/JPS6375118A/en
Publication of JPS6375118A publication Critical patent/JPS6375118A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • B22D11/062Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the titled filament suitable as a magnetic sensor, etc., by rotating a rotary drum at high speed to form a cooling liquid in the drum, spraying an iron type metal through a specific spinning nozzle into the liquid, cooling and solidifying. CONSTITUTION:A rotary drum 6 is rotated at high speed and a rotary liquid film layer 8 consisting of a cooling medium such as water, etc., is formed on the inner peripheral face of the drum. Then, a molten iron type metal which is Fe-Si alloy, Fe-Al alloy or Fe-Si-Al alloy is sprayed from a jetting nozzle 2 having <=200mu particle diameter at the under surface of a crucible 1 toward a liquid face 9 of the liquid film layer 8 and the iron type filament is made into a filament 4. The filament 4 is rapidly cooled, solidified, wound in the drum to give the aimed filament having dendrite texture, containing single crystal part of bamboo node space shape.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄系金属フィラメントおよびその製法に関し、
詳細には、少なくとも一部に竹の節の間状の単結晶部を
有することにより靭性や取扱い性が良好である鉄系金属
フィラメント並びにその製法に関するものである。この
鉄系金属フィラメントは特に繊維状磁性材料や磁界セン
サー材として有用である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a ferrous metal filament and a method for producing the same.
In particular, the present invention relates to an iron-based metal filament that has good toughness and ease of handling due to at least a portion of it having single crystal portions in the shape of bamboo internodes, and a method for producing the same. This iron-based metal filament is particularly useful as a fibrous magnetic material or a magnetic field sensor material.

[従来の技術] 鉄系金属の多くは磁性を有しており、磁性材料として様
々の用途への適用が可能であり、磁界センサー用材料と
しての有効利用も期待される。
[Prior Art] Many iron-based metals have magnetism and can be used as magnetic materials for various purposes, and are also expected to be effectively used as materials for magnetic field sensors.

しかし鉄系金属をサンサー材等として実用化していこう
とすれば、できるだけ小形状化する必要があり、そのた
めには細線化するのが有効な手段の一つであると考えら
れる。しかしながらある種の鉄系金属は硬質且つ脆弱で
あって加工性が劣悪であり、機械加工によって細線化す
ることが困難なものもある。
However, if iron-based metals are to be put into practical use as sancer materials, it is necessary to make them as small as possible, and one effective means to achieve this is to make the wires thinner. However, some iron-based metals are hard and brittle and have poor workability, and some of them are difficult to form into thin wires by machining.

一方脆弱な金属材料を細線化する方法の1つとして、先
に本願出願人より開示した特開昭55−64948号公
報記載の回転液中紡糸法が公知となっており、この方法
は極めて有用な方法として期待が寄せられている。即ち
この方法は、回転する円筒状中空ドラムの内周面に冷却
用液体を注入し、これを遠心力によって、内周面に押圧
し冷却用液体層を形成しておくと共に、該液体層内へ溶
融金属をジェットとして細線状に噴射して急冷凝固させ
る方法であり、脆弱な金属材料であっても容易に細線状
とすることができる。
On the other hand, as one of the methods for thinning fragile metal materials, the spinneret spinning method described in Japanese Unexamined Patent Publication No. 55-64948, which was previously disclosed by the applicant of the present application, is known, and this method is extremely useful. There are high hopes for this method. That is, in this method, cooling liquid is injected into the inner peripheral surface of a rotating cylindrical hollow drum, and is pressed against the inner peripheral surface by centrifugal force to form a cooling liquid layer. This is a method in which molten metal is injected as a jet in the form of a thin line to rapidly solidify it, and even brittle metal materials can be easily formed into a thin line.

[発明が解決しようとする問題点コ 上記回転液中紡糸法を利用すれば、加工性の悪い鉄系金
属であっても容易に細線化することができ、磁界センサ
ー等の実用化に道を開くことになるのではないかと期待
される。そこで様々の鉄系金属を用いて上述の回転液中
紡糸法を通用したところ、脆弱な鉄系金属であっても容
易に細線化できることが確認された。ところがこの様に
して得られた鉄系金属フィラメントの靭性は製品径によ
ってばらつきがあり、特に大径のものは非常に脆く、約
90度以上曲げたときに簡単に折断されてしまうため取
扱いが困難であり汎用性に乏しいことが分かった。尚こ
の様に靭性の乏しい鉄系金属フィラメントの内部構造を
見ると、フィラメント軸に対して直交する横断面内には
、常に(どの断面を見ても)2個以上の結晶粒が存在し
ており、いわゆる多結晶質構造を有するものであること
が確認されている。これに対し細径の鉄系金属フィラメ
ントでは竹の節の間状の単結晶質部分が存在し、この部
分では180度曲げが可能であった。尚ここに言う「竹
の節の間状」とは「柱状」に近い概念であり、中実状の
単結晶であることを示し、決して中空状である訳ではな
い。
[Problems to be solved by the invention] By using the above-mentioned rotating liquid spinning method, even ferrous metals with poor processability can be easily made into thin wires, paving the way to practical applications such as magnetic field sensors. It is hoped that it will open. Therefore, when various iron-based metals were used to apply the above-mentioned spin-in-spinning method, it was confirmed that even fragile iron-based metals could be easily made into thin wires. However, the toughness of the iron-based metal filaments obtained in this way varies depending on the product diameter, and those with particularly large diameters are extremely brittle and easily break when bent more than about 90 degrees, making them difficult to handle. It was found that it lacks versatility. Furthermore, when we look at the internal structure of iron-based metal filaments with poor toughness, we find that there are always two or more crystal grains in the cross section perpendicular to the filament axis (no matter which cross section you look at). It has been confirmed that it has a so-called polycrystalline structure. On the other hand, a small-diameter iron-based metal filament had single-crystalline parts like the internodes of bamboo, and it was possible to bend 180 degrees in this part. The term ``bamboo internodal'' here is a concept similar to ``columnar'' and indicates that the bamboo is a solid single crystal, not hollow.

そこで本発明者らはたとえ一部であっても、安定して上
記単結晶質部分が存在する様な鉄系金属フィラメントを
提供することが急務であると考え研究を進めた。即ちた
とえ一部であっても単結晶質部分を有する鉄系金属フィ
ラメントを得ることができれば、機械的性買において優
れた靭性を有し、また電気的、磁気的性質においても興
味のある特性を有する鉄系金属フィラメントが得られる
のではないかとの期待が持たれる。本発明はこの様な期
待を実現しようとするものであって、具体的には紡糸し
たままの状態であっても、少なくとも一部に竹の節の間
状の単結晶部を有する鉄系金属フィラメントおよびその
製法を提供しようとするものである。
The present inventors therefore proceeded with their research, believing that it was urgent to provide an iron-based metal filament in which the above-mentioned single-crystalline portion stably exists, even if only partially. In other words, if we can obtain an iron-based metal filament that has even a single crystalline part, it will have excellent mechanical toughness and also have interesting electrical and magnetic properties. There is hope that an iron-based metal filament having the same properties as the iron-based metal filament can be obtained. The present invention aims to realize such expectations, and specifically, it is an iron-based metal that has at least a portion of a single crystal part like the internodes of bamboo even in the as-spun state. The present invention aims to provide a filament and a method for producing the same.

[問題点を解決するための手段] 本発明に係る鉄系金属フィラメントの構成は、少なくと
も一部に竹の節の間状の単結晶部を有すると共に、当該
単結晶部がデンドライト状組織を有するものであり、且
つ200μm以下の直径を有するものであるところに要
旨を有するものであり、また本発明に係る製法の構成は
、回転する円筒状ドラム内において遠心力により形成さ
れた冷却液体中に、直径200μm以下の紡巴ノズルを
介して溶融した鉄系金属を噴射し、冷却固化後詰ドラム
内に巻取るところに要旨を有するものである。
[Means for Solving the Problems] The structure of the iron-based metal filament according to the present invention is such that at least a portion of the iron-based metal filament has a single crystal part shaped like internodes of bamboo, and the single crystal part has a dendrite-like structure. The gist is that it has a diameter of 200 μm or less, and the structure of the manufacturing method according to the present invention is that the cooling liquid is formed by centrifugal force in a rotating cylindrical drum. The gist is that molten iron-based metal is injected through a spinneret nozzle with a diameter of 200 μm or less, and after being cooled and solidified, it is wound up in a packing drum.

[作用] 様々の鉄系金属を対象として回転液中紡糸法を実施した
ときに得られるフィラメントについて、その結晶構造と
物性の関係を更に深く検討していたところ、次の様な事
実が確認された。
[Function] When we investigated in more detail the relationship between the crystal structure and physical properties of filaments obtained when various iron-based metals were subjected to spin-in-spinning method, the following facts were confirmed. Ta.

即ち上記方法によって得られる鉄系金属フィラメントの
うち、該フィラメントの如何なる位置の横断面(軸直交
断面)内に於ても常に2個以上の結晶粒が存在している
多結晶質構造の鉄系金属フィラメントは一般的に脆弱で
あり、しかもかかるフィラメントが得られるのは、殆ん
ど例外なく直径が200μmを超える比較的大径の場合
であった。ところが回転液中紡糸法を実施する為の紡出
ノズル(溶融した鉄系金属をジェット状に液体中へ噴射
する紡出ノズル)について、その直径を200μm以下
に設定してフィラメントの比表面積を大きくし冷却速度
を高めてやると、紡出フィラメント中には安定して前述
の竹の節の間状の!#結晶買部分が少なくとも一部に存
在することが分かった。尚この単結晶質部は竹の節状の
結晶粒界を介して2以上並んでいる場合もあるが、前述
の多結晶状構造体を単結晶部が中断する様に存在してい
る場合もあり、フィラメントが細径になればなるほど単
結晶質部の存在比率が高くなり、100μmφ以下にな
るとほとんど竹の節の間状の単結晶部のみで構成される
ようになる。尚この単結晶部内にはフィラメント軸方向
に対して一定の方向に揃って成長したデンドライト状組
織が観察される。該デンドライト状組織の会合面がフィ
ラメントの軸に対して一定の角度で横断しており、これ
が結晶粒界となっている。この様な単結晶構造を有する
部分の靭性は非常に良好で180度に密着曲げした場合
でも折断することのない極めて柔軟なものとなる。尚上
記単結晶質部分の長さは紡出ノズル径等によっても異な
るがフィラメント長手方向に0.1〜40mm程度であ
る。以上述べた様に「竹の節の間」とは上記「竹の節」
に相当する2つの結晶粒界によってはさまれる単結晶質
部分を言い、説明の便宜上「竹の節」なる表現は採用し
ているものの中空である訳ではなく、中実の細線状を呈
している。そしてこの様な「竹の節」が形成されたとき
の「竹の節」と「竹の節」の間には横断面内に結晶粒界
が存在せず、フィラメント軸方向に対して一定の方向に
揃フたデンドライト状組織を有する単結晶質のものとな
り、かかる「竹の節の間」が単結晶質で構成されること
によって、良好な密着曲げ性を発揮することが判明した
。また該「竹の節」の間は、フィラメントの直径が20
0μmを超えるものでは殆んど形成されず、200μm
以下でフィラメントの直径を小さくしていくにつれて「
竹の節の間」の生成量は増大し、直径が100μm以下
になるとフィラメントのほとんど全長に亘って約0.1
〜40mm程度の不均一な間隔で「竹の節」状の結晶粒
界が存在し、単結晶質部分が継かった構造となることが
明らかとなった。以下この様な構造を竹状構造という。
That is, among the iron-based metal filaments obtained by the above method, iron-based metals with a polycrystalline structure in which two or more crystal grains are always present in the cross section (cross section perpendicular to the axis) at any position of the filament. Metal filaments are generally brittle, and such filaments have almost always been obtained with relatively large diameters exceeding 200 μm. However, the diameter of the spinning nozzle (spinning nozzle that injects molten iron-based metal into the liquid in the form of a jet) for performing spinning in a rotating liquid is set to 200 μm or less to increase the specific surface area of the filament. When the cooling rate is increased, the spun filament becomes stable and has the above-mentioned bamboo internodal structure! It was found that at least part of the crystals had a crystalline part. In some cases, two or more of these single crystalline parts are lined up through bamboo node-like grain boundaries, but there are also cases in which the aforementioned polycrystalline structure is interrupted by single crystalline parts. The smaller the diameter of the filament, the higher the proportion of single-crystalline parts, and when the filament is less than 100 μm in diameter, it is almost composed only of single-crystalline parts like between bamboo nodes. It should be noted that within this single crystal part, a dendrite-like structure is observed that grows in a uniform direction with respect to the filament axis direction. The meeting planes of the dendrite-like structure cross at a certain angle to the axis of the filament, and this forms a grain boundary. A portion having such a single crystal structure has very good toughness and is extremely flexible without breaking even when bent closely at 180 degrees. The length of the single crystalline portion is approximately 0.1 to 40 mm in the longitudinal direction of the filament, although it varies depending on the diameter of the spinning nozzle. As mentioned above, ``Bamboo Bush'' refers to the above ``Bamboo Bush''.
It refers to a single-crystalline part sandwiched between two grain boundaries corresponding to There is. When such "bamboo nodes" are formed, there are no grain boundaries in the cross section between the "bamboo nodes" and the grain boundary is constant in the axial direction of the filament. It has been found that the material is a single crystal with a dendrite-like structure aligned in the same direction, and that the "between the bamboo nodes" is composed of a single crystal, thereby exhibiting good adhesive bendability. In addition, the diameter of the filament between the "bamboo knots" is 20
If the diameter exceeds 0μm, it will hardly be formed, and if the diameter exceeds 200μm.
As you reduce the diameter of the filament below,
The amount of "between bamboo nodes" increases, and when the diameter becomes less than 100 μm, the amount of "internodes" of bamboo increases, and when the diameter becomes less than 100 μm, the
It became clear that "bamboo knot"-like crystal grain boundaries existed at non-uniform intervals of about 40 mm, resulting in a structure in which single crystalline parts were joined. Hereinafter, such a structure will be referred to as a bamboo-like structure.

従って鉄系金属フィラメントの直径を100μm以下に
設定しておけば、長手方向のどの部分でも密着曲げの可
能なフィラメントを得ることができる。但し本発明では
鉄系金属フィラメントの全体が前述の如き竹状構造を有
していなければならない訳ではなく、その一部に竹状構
造を有するものであれば、従来材に比べて著しく柔軟性
の改善されたものとなる。
Therefore, by setting the diameter of the iron-based metal filament to 100 μm or less, it is possible to obtain a filament that can be closely bent at any portion in the longitudinal direction. However, in the present invention, the entire iron-based metal filament does not have to have a bamboo-like structure as described above, but if a part of it has a bamboo-like structure, it is significantly more flexible than conventional materials. It is an improved version of

尚回転液中紡糸法によフて鉄系金属フィラメントを製造
する場合、該フィラメントの直径を200μm以下とす
ることによって何故竹状構造が生成するのか、その理論
的解明はなされておらないが、鉄系金属溶湯ジェットの
太さの違いによって冷却液体層中における冷却速度が変
わり、結晶の生成及び成長状況が変化するためと推定さ
れる。何れにしても竹状構造を有する鉄系金属フィラメ
ントは非常に柔軟性の富んだものとなり、密着曲げが可
能であるほか引張試験においても伸びが著しく大きくな
り、工業的に見て取扱い′の容易な材料であり、また竹
状構造の鉄系金属フィラメントからその一部を切り出し
単結晶として使用することもできる。この場合、同一径
の鉄系金属フィラメントより切り出されるので直径の揃
った単結晶が得られる。竹状構造を有する鉄系金属フィ
ラメントは更に高次の加工が可能であり、伸線や圧延も
可能である。
It should be noted that when producing iron-based metal filaments using the rotating liquid spinning method, it has not been theoretically elucidated why a bamboo-like structure is produced when the diameter of the filaments is set to 200 μm or less. This is presumed to be because the cooling rate in the cooling liquid layer changes depending on the thickness of the molten iron-based metal jet, which changes the formation and growth conditions of crystals. In any case, iron-based metal filaments with a bamboo-like structure are extremely flexible, allowing close bending, and exhibiting remarkable elongation in tensile tests, making them easy to handle from an industrial perspective. It is also a material that can be used as a single crystal by cutting out a part of an iron-based metal filament with a bamboo-like structure. In this case, since the single crystals are cut from iron-based metal filaments with the same diameter, single crystals with uniform diameters can be obtained. Iron-based metal filaments having a bamboo-like structure can be processed to a higher degree, and can also be wire-drawn and rolled.

本発明で使用される鉄系金属としては種々のものが考え
られるが、中でも本発明の特徴を最も有効に発揮せしめ
得るのはFe−Si系合金、Fe−Al系合金、Fe−
5t−At系合金であり、これら鉄合金中に適量の希土
類金属を1種又は2種以上含有せしめたものも好ましい
ものとして挙げられる。尚希土類金属として特に好まし
いのは原子番号が57〜71の範囲のものであって、具
体的にはLa、Ce、Pr、Nd、Pm、Sm。
Various iron-based metals can be used in the present invention, but among them, the ones that can most effectively exhibit the features of the present invention are Fe-Si alloy, Fe-Al alloy, and Fe-Al alloy.
Preferred examples include 5t-At-based alloys, which contain an appropriate amount of one or more rare earth metals in these iron alloys. Particularly preferred rare earth metals have atomic numbers in the range of 57 to 71, specifically La, Ce, Pr, Nd, Pm, and Sm.

Eu、Gd、Tb、Dy、Ho、Er、Tm。Eu, Gd, Tb, Dy, Ho, Er, Tm.

Yb、Luであり、こられは単独で含有させてもあるい
は2種以上を複合して含有させることもできる。上記希
土類金属の中でも最も好ましいのはCeである。更に本
発明を実施するに当たっては、フィラメントの用途や要
求特性に応じて更に他の合金成分を配合することも可能
である。
These are Yb and Lu, and these can be contained alone or in combination of two or more kinds. Among the rare earth metals mentioned above, Ce is most preferred. Furthermore, in carrying out the present invention, it is also possible to incorporate other alloy components depending on the use and required characteristics of the filament.

次に本発明に係る鉄系金属フィラメントの製法について
説明する。この方法の基本的構成は前記特開昭55−6
4948号として開示した回転液中紡糸法に従う。たと
えば第1.2図はその方法を例示する概略正面図及び一
部破断側面図であり、回転ドラム6を高速回転させるこ
とによってその内周面側に回転液膜層8を形成する。そ
して該液膜層8の液面9に向けてるつぼ1下面の噴出ノ
ズル2から鉄系金属溶湯をジェット状に噴出させ、鉄系
金属をフィラメント4状にして急冷凝固させながら回転
ドラム6の内周壁に巻回していく。図中3は金属を溶融
させるためのヒーター、5は鉄系金属噴出用の不活性ガ
ス、7はモータ、10はベルトを夫々示す。そして回転
液膜層の天速度を、噴出ノズル2からの溶融金属噴出速
度と実質的に同一かまたはそれよりやや早くしておけば
、断面均一性の良好な鉄系金属フィラメントが得られ易
い。またここで使用される冷却液は純粋な液体、溶液、
エマルシコン等のいずれであってもよいが、コスト及び
冷却効率を総合して最も好ましいのは水である。回転ド
ラムは横向きでも縦向きでもよいが、該ドラム中の液膜
層表面速度は400〜900m/min程度、鉄系金属
溶湯の液膜層への進入角度は50〜70°、噴出ノズル
2と冷却液面9との距離は0.5〜4mm程度が夫々好
適である。
Next, a method for producing an iron-based metal filament according to the present invention will be explained. The basic structure of this method is described in Japanese Unexamined Patent Publication No. 55-6
4948 is followed. For example, FIG. 1.2 is a schematic front view and a partially cutaway side view illustrating the method, in which a rotating liquid film layer 8 is formed on the inner peripheral surface of the rotating drum 6 by rotating it at high speed. Then, the molten iron metal is jetted out from the jet nozzle 2 on the lower surface of the crucible 1 toward the liquid surface 9 of the liquid film layer 8, and the ferrous metal is turned into a filament 4 and rapidly solidified while being heated inside the rotating drum 6. Wrap it around the surrounding wall. In the figure, 3 indicates a heater for melting metal, 5 indicates an inert gas for blowing out iron-based metals, 7 indicates a motor, and 10 indicates a belt. If the top speed of the rotating liquid film layer is set to be substantially the same as or slightly faster than the molten metal jetting speed from the jetting nozzle 2, it is easy to obtain an iron-based metal filament with good cross-sectional uniformity. Also, the coolant used here is pure liquid, solution,
Although any of the emulsifiers and the like may be used, water is the most preferable in terms of overall cost and cooling efficiency. The rotating drum may be oriented horizontally or vertically, but the surface speed of the liquid film layer in the drum is about 400 to 900 m/min, the angle of approach of the molten iron metal to the liquid film layer is 50 to 70°, and the jet nozzle 2 and The distance from the coolant surface 9 is preferably about 0.5 to 4 mm.

この回転液中紡糸法を採用する場合特に注意しなければ
ならないのは、噴出ノズル2の口径を200μm以下と
し、紡糸される鉄系金属フィラメントの直径が200μ
m以下となる様にしなければならない点である。即ち噴
出ノズル2の口径が200μmを超える大径のものであ
ると、紡糸される鉄系金属フィラメントの直径が200
μmを超えるものとなり、該フィラメントは横断面内に
2個以上の結晶粒を有するばかりでなくフィラメント釉
方向にも多数の結晶粒を有する多結晶構造のものとなり
、極めて脆弱なものとなる。これに対し200μm以下
の小径の噴出ノズルを使用すれば、直径が200μm以
下で軸方向の少なくとも一部に竹状構造を有する、柔軟
性の優れた鉄系金属フィラメントが得られる。特に噴出
ノズル径を100μm以下の小径のものとすると、フィ
ラメントのほとんど全長に亘フて竹状構造のものが得ら
れるので好ましい。尚本発明によりフィラメントの長手
方向に多数形成される竹の節の間隔は、紡出されるフィ
ラメントの寸法や冷却条件(冷却液の温度や回転液膜層
の回転速度)等によって若干違フてくるが、大体0.1
〜40mmで長手方向に不規則な間隔をもりて形成され
る。
When employing this rotating liquid spinning method, special care must be taken that the diameter of the jet nozzle 2 is 200 μm or less, and that the diameter of the iron-based metal filament to be spun is 200 μm or less.
This is a point that must be made so that it is less than or equal to m. That is, if the diameter of the ejection nozzle 2 is larger than 200 μm, the diameter of the iron-based metal filament to be spun is 200 μm.
μm, and the filament has a polycrystalline structure not only having two or more crystal grains in its cross section but also having many crystal grains in the direction of the filament glaze, making it extremely brittle. On the other hand, if a jet nozzle with a small diameter of 200 μm or less is used, a highly flexible iron-based metal filament having a diameter of 200 μm or less and having a bamboo-like structure in at least a portion of the axial direction can be obtained. In particular, it is preferable to use a small ejection nozzle diameter of 100 μm or less because a bamboo-like structure can be obtained over almost the entire length of the filament. Note that the spacing between the bamboo nodes formed in large numbers in the longitudinal direction of the filament according to the present invention will vary slightly depending on the dimensions of the filament to be spun, the cooling conditions (the temperature of the cooling liquid, the rotation speed of the rotating liquid film layer), etc. However, it is approximately 0.1
~40 mm and are formed at irregular intervals in the longitudinal direction.

口実流側] 実施例1 第1.2図に示した様な回転液中紡糸法を採用し、Fe
−Si  (6,5) −Ce (0,1)重量%組成
の鉄系金属を用い、直径の異なる種々の紡出ノズルを用
いて直径の異なる鉄系金属フィラメントを作製した。冷
却液としては水(15℃)を使用した。尚紡出ノズルの
直径が変わると紡糸条件も変化するが、基本的には回転
ドラム中の水膜層表面速度が溶融鉄系金属のジェット流
速と同等もしくは若干速くなる様に、ドラムの回転速度
と鉄系金属溶湯の噴出速度をコントロールすることによ
り、夫々直径250μm、150μm175μmの3f
!!の鉄系金属フィラメントを得た。
[Pretext flow side] Example 1 The rotating liquid spinning method as shown in Fig. 1.2 was adopted, and Fe
Using an iron-based metal having a composition of -Si (6,5) -Ce (0,1) by weight %, iron-based metal filaments with different diameters were produced using various spinning nozzles with different diameters. Water (15°C) was used as the cooling liquid. If the diameter of the spinning nozzle changes, the spinning conditions will also change, but basically the rotation speed of the drum should be adjusted so that the surface speed of the water film layer in the rotating drum is equal to or slightly faster than the jet flow speed of the molten iron metal. By controlling the ejection speed of molten metal and iron-based metal, 3F diameters of 250μm, 150μm and 175μm were created.
! ! An iron-based metal filament was obtained.

このうち直径250μmのフィラメントには竹の節の間
状の単結晶は全く認められず、すべてが多結晶構造であ
り、全長に亘って非常に脆弱で柔軟性の乏しいものであ
った。
Of these, in the filament with a diameter of 250 μm, no single crystals in the form of bamboo internodes were observed at all, and all of the filaments had a polycrystalline structure, and were extremely brittle and inflexible over the entire length.

これに対し直径150μmのフィラメントには部分的に
竹状構造が生じており、部分的に密着曲げが可能であり
、また直径75μmのフィラメントは全長に亘って竹状
構造を有しており、全域に亘って密着曲げが可能であり
、フィラメント径が細くなるほど柔軟性が良好となるこ
とが確認された。また引張試験においても、フィラメン
ト径が細くなるほど大きな破断伸びを示した。
On the other hand, a filament with a diameter of 150 μm has a bamboo-like structure partially and can be bent in close contact with the filament, and a filament with a diameter of 75 μm has a bamboo-like structure over its entire length, so it can be bent in close contact with other parts. It was confirmed that tight bending was possible over a period of time, and that the thinner the filament diameter, the better the flexibility. Furthermore, in the tensile test, the smaller the filament diameter, the greater the elongation at break.

また直径1501.tmの金属フィラメントの飽和磁束
密度は1.8テスラ、保磁力0.4エルステツドであり
、(量れた軟磁気特性を有するものであった。
Also, the diameter is 1501. The saturation magnetic flux density of the tm metal filament was 1.8 Tesla, the coercive force was 0.4 oersted, and it had excellent soft magnetic properties.

実施例2 同じく回転液中紡糸法を採用し、Fe−At(25)重
量%組成鉄系金属を用いて、実施例1と同様にして直径
の異なる3種の鉄系金属フィラメント(直径210μm
、130μm及び80μm)を紡糸した。
Example 2 Similarly to Example 1, three types of iron-based metal filaments with different diameters (diameter 210 μm
, 130 μm and 80 μm).

その結果、直径210μmのフィラメントはすべてが多
結晶構造であって全長に亘り非常に脆弱であるのに対し
、直径130μmのフィラメントは部分的に竹状構造を
有しており、また直径80μmのフィラメントは全長に
亘り、約0.1〜20mn+の不規則な間隔で竹の節の
形成された竹状構造を有しており、どの位置でも密着曲
げが可能であった。
As a result, the filament with a diameter of 210 μm has an entirely polycrystalline structure and is extremely brittle over its entire length, whereas the filament with a diameter of 130 μm has a partially bamboo-like structure, and the filament with a diameter of 80 μm It had a bamboo-like structure in which bamboo nodes were formed at irregular intervals of about 0.1 to 20 mm+ over the entire length, and tight bending was possible at any position.

実施例3 F e−A I (5,2) −Si (2,7)重量
%組成を有する鉄系金属を使用し、実施例1と同様にし
て直径220μm、170μm、78μmの鉄系金属フ
ィラメントを作製した。
Example 3 Iron-based metal filaments with diameters of 220 μm, 170 μm, and 78 μm were prepared in the same manner as in Example 1 using an iron-based metal having a weight % composition of F e-A I (5,2) -Si (2,7). was created.

その結果、直径220μmのフィラメントはすべてが多
結晶構造であって全長に亘り非常に脆弱であるのに対し
、直径170μmのフィラメントは部分的に竹状構造を
有しており、また直径78μmのフィラメントは全長に
亘り竹状構造を有しており、密着曲げ可能な極めて柔軟
性のすぐれたものであった。またフィラメント径の細い
ものほど大きな破断伸びを示した。
As a result, the filament with a diameter of 220 μm has an entirely polycrystalline structure and is extremely brittle over its entire length, whereas the filament with a diameter of 170 μm has a partially bamboo-like structure, and the filament with a diameter of 78 μm It had a bamboo-like structure over its entire length and was extremely flexible and could be bent closely. Furthermore, the smaller the filament diameter, the greater the elongation at break.

[発明の効果コ 本発明は以上の様に構成されており、鉄系金属からなる
フィラメント本来の優れた磁気的、電気的特性を保持し
つつ、脆弱さを改質して極めて柔軟で曲げ易い特性を与
えることができ、その取扱い性を著しく改善することが
できた。その結果、たとえば磁界センサー等への適用も
容易となり、応用分野の大幅な拡大を期待することがで
きる。
[Effects of the Invention] The present invention is constructed as described above, and while maintaining the excellent magnetic and electrical properties inherent to filaments made of iron-based metals, the brittleness is improved to make them extremely flexible and easy to bend. properties, and its handling properties were significantly improved. As a result, it will be easy to apply it to magnetic field sensors, for example, and a significant expansion of the field of application can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は回転液中紡糸法を説明するための図であり
、第1図は概略正面図、第2図は一部断面側面図である
。 1:るつぼ      2:噴出ノズル3:ヒーター 
    4:フィラメント5:不活性ガス    6:
回転ドラム7;モータ       8:冷却液体9;
玲却液面     10:ベルト 出願人   大  中  逸  雄 与〕;7二−ン 第1図 第2図
1.2 are diagrams for explaining the spinning method in a rotating liquid, FIG. 1 is a schematic front view, and FIG. 2 is a partially sectional side view. 1: Crucible 2: Spout nozzle 3: Heater
4: Filament 5: Inert gas 6:
Rotating drum 7; Motor 8: Cooling liquid 9;
Liquid Level 10: Belt Applicant: Yuyo Ohnaka; 72nd Figure 1 Figure 2

Claims (10)

【特許請求の範囲】[Claims] (1)少なくとも一部に竹の節の間状の単結晶部を有す
ると共に、当該単結晶部がデンドライト状組織を有する
ものであり、且つ200μm以下の直径を有するもので
あることを特徴とする鉄系金属フィラメント。
(1) At least a portion thereof has single crystal parts in the shape of internodes of bamboo, and the single crystal parts have a dendrite-like structure and have a diameter of 200 μm or less. Iron-based metal filament.
(2)鉄系金属がFe−Si系合金、Fe−Al系合金
およびFe−Si−Al系合金よりなる群から選択され
たものである特許請求の範囲第1項に記載のフィラメン
ト。
(2) The filament according to claim 1, wherein the iron-based metal is selected from the group consisting of Fe-Si alloy, Fe-Al alloy, and Fe-Si-Al alloy.
(3)鉄系金属がFe−Si希土類金属系合金、Fe−
Al希土類金属系合金およびFe−Si−Al−希土類
金属系合金よりなる群から選択されたものである特許請
求の範囲第1項に記載のフィラメント。
(3) Iron-based metal is Fe-Si rare earth metal alloy, Fe-
A filament according to claim 1, which is selected from the group consisting of Al rare earth metal based alloys and Fe-Si-Al-rare earth metal based alloys.
(4)希土類金属が原子番号57〜71のランタン系列
から選択される1種又は2種以上の金属である特許請求
の範囲第3項に記載のフィラメント。
(4) The filament according to claim 3, wherein the rare earth metal is one or more metals selected from the lanthanum series having an atomic number of 57 to 71.
(5)希土類金属がCeである特許請求の範囲第4項に
記載のフィラメント。
(5) The filament according to claim 4, wherein the rare earth metal is Ce.
(6)回転する円筒状ドラム内において遠心力により形
成された冷却液体中に、直径200μm以下の紡出ノズ
ルを介して溶融鉄系金属を噴射し、冷却固化後該ドラム
内に巻取ることを特徴とする鉄系金属フィラメントの製
法。
(6) Molten iron-based metal is injected into the cooling liquid formed by centrifugal force in a rotating cylindrical drum through a spinning nozzle with a diameter of 200 μm or less, and after being cooled and solidified, it is wound up in the drum. Characteristic manufacturing method of iron-based metal filament.
(7)鉄系金属がFe−Si系合金、Fe−Al系合金
およびFe−Si−Al系合金よりなる群から選択され
たものである特許請求の範囲第6項に記載の製法。
(7) The manufacturing method according to claim 6, wherein the iron-based metal is selected from the group consisting of Fe-Si-based alloys, Fe-Al-based alloys, and Fe-Si-Al-based alloys.
(8)鉄系金属がFe−Si−希土類金属系合金、Fe
−Al希土類金属系合金およびFe−Si−Al−希土
類金属系合金よりなる群から選択されたものである特許
請求の範囲第6項に記載の製法。
(8) Iron-based metal is Fe-Si-rare earth metal alloy, Fe
-Al rare earth metal based alloy and Fe-Si-Al-rare earth metal based alloy.
(9)希土類金属が原子番号57〜71のランタン系列
から選択される1種又は2種以上の金属である特許請求
の範囲第8項に記載の製法。
(9) The manufacturing method according to claim 8, wherein the rare earth metal is one or more metals selected from the lanthanum series having an atomic number of 57 to 71.
(10)希土類金属がCeである特許請求の範囲第9項
に記載の製法。
(10) The manufacturing method according to claim 9, wherein the rare earth metal is Ce.
JP21294986A 1986-09-09 1986-09-09 Iron type metallic filament and production thereof Pending JPS6375118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21294986A JPS6375118A (en) 1986-09-09 1986-09-09 Iron type metallic filament and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21294986A JPS6375118A (en) 1986-09-09 1986-09-09 Iron type metallic filament and production thereof

Publications (1)

Publication Number Publication Date
JPS6375118A true JPS6375118A (en) 1988-04-05

Family

ID=16630966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21294986A Pending JPS6375118A (en) 1986-09-09 1986-09-09 Iron type metallic filament and production thereof

Country Status (1)

Country Link
JP (1) JPS6375118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3841241A1 (en) * 1987-12-08 1989-06-22 Toyo Boseki METAL FIBER AND METHOD FOR PRODUCING A METAL FIBER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165016A (en) * 1980-04-17 1981-12-18 Takeshi Masumoto Preparation of metal filament
JPS57161128A (en) * 1981-03-31 1982-10-04 Takeshi Masumizu Production of amorphous metal filament

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165016A (en) * 1980-04-17 1981-12-18 Takeshi Masumoto Preparation of metal filament
JPS57161128A (en) * 1981-03-31 1982-10-04 Takeshi Masumizu Production of amorphous metal filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3841241A1 (en) * 1987-12-08 1989-06-22 Toyo Boseki METAL FIBER AND METHOD FOR PRODUCING A METAL FIBER
DE3841241C2 (en) * 1987-12-08 2001-06-28 Toyo Boseki Metal fiber and method of manufacturing a metal fiber

Similar Documents

Publication Publication Date Title
US3427185A (en) Composite structural material incorporating metallic filaments in a matrix,and method of manufacture
JPH0113944B2 (en)
US20090107590A1 (en) Soft magnetic alloy for microwire casting
JPH08269647A (en) Ni-based amorphous metallic filament
JP3364299B2 (en) Amorphous metal wire
JPS6375118A (en) Iron type metallic filament and production thereof
JPH01150444A (en) Metallic fiber having directional dendritic structure and production thereof
JPS594948A (en) Production of ni-ti alloy wire
US4946746A (en) Novel metal fiber and process for producing the same
JPS6368245A (en) Copper alloy filament and its production
JPH07316755A (en) Al-base amorphous metallic filament
JPH09143642A (en) Nickel base amorphous metal filament
JP4097748B2 (en) Fe group-based amorphous metal ribbon and magnetic marker
JPH0260752B2 (en)
EP0148306A2 (en) Method for producing a metal alloy strip
JPH0688110B2 (en) Single crystalline metal fiber and method for producing the same
JPS6366323A (en) Copper alloy filament and production thereof
JPS5961004A (en) Thin strip of permanent magnet and manufacture thereof
JPH01150447A (en) Soft magnetic fiber having high square loop hysteresis
JPS6187849A (en) Metallic filament and its production
JPH0147540B2 (en)
JPH0524209B2 (en)
JPH0674491B2 (en) Ni-based amorphous metal filament
JPS62275561A (en) Production of complex material having excellent high temperature oxidizing resistance and hot workability
JPS5941450A (en) Amorphous iron base alloy with excellent fatigue characteristics