JPH07103492B2 - Copper alloy filament and its manufacturing method - Google Patents

Copper alloy filament and its manufacturing method

Info

Publication number
JPH07103492B2
JPH07103492B2 JP21294886A JP21294886A JPH07103492B2 JP H07103492 B2 JPH07103492 B2 JP H07103492B2 JP 21294886 A JP21294886 A JP 21294886A JP 21294886 A JP21294886 A JP 21294886A JP H07103492 B2 JPH07103492 B2 JP H07103492B2
Authority
JP
Japan
Prior art keywords
copper alloy
filament
bamboo
atomic
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21294886A
Other languages
Japanese (ja)
Other versions
JPS6366323A (en
Inventor
逸雄 大中
芳樹 小野
隆治 一柳
英昭 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP21294886A priority Critical patent/JPH07103492B2/en
Publication of JPS6366323A publication Critical patent/JPS6366323A/en
Publication of JPH07103492B2 publication Critical patent/JPH07103492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • B22D11/062Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Continuous Casting (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は銅合金フィラメント及びその製造法に関し、詳
細には、靭性や取扱い性が良好で特に繊維状磁性材料や
抵抗変化型温度センサー材等として有用な銅合金フィラ
メト及びその製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a copper alloy filament and a method for producing the same, and more particularly to a fibrous magnetic material, a resistance change type temperature sensor material and the like having good toughness and handleability. And a method for producing the same, which is useful as a copper alloy filament.

[従来の技術] たとえばCu−Mn−Al系の銅合金は磁性を有しており、磁
性材料として様々の用途に適用することができ、また抵
抗変化型温度センサー用材料としての有効利用も期待さ
れている。
[Prior Art] For example, a Cu-Mn-Al-based copper alloy has magnetism and can be applied to various applications as a magnetic material, and is expected to be effectively used as a material for a resistance change temperature sensor. Has been done.

ところで上記の様な銅合金をセンサー用材料等として実
用化していこうとすれば、できるだけ小形状化すると共
に更に電気抵抗を高めていく必要があり、そのためには
細線化するのが有効な手段の一つであると考えられる。
しかしながら上記銅合金は硬質且つ脆弱であって加工性
が劣悪であり、機械加工によって細線化することは非常
に困難である。
By the way, in order to put the above copper alloy into practical use as a sensor material, etc., it is necessary to make the shape as small as possible and further increase the electrical resistance. For that purpose, thinning is an effective means. Considered to be one.
However, the above-mentioned copper alloy is hard and brittle and has poor workability, and it is very difficult to make it fine by machining.

一方、脆弱な金属材料を細線化する方法の1つとして、
先に本願出願人より開示した特開昭55−64948号公報記
載の回転液中紡糸法が公知となっており、この方法は極
めて有用な方法として期待が寄せられている。
On the other hand, as one of the methods for thinning fragile metal materials,
The rotating submerged spinning method described in Japanese Patent Application Laid-Open No. 55-64948 previously disclosed by the applicant of the present application has been known, and this method is expected to be an extremely useful method.

即ちこの方法は、回転する円筒状中空ドラムの内周面に
冷却用液体を注入し、これを遠心力によって内周面に押
圧し冷却用液体層を形成しておくと共に、該液体層内へ
溶融金属ジェットとして細線状に噴射して急冷凝固させ
る方法であり、脆弱な金属材料であっても容易に細線状
とすることができる。
That is, according to this method, a cooling liquid is injected into the inner peripheral surface of a rotating cylindrical hollow drum, and this is pressed against the inner peripheral surface by a centrifugal force to form a cooling liquid layer. This is a method in which a molten metal jet is sprayed in the form of thin wires to be rapidly cooled and solidified, and even brittle metallic materials can be easily made into thin wires.

[発明が解決しようとする問題点] 上記回転液中紡糸法を利用すれば、前述の様な銅合金で
あっても容易に細線状とすることができ、抵抗変化型温
度センサー等の実用化に道を開くことになるのではない
かと期待される。そこで銅合金に上述の回転液中紡糸法
を適用したところ、脆弱な銅合金であっても容易に細線
化できることが確認された。ところがこの様にして得ら
れた銅合金フィラメントのうち、特に太め(150μm
超)のものは非常に脆く、約90度以上曲げたときに簡単
に折断されてしまうため取扱いが困難であり汎用性に乏
しいことが分かった。尚150μm以下のものであると折
り曲げ箇所によっては折り曲げが可能であったり、或は
折り曲げ時に切断されてしまうものがあった。更に80μ
m以下程度の細径フィラメントになると、殆んど確実に
180度曲げが可能であった。そこでこの銅合金フィラメ
ントの内部構造を見ると、上記の様な折り曲げ切断を生
じる箇所では、フィラメント軸に対して直交する横断面
内には、常に(どの断面を見ても)2個以上の結晶粒が
存在しており、いわゆる多結晶質構造を有するものであ
ることが確認された。これに対し竹の節の間状(中実の
柱状構造であって中空ではない)の単結晶質部分では18
0度曲げが可能であり、銅合金フィラメントが細径化に
するにつれて上述の様な単結晶質部分の比率が増加し、
80μm以下の金属フィラメントになればほぼ全長に亘っ
て竹の節の間状の単結晶質部が竹の節に相当する粒界を
介して連結されていることを見出した。そこで本発明者
らは上記多結晶質部のみからなる銅合金フィラメントの
物性を改善すべく研究を進め、銅合金フィラメントの太
さと無関係に当該フィラメントの少なくとも一部に竹の
節の間状の単結晶質部分を作ることができるならば、当
該部分が優れた靭性を発揮し、当該部分においては180
度曲げが可能になるであろうと考えた。即ち150μmφ
以上の銅合金フィラメントであっても、その中に、一部
でも上述の様な単結晶化部分を形成することができれ
ば、機械的性質において靭性が改良され、また電気的、
磁気的性質においても興味のある特性に改変されるので
はないかとの期待が持たれたのである。
[Problems to be Solved by the Invention] By using the above-mentioned spinning submerged spinning method, even a copper alloy as described above can be easily formed into a thin wire, and a resistance change type temperature sensor or the like is put into practical use. It is expected that it will open the way to. Then, when the above-mentioned spinning submerged spinning method was applied to the copper alloy, it was confirmed that even a brittle copper alloy could be easily thinned. However, among the copper alloy filaments obtained in this way, especially thicker (150 μm
It was found that the (super) is very brittle and difficult to handle because it is easily broken when it is bent more than 90 degrees, and its versatility is poor. If the thickness is 150 μm or less, it may be bent or may be cut at the time of bending depending on the bent portion. Further 80μ
Almost certainly when using a filament with a diameter of m or less
It was possible to bend 180 degrees. Therefore, looking at the internal structure of this copper alloy filament, at the location where the above-mentioned bending cutting occurs, two or more crystals are always (in any cross section) in the transverse section orthogonal to the filament axis. It was confirmed that the grains were present and had a so-called polycrystalline structure. On the other hand, it is 18 in the single crystalline part of bamboo knots (solid columnar structure, not hollow).
Bending is possible at 0 degrees, and as the copper alloy filament becomes thinner, the proportion of the single crystalline portion as described above increases,
It has been found that when the metal filament has a size of 80 μm or less, interstitial single crystalline portions of bamboo nodes are connected through grain boundaries corresponding to bamboo nodes over almost the entire length. Therefore, the inventors of the present invention proceeded with research to improve the physical properties of the copper alloy filament composed only of the above-mentioned polycrystalline portion, and independently of the thickness of the copper alloy filament, at least a part of the filament had a bamboo knot-shaped single-piece structure. If a crystalline part can be made, that part will exhibit excellent toughness, and
I thought that bending would be possible. That is 150 μmφ
Even in the case of the above copper alloy filament, if a single crystallized portion as described above can be formed even in part, the toughness is improved in mechanical properties, and the electrical,
It was hoped that the magnetic properties could be modified into interesting ones.

本発明はこの様な期待を実現しようとするものであっ
て、具体的には長手方向の少なくとも一部に単結晶質構
造を有し、靭性や取扱い性が良好で且つ電気的、磁気的
にも優れた性質を持った銅合金フィラメントおよびその
製造方法を提供しようとするとするものである。
The present invention is intended to realize such an expectation, and specifically has a single crystalline structure in at least a part of the longitudinal direction, has good toughness and handleability, and is electrically and magnetically Another object of the present invention is to provide a copper alloy filament having excellent properties and a method for producing the same.

[問答点を解決するための手段] 本発明に係る銅合金フィラメントの構成は、フィラメン
ト長手方向の少なくとも一部に、デンドライト状組織を
有しない単結晶が、竹の節状に形成された結晶粒界を境
にして連続的に連なった構造を有するものであるところ
に要旨を有するものであり、また本発明に係る銅合金フ
ィラメントの製造法の構成は、回転する円筒状ドラム内
において遠心力により形成された冷却液体中に、紡出ノ
ズルを通して溶融銅合金を噴射し、冷却固化して得られ
る銅合金フィラメントを、該銅合金の融点未満で且つ該
融点の2/3以上の温度で熱処理するところに要旨を有す
るものである。
[Means for Solving Problems] The structure of the copper alloy filament according to the present invention has a crystal grain in which a single crystal having no dendrite-like structure is formed in a bamboo node shape in at least a part of the filament longitudinal direction. The gist of the present invention is that it has a structure in which it is continuously connected with a boundary as a boundary, and the structure of the method for producing a copper alloy filament according to the present invention is configured by centrifugal force in a rotating cylindrical drum. A molten copper alloy is injected into the formed cooling liquid through a spinning nozzle, and a copper alloy filament obtained by cooling and solidifying is heat-treated at a temperature lower than the melting point of the copper alloy and at least 2/3 of the melting point. However, it has a gist.

[作用] 合金を単結晶化させる技術としては、凝固法とひずみ焼
なまし法がよく知られている。即ち凝固法は溶融金属か
らの凝固を利用して単結晶を生成させる方法であり、一
方ひずみ焼なまし法は加工した金属を加熱(焼なまし)
して新しい結晶粒を生成させる再結晶技術を利用するも
のであるから、再結晶法とも呼ばれている。後者のひず
み焼なまし法は、線状あるいは板状に成形した金属材に
適度のひずみを与え、次いでこれを高温に加熱すること
によって行なわれるものである。
[Operation] As a technique for making an alloy into a single crystal, a solidification method and a strain annealing method are well known. That is, the solidification method is a method of producing a single crystal by utilizing solidification from molten metal, while the strain annealing method heats (anneals) the processed metal.
It is also called a recrystallization method because it utilizes a recrystallization technique for generating new crystal grains. The latter strain annealing method is carried out by applying an appropriate strain to a metal material formed into a linear or plate shape, and then heating this to a high temperature.

本発明者らは上記の様な知見を生かし、前述の如く多結
晶質で脆弱な銅合金フィラメトを単結晶質で柔軟性の優
れた単結晶質のものに改変することはできないかと考
え、ひずみ焼なまし法等を含めて色々実験を行なった。
The present inventors, taking advantage of the above knowledge, think that it is possible to modify the polycrystalline and fragile copper alloy filament to be a single crystalline one with excellent flexibility and a single crystalline, strain as described above. Various experiments were conducted including the annealing method.

その結果、回転液中紡糸法によって得た多結晶質の銅合
金フィラメントを、予備焼なましや線引きなどの処理に
よってひずみを与えるといったプロセスなしに、直接該
銅合金の融点未満で且つ該融点の2/3以上の温度で熱処
理すると、紡糸工程で形成した多結晶構造が改変され
て、フィラメント軸に対して横断し、不均一な間隔を有
する結晶粒界を有し、デンドライト状組織を持たない単
結晶質部分が継がった特徴的な構造のものとなることが
明らかとなった。そしてこの様な構造を有する銅合金フ
ィラメントは靭性が非常に良好であり、180度に密着曲
げした場合でも折断することのない極めて柔軟なもので
あることが確認された。尚本明細書において「竹の節」
とは、フィラメントの横断面方向に形成される結晶粒界
が顕微鏡で観察した場合にあたかも竹の節の様な外観を
呈する状態を指称するものであり、紡糸条件や熱処理条
件によって若干異なるが、フィラメントの長手方向に約
0.3〜20mm(通常はフィラメント直径の約2倍以上)の
不規則な間隔で形成され、該竹の節の間はデンドライト
状組織を持たない単結晶質で構成される。第3図に、本
発明に係る銅合金フィラメントの代表例であって、単結
晶が竹の節状で連続的に形成された構造を模式的に示
す。以下この様な構造を竹状構造という。
As a result, the polycrystalline copper alloy filament obtained by the rotating submerged spinning method is directly less than the melting point of the copper alloy and has a melting point of less than the melting point of the copper alloy without a process of giving strain by treatment such as pre-annealing or drawing. When heat-treated at a temperature of 2/3 or higher, the polycrystalline structure formed in the spinning process is modified to have grain boundaries that cross the filament axis and have non-uniform spacing, and do not have a dendrite-like structure. It was clarified that the single crystal part had a characteristic structure that was continued. It was confirmed that the copper alloy filaments having such a structure have very good toughness and are extremely flexible without breaking even when they are closely bent to 180 degrees. In this specification, "bamboo knot"
The term refers to a state in which the crystal grain boundaries formed in the cross-sectional direction of the filament have an appearance as if they were bamboo knots when observed under a microscope, although they differ slightly depending on spinning conditions and heat treatment conditions. About the length of the filament
They are formed at irregular intervals of 0.3 to 20 mm (usually about twice the filament diameter or more), and the knots of the bamboo are composed of a single crystal having no dendrite-like structure. FIG. 3 is a typical example of the copper alloy filament according to the present invention, and schematically shows a structure in which a single crystal is continuously formed in a node shape of bamboo. Hereinafter, such a structure is referred to as a bamboo structure.

また銅合金フィラメントを細径化にすることによって竹
状構造にすることは可能であるが、第4図(a)に示す
様に、熱処理前の銅合金フィラメントでは、各単結晶部
がデンドライト状組織を有している。第4図(b)は、
デンドライト状組織を有する銅合金フィラメントの図面
代用顕微鏡写真(複写)であり、デンドライト状組織を
明確に現出させることを目的としてエッチング処理を施
した後、撮影したものである。この様なデンドライト状
組織を有する銅合金フィラメントでは、靭性が十分では
ない。銅合金フィラメントが高靭性となり優れた柔軟性
を発揮するには、第5図(a)に示す様に、竹状構造を
有すると共に各単結晶部がデンドライト状組織を有して
いないことが必要である。第5図(b)は、本発明に係
る銅合金フィラメントであって前記エッチング処理を施
した銅合金フィラメントの図面代用顕微鏡写真(複写)
である。デンドライト組織を有していないことが分か
る。以下の説明では、デンドライト状組織を有しない竹
状構造を、本発明に係る竹状構造という。
Although it is possible to make the bamboo-like structure by reducing the diameter of the copper alloy filament, as shown in FIG. 4 (a), in the copper alloy filament before heat treatment, each single crystal part has a dendrite shape. Have an organization. FIG. 4 (b) shows
It is a drawing-substitute micrograph (copy) of a copper alloy filament having a dendrite-like structure, which was taken after an etching treatment for the purpose of clearly revealing the dendrite-like structure. The copper alloy filament having such a dendrite structure has insufficient toughness. In order for the copper alloy filament to have high toughness and exhibit excellent flexibility, it is necessary that each single crystal part does not have a dendrite structure, as shown in Fig. 5 (a). Is. FIG. 5 (b) is a drawing substitute micrograph (copy) of the copper alloy filament according to the present invention, which has been subjected to the etching treatment.
Is. It can be seen that it does not have a dendrite structure. In the following description, a bamboo structure having no dendrite structure is referred to as a bamboo structure according to the present invention.

本発明の銅合金フィラメントは上記の如く、本発明に係
る竹状構造を有するところに特徴を有しているが、フィ
ラメントの全体が本発明に係る竹状構造で構成されてい
なければならない訳ではなく、フィラメントの少なくと
も一部に本発明に係る竹状構造を有するものであれば、
従来の多結晶質の銅合金フィラメントに比べると柔軟性
は著しく改善されたものとなる。
As described above, the copper alloy filament of the present invention is characterized in that it has the bamboo structure according to the present invention. However, it does not mean that the entire filament has to be composed of the bamboo structure according to the present invention. However, if at least a part of the filament has a bamboo-like structure according to the present invention,
The flexibility is remarkably improved as compared with the conventional polycrystalline copper alloy filament.

尚回転液中紡糸法で得た銅合金フィラメントを何ら予備
処理することなしに熱処理することによって本発明に係
る竹状構造が得られる点については、理論的解明はなさ
れておらないが、熱処理によってデンドライト状組織が
消失すると共に、おそらく紡糸時にフィラメントに導入
されたひずみが竹状構造の生成に重要な影響を及ぼすこ
とによって本発明に係る竹状構造が生成したためであろ
うと推定される。何れにしても本発明に係る竹状構造を
有する銅合金フィラメントは非常に柔軟性の富んだもの
となり、180度の密着曲げが可能であるほか引張試験に
おいても伸びが著しく大きくなり、工業的に見て取扱い
の容易な材料であり、本発明に係る竹状構造を有する銅
合金フィラメントは更に高次の加工が可能であり、伸線
や圧延も可能である。また竹状構造の銅合金フィラメン
トからその一部を切り出し単結晶として使用することも
できる。この場合、同一径の銅合金フィラメントより切
り出させるので直径の揃った単結晶が得られ、しかも軸
方向に単結晶の方位が異なったものが得られる。本発明
で使用する銅合金としては様々のものが考えられるが、
中でも最も好ましいのは、Mn:1〜35原子%、Al:5〜35原
子%(MnとAlの和が6〜60原子%)、残部がCu及び不可
避不純物からなる銅合金である。しかして上記の好適成
分組成を外れる銅合金を用いた場合は、後で詳述する如
く回転液中紡糸法を採用し、その後所定の温度範囲で熱
処理を行なった場合でも、本発明に係る竹状構造のもの
が得られ難く、従って柔軟性も十分に改善され難くな
る。
The point that the bamboo-like structure according to the present invention can be obtained by heat-treating the copper alloy filament obtained by the rotating submerged spinning method without any pretreatment has not been theoretically elucidated, but the heat treatment It is presumed that the bamboo structure according to the present invention was generated by the disappearance of the dendrite structure and probably by the strain introduced into the filament during spinning having a significant influence on the generation of the bamboo structure. In any case, the copper alloy filament having a bamboo-like structure according to the present invention becomes extremely rich in flexibility, capable of closely bending at 180 degrees, and has a significantly large elongation in a tensile test. The copper alloy filament having a bamboo-like structure according to the present invention is a material that is easy to see and handle, and can be processed at higher levels, and can be drawn and rolled. Further, a part of the copper alloy filament having a bamboo structure can be cut out and used as a single crystal. In this case, since the copper alloy filaments having the same diameter are cut out, a single crystal having a uniform diameter can be obtained, and further, a single crystal having different orientations in the axial direction can be obtained. Although various things can be considered as the copper alloy used in the present invention,
Of these, the most preferable is a copper alloy containing Mn: 1 to 35 atomic%, Al: 5 to 35 atomic% (the sum of Mn and Al is 6 to 60 atomic%), and the balance Cu and unavoidable impurities. However, when a copper alloy having a composition deviating from the above-mentioned preferable component composition is used, the bamboo in accordance with the present invention can be used even when the spinning submerged spinning method is adopted as described in detail later and the heat treatment is then performed in a predetermined temperature range. It is difficult to obtain a structure having a ring-shaped structure, and thus it is difficult to sufficiently improve flexibility.

つぎに本発明に係る銅合金フィラメントの製造方法につ
いて説明する。本発明で採用される紡糸法の基本的構成
は前記特開昭55−64948号として開示した回転液中紡糸
法に従う。たとえば第1、2図はその方法を例示する概
略正面図及び一部破断側面図であり、回転ドラム6を高
速回転させることによってその内周面側に回転液膜層8
を形成する。そして該液膜層8の液面9に向けてるつぼ
1下面の噴出ノズル2から溶融銅合金をジェット状に噴
出させ、銅合金をフィラメント4状にして急冷凝固させ
ながら回転ドラム6の内周壁に巻回していく。図中3は
金属を溶融するためのヒーター、5は溶融銅合金噴出用
の不活性ガス、7はモータ、10はベルトを夫々示す。そ
して回転液膜層の周速度を、噴出ノズル2からの溶融銅
合金噴出速度と実質的に同一かまたはそれよりやや早く
しておけば、断面均一性の良好な銅合金フィラメントが
得られ易い。またここで使用される冷却液は純粋な液
体、溶液、エマルジョン等のいずれであってもよいが、
コスト及び冷却効率を総合して最も好ましいのは水であ
る。回転ドラムは横向きでも縦向きでもよいが、該ドラ
ム中の液膜層表面速度は400〜900m/min程度、溶融銅合
金の液膜層への進入角度は50〜80゜、噴出ノズル2と冷
却液面9との距離は0.5〜10mm程度が夫々好適である。
ところで上記の様な回転液中紡糸法によって得られる銅
合金フィラメントは、その横断面内に2個以上の結晶粒
を有し、且つフィラメント軸方向にも多数の結晶粒を有
する多結晶構造体である非常に脆弱なものであるが、こ
の銅合金フィラメントを、該銅合金の融点未満で且つ該
融点の2/3以上の温度で0.2〜5時間程度熱処理すると、
本発明に係る竹状構造を有する柔軟性の富んだものに改
質される。しかし上記温度範囲を外れるときは、その様
な改質効果が得られない。尚この熱処理は不活性ガス雰
囲気あるいは真空中で熱処理するのが好ましい。
Next, a method for manufacturing the copper alloy filament according to the present invention will be described. The basic construction of the spinning method adopted in the present invention is in accordance with the spinning submerged spinning method disclosed in JP-A-55-64948. For example, FIGS. 1 and 2 are a schematic front view and a partially cutaway side view illustrating the method, and by rotating the rotating drum 6 at a high speed, the rotating liquid film layer 8 is formed on the inner peripheral surface side.
To form. Then, the molten copper alloy is jetted from the jet nozzle 2 on the lower surface of the crucible 1 toward the liquid surface 9 of the liquid film layer 8 to jet the molten copper alloy into filaments 4 and rapidly solidifies them on the inner peripheral wall of the rotary drum 6. Winding around. In the figure, 3 is a heater for melting metal, 5 is an inert gas for jetting molten copper alloy, 7 is a motor, and 10 is a belt. When the peripheral velocity of the rotating liquid film layer is set to be substantially the same as or slightly higher than the jetting speed of the molten copper alloy from the jetting nozzle 2, a copper alloy filament having good cross-sectional uniformity can be easily obtained. The cooling liquid used here may be a pure liquid, a solution, an emulsion, or the like,
Water is most preferable in terms of cost and cooling efficiency. The rotating drum may be horizontal or vertical, but the surface speed of the liquid film layer in the drum is about 400 to 900 m / min, the angle of entry of the molten copper alloy into the liquid film layer is 50 to 80 °, the jet nozzle 2 and cooling The distance from the liquid surface 9 is preferably about 0.5 to 10 mm.
By the way, the copper alloy filament obtained by the spinning liquid spinning method as described above is a polycrystalline structure having two or more crystal grains in its cross section and having many crystal grains in the axial direction of the filament. Although very brittle, when this copper alloy filament is heat-treated at a temperature lower than the melting point of the copper alloy and not less than 2/3 of the melting point for about 0.2 to 5 hours,
The bamboo-like structure according to the present invention is modified into a highly flexible material. However, when the temperature is out of the above range, such a reforming effect cannot be obtained. The heat treatment is preferably performed in an inert gas atmosphere or vacuum.

[実施例] 実施例1 第1、2図に示した様な回転液中紡糸法を採用し、Cu
(50)−Mn(25)−Al(25)原子%組成の銅合金溶湯
(融点は約920℃)を用いて直径180μmの銅合金フィラ
メントを作製した。冷却液としては10℃の水を使用し
た。次いでこの銅合金フィラメントを、約0.5torr以下
の減圧下800℃で3時間又は5時間熱処理した。
[Examples] Example 1 A rotary submerged spinning method as shown in Figs.
A copper alloy filament having a diameter of 180 μm was produced using a molten copper alloy having a composition of (50) -Mn (25) -Al (25) atom% (melting point: about 920 ° C.). Water at 10 ° C. was used as the cooling liquid. Then, this copper alloy filament was heat-treated at 800 ° C. for 3 hours or 5 hours under a reduced pressure of about 0.5 torr or less.

熱処理前の銅合金フィラメントは、横断面内に3個の結
晶粒を有し且つフィラメント軸方向にも多数の結晶粒が
並んだ多結晶構造のものであり、曲げると簡単に折れる
脆弱なものであったが、熱処理に付した2種のフィラメ
ントは、長手方向に約0.3〜20mmの間隔で、フィラメン
トを横断する方向の結晶粒界を有し、且つ結晶粒界の間
でデンドライト状組織を持たない単結晶質からなる竹状
構造を有するものであり、180度に密着曲げした場合で
も折断することのない柔軟なものであった。
The copper alloy filament before heat treatment has a polycrystalline structure having three crystal grains in the cross section and a large number of crystal grains arranged in the axial direction of the filament, and is a fragile material that easily breaks when bent. However, the two types of filaments subjected to the heat treatment had crystal grain boundaries in the direction transverse to the filaments at intervals of about 0.3 to 20 mm in the longitudinal direction, and had a dendrite-like structure between the crystal grain boundaries. It had a bamboo-like structure consisting of a non-single crystalline material, and was a flexible material that did not break even when closely bent at 180 degrees.

実施例2 Cu(60)−Mn(20)−Al(20)原子%、Cu(55)−Mn
(20)−Al(25)及びCu(45)−Mn(30)−Al(25)原
子%の組成を有する3種の銅合金溶湯(融点は夫々約93
0℃、約920℃及び約950℃)を用いて、実施例1と同様
にして直径180μmの銅合金フィラメントを作製し、次
いで約0.5torr以下の減圧雰囲気下、900℃で3時間熱処
理した。得られた各熱処理物はほとんど全長に亘って本
発明に係る竹状構造を有し、いずれも180度密着曲げの
可能な高柔軟性のものであった。
Example 2 Cu (60) -Mn (20) -Al (20) atom%, Cu (55) -Mn
(20) -Al (25) and Cu (45) -Mn (30) -Al (25) three kinds of copper alloy melts with a composition of atomic% (melting points are about 93 each
0 ° C., about 920 ° C. and about 950 ° C.) were used to prepare a copper alloy filament having a diameter of 180 μm in the same manner as in Example 1, and then heat-treated at 900 ° C. for 3 hours under a reduced pressure atmosphere of about 0.5 torr or less. Each of the obtained heat-treated products had a bamboo-like structure according to the present invention over almost the entire length, and each was highly flexible and capable of 180-degree contact bending.

実施例3 Cu(65)−Mn(2)−Al(33)原子%、Cu(58)−Mn
(34)−Al(8)原子%及びCu(92)−Mn(3)−Al
(5)原子%の各組成を有する銅合金(融点は夫々約10
30℃、約890℃、約1060℃)を使用した他は実施例2と
同様にして紡糸及び熱処理を行なった。
Example 3 Cu (65) -Mn (2) -Al (33) atom%, Cu (58) -Mn
(34) -Al (8) atom% and Cu (92) -Mn (3) -Al
(5) Copper alloy with each composition of atomic% (melting point is about 10 each
Spinning and heat treatment were carried out in the same manner as in Example 2 except that 30 ° C, about 890 ° C, about 1060 ° C) were used.

得られたフィラメントは、いずれもほとんど全長に亘り
デンドライト状組織を持たない単結晶が竹状構造に連な
ったものであり、180度密着曲げ可能な柔軟性のすぐれ
たものであった。
Each of the obtained filaments had a bamboo-like structure in which single crystals having no dendrite-like structure were connected over almost the entire length, and the filaments had excellent flexibility capable of being intimately bent by 180 degrees.

実施例4 Cu(50)−Mn(25)−Al(25)原子%の組成を有する銅
合金(融点は約920℃)を用いて、実施例1と同様にし
て直径180μmのフィラメントを作製し、次いで約0.5to
rr以下の減圧雰囲気下、620℃および300℃でそれぞれ3
時間又は5時間の熱処理をした。620℃で熱処理したフ
ィラメントはいずれも竹状構造を有し、180度に密着曲
げのできる柔軟なものであったが、300℃で熱処理した
フィラメントはいずれも竹状構造とはならず、フィラメ
ントのどの断面においても2個以上の結晶粒を有する多
結晶質になっており、脆弱なものであった。
Example 4 A copper alloy having a composition of Cu (50) -Mn (25) -Al (25) atomic% (melting point: about 920 ° C.) was used to prepare a filament having a diameter of 180 μm in the same manner as in Example 1. , Then about 0.5to
3 at 620 ° C and 300 ° C under reduced pressure of rr
Heat treatment was performed for 5 hours or 5 hours. All of the filaments heat-treated at 620 ° C had a bamboo-like structure and were flexible so that they could be bent in close contact with each other at 180 degrees, but none of the filaments heat-treated at 300 ° C had a bamboo-like structure. It was fragile because it was polycrystalline having two or more crystal grains in every cross section.

[発明の効果] 本発明は以上の様に構成されており、銅合金からなるフ
ィラメント本来の優れた磁気的、電気的特性を保持しつ
つ、その最大の欠点とされる脆弱さを改質して極めて柔
軟で曲げ易い特性を与えることができ、その取扱い性を
著しく改善することができた。その結果、たとえば抵抗
変化型温度センサー等への適用も容易となり、応用分野
の大幅な拡大を期待することができる。
[Advantages of the Invention] The present invention is configured as described above, and while maintaining the original excellent magnetic and electrical characteristics of a filament made of a copper alloy, it modifies the weakness, which is the greatest drawback of the filament. It is possible to impart extremely flexible and bendable characteristics, and it is possible to remarkably improve the handling property. As a result, it can be easily applied to, for example, a resistance change type temperature sensor and the like, and it can be expected that the field of application will be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

第1、2図は回転液中紡糸法を説明するための図であ
り、第1図は概略正面図、第2図は一部断面側面図であ
る。第3図は銅合金フィラメントの竹状構造を示す説明
図である。第4図(a)はデンドライト状組織を有する
銅合金フィラメントの縦断面を模式的に示す説明図であ
り、第4図(b)は、デンドライト状組織を示す図面代
用顕微鏡写真(複写)である。第5図(a)はデンドラ
イト状組織を有しない銅合金フィラメントの縦断面を模
式的に示す説明図であり、第5図(b)は、デンドライ
ト状組織を有しない銅合金フィラメントの図面代用顕微
鏡写真(複写)である。 1:るつぼ、2:噴出ノズル 3:ヒーター、4:フィラメント 5:不活性ガス、6:回転ドラム 7:モータ、8:冷却液体 9:冷却液面、10:ベルト
FIGS. 1 and 2 are views for explaining the spinning method in a rotating liquid, FIG. 1 is a schematic front view, and FIG. 2 is a partial cross-sectional side view. FIG. 3 is an explanatory view showing a bamboo structure of a copper alloy filament. FIG. 4 (a) is an explanatory view schematically showing a longitudinal section of a copper alloy filament having a dendrite structure, and FIG. 4 (b) is a drawing-substitute micrograph (copy) showing the dendrite structure. . FIG. 5 (a) is an explanatory view schematically showing a longitudinal section of a copper alloy filament not having a dendrite-like structure, and FIG. 5 (b) is a drawing-substitute microscope for a copper alloy filament not having a dendrite-like structure. It is a photograph (copy). 1: crucible 2: jet nozzle 3: heater, 4: filament 5: inert gas, 6: rotating drum 7: motor, 8: cooling liquid 9: cooling liquid level, 10: belt

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D01D 5/08 F (72)発明者 石原 英昭 滋賀県大津市堅田2丁目1番1号 東洋紡 績株式会社総合研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI technical display location // D01D 5/08 F (72) Inventor Hideaki Ishihara 2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】フィラメント長手方向の少なくとも一部
に、デンドライト状組織を有しない単結晶が、竹の節状
に形成された結晶粒界を境にして連続的に連なった構造
を有するものであることを特徴とする銅合金フィラメン
ト。
1. A structure in which a single crystal having no dendrite-like structure is continuously formed at least at a part in the longitudinal direction of a filament with a grain boundary formed like a nodule of bamboo as a boundary. A copper alloy filament characterized in that.
【請求項2】Cu−Mu−Al系合金が、Mn:1〜35原子%、A
l:5〜35原子%(但しMnとAlの和が6〜60原子%)、並
びに残部がCu及び不可避不純物である特許請求の範囲第
1項に記載の銅合金フィラメント。
2. A Cu-Mu-Al-based alloy containing Mn: 1 to 35 atomic%, A
The copper alloy filament according to claim 1, wherein l: 5 to 35 atomic% (however, the sum of Mn and Al is 6 to 60 atomic%), and the balance is Cu and inevitable impurities.
【請求項3】溶融銅合金を溶融紡糸法によりフィラメン
ト状とした後、該銅合金の融点未満で且つ該融点の2/3
以上の温度で熱処理したものである特許請求の範囲第1
又は2項に記載の銅合金フィラメント。
3. A molten copper alloy is formed into a filament by a melt-spinning method, and is less than the melting point of the copper alloy and 2/3 of the melting point.
Claim 1 which is heat-treated at the above temperature
Alternatively, the copper alloy filament according to item 2.
【請求項4】フィラメント長手方向の少なくとも一部
に、デンドライト状組織を有しない単結晶が、竹の節状
に形成された結晶粒界を境にして連続的に連なった構造
を有する銅合金フィラメントを製造するにあたり、 回転する円筒状ドラム内において遠心力により形成され
た冷却液体中に、紡出ノズルを通して溶融銅合金を噴射
し、冷却固化して得られる銅合金フィラメントを、該銅
合金の融点未満で且つ該融点の2/3以上の温度で熱処理
すること特徴とする銅合金フィラメントの製造法。
4. A copper alloy filament having a structure in which a single crystal having no dendrite-like structure is continuously connected at a grain boundary formed in a node shape of bamboo as a boundary in at least a part of the filament longitudinal direction. In manufacturing, a molten copper alloy is jetted through a spinning nozzle into a cooling liquid formed by centrifugal force in a rotating cylindrical drum, and a copper alloy filament obtained by cooling and solidifying the molten copper alloy has a melting point of the copper alloy. A method for producing a copper alloy filament, characterized in that the heat treatment is performed at a temperature of less than 2/3 of the melting point.
【請求項5】銅合金が、Mn:1〜35原子%、Al:5〜35原子
%(但しMnとAlの和が6〜60原子%)、並びに残部がCu
及び不可避不純物である特許請求の範囲第4項に記載の
製造法。
5. A copper alloy comprising Mn: 1 to 35 atomic%, Al: 5 to 35 atomic% (however, the sum of Mn and Al is 6 to 60 atomic%), and the balance Cu.
And the production method according to claim 4, which is an unavoidable impurity.
JP21294886A 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method Expired - Lifetime JPH07103492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21294886A JPH07103492B2 (en) 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21294886A JPH07103492B2 (en) 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS6366323A JPS6366323A (en) 1988-03-25
JPH07103492B2 true JPH07103492B2 (en) 1995-11-08

Family

ID=16630948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21294886A Expired - Lifetime JPH07103492B2 (en) 1986-09-09 1986-09-09 Copper alloy filament and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH07103492B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280618A (en) * 1988-09-16 1990-03-20 Asahi Chem Ind Co Ltd Electrically conductive fiber and production thereof
DE10212654B4 (en) 2001-03-30 2012-06-14 Jnc Corporation Propylene polymer composition and foamed molded articles thereof

Also Published As

Publication number Publication date
JPS6366323A (en) 1988-03-25

Similar Documents

Publication Publication Date Title
EP0110268B1 (en) Method for imparting strength and ductility to intermetallic phases
CN109652748B (en) Regulating and controlling method for precipitated phase orientation in magnesium alloy
JPH07103492B2 (en) Copper alloy filament and its manufacturing method
JP3364299B2 (en) Amorphous metal wire
JPH0336225A (en) Metallic thin wire having single crystal chain structure and its manufacture
JPH10140267A (en) Copper alloy material with high cr content, having high strength and high electric conductivity, and its production
JPH07316755A (en) Al-base amorphous metallic filament
JPH0667533B2 (en) Copper alloy filament and manufacturing method thereof
JPH10296398A (en) Wire for coil and production thereof
JPH0736942B2 (en) Highly tough and highly flexible metal fibers with unidirectional dendritic structure
JPH10128428A (en) Manufacture of alloy fine wire, alloy fine wire assembly, alloy fine wire strand, alloy fine wire textile, alloy fine wire knit fabric, alloy fine wire web and alloy fine wire felt
JPH0688110B2 (en) Single crystalline metal fiber and method for producing the same
JP2001107164A (en) Ni-Ti SERIES SHAPE MEMORY ALLOY WIRE ROD AND ITS PRODUCING METHOD
JP2003268477A (en) HIGH-DUCTILITY Mg ALLOY
JP2704442B2 (en) Manufacturing method of high purity copper wire composed of coarse crystal grains
JP2599442B2 (en) Method for producing Pt / Mo clad wire
JPH08337854A (en) Production of titanium-nickel superplastic alloy
JPS62275561A (en) Production of complex material having excellent high temperature oxidizing resistance and hot workability
JPS6375118A (en) Iron type metallic filament and production thereof
JPH0316218B2 (en)
Verhoeven et al. The influence of coarsening treatments upon properties of in situ Nb 3 Sn-Cu superconducting wire
JPS6087952A (en) Production of fine cu-cr alloy wire
JPH02204915A (en) Stress-corrosion-cracking resistant copper member
JPS6213427B2 (en)
JPH0451254B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term