JP4010114B2 - Centrifugal casting method - Google Patents

Centrifugal casting method Download PDF

Info

Publication number
JP4010114B2
JP4010114B2 JP2000599536A JP2000599536A JP4010114B2 JP 4010114 B2 JP4010114 B2 JP 4010114B2 JP 2000599536 A JP2000599536 A JP 2000599536A JP 2000599536 A JP2000599536 A JP 2000599536A JP 4010114 B2 JP4010114 B2 JP 4010114B2
Authority
JP
Japan
Prior art keywords
casting
mold
centrifugal
segregation
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000599536A
Other languages
Japanese (ja)
Inventor
健司 市野
智也 小関
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP4010114B2 publication Critical patent/JP4010114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/12Controlling, supervising, specially adapted to centrifugal casting, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis

Description

【技術分野】
【0001】
本発明は、遠心鋳造方法に関し、とくに、遠心鋳造製品にラミネーション偏析などの組織不均一を発生させない遠心鋳造方法に関する。
【背景技術】
【0002】
例えば鉄鋼圧延用ロールでは、そのロール外殻層(被圧延材と接触する円筒状部分)は、製造コスト低減や省エネルギーの観点から、軸心を中心として回転する鋳型に溶融金属を鋳込む所謂遠心鋳造法により製造するのが有利である。
従来の遠心鋳造法では、なるべく静かに凝固させるほうがよいという基本思想から、外力がなるべく作用しないように、鋳型回転数を一定に精度よく保持しかつ鋳型振動を抑えて鋳込むことが通例であった。
【0003】
なお、特許第2778896号公報には、ロール外殻層の組織を微細かつ均一にして耐肌荒れ性、耐クラック性を向上させるために、鋳型への溶融金属(溶湯)の供給温度(鋳込み温度)を初晶生成温度Tc(℃)からTc+90(℃)にかけての温度域に保って平均積層速度(鋳込み速度)を2〜40mm/分に管理する遠心鋳造方法が開示されている。このようなロール外殻層の組織の均一化を狙った発明でも、鋳型回転数は、溶湯表面の遠心力の重力倍数が一例では140G、他例では120Gとなるよう、一定の値に設定されている。
【0004】
遠心鋳造における凝固過程では、鋳型の半径方向に帯状あるいは斑状の層をなすバンド状偏析(ラミネーション偏析と称す)が生成する。例えば遠心鋳造された熱延用ロールでは、図3に示すように、ロール外殻層1内に、デンドライト(基地)の濃化部(基地濃化層2)と硬質な炭化物の濃化部(炭化物濃化層3)とが交互に積層された形態のラミネーション偏析が形成される。これらの濃化層は30〜100mm程度の肉厚内に2〜6本程度生じることが多い。
【0005】
かかるラミネーション偏析は、圧延に使用中、磨耗に応じて幾度も研削されるロール外殻層の磨耗面あるいは研磨面に偏析模様となって現出し、ロールの耐肌荒れ性や耐クラック性などのロール特性を劣化させる。また仕上げミル最終スタンドにラミネーション偏析が存在するロールを使用するとその偏析模様が被圧延材の表面に転写して圧延製品の表面品質を低下させるため、最近の表面品質要求の厳しい鋼板の仕上げ圧延には使用できない。
【発明の開示】
【発明が解決しようとする課題】
【0006】
このラミネーション偏析は、従来の遠心鋳造法では回避不可能と考えられていた。
なお、前記特許第2778896号公報には、鋳造組織を微細かつ均一化する方法が開示されているが、この方法では、鋳込み速度が著しく小さいためロール外殻層表面に2枚皮欠陥やスパッタ状の欠陥が生じやすい。また、鋳込み速度が非常に小さいことに加え、鋳込み温度が低く管理範囲もTc〜Tc+90(℃)と狭いことから溶湯の流動性を確保することが困難であり、管理範囲を逸脱しやすく安定した操業を行うことも難しい。
【0007】
しかしながら、ラミネーション偏析をなくすことができれば、極めて優れたロール特性が実現し、製造コスト削減、合金設計の自由度の増大、圧延製品品質の向上、圧延生産性の向上、圧延コスト低減など種々の効果が期待される。
そこで、本発明は、ラミネーション偏析を解消可能な遠心鋳造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
一般に、金属材料を遠心鋳造で製造すると、凝固の過程で溶湯中に晶出したデンドライトあるいは炭化物が、溶湯との比重差によって遠心分離する(溶湯より重い相は外周側、軽い相は中心側に移動する)。一方、ラミネーション偏析はデンドライト濃化層と炭化物濃化層が交互に重なってバンド状に偏析した形態を呈している。バンド状偏析の形成原因は、遠心鋳造での凝固過程における固相‐液相界面(固液共存相)の剪断的流動にあると考えられ、大中ら(例えば、鋳造工学第69巻(1997)第3号第240〜246頁)は横型遠心鋳造でのバンド状偏析の発生には重力が影響していると報告している。この考え方によれば、重力が鋳型回転方向に作用する横型あるいは斜め型遠心鋳造を行う限りラミネーション偏析を回避することは困難であり、現に経験している通りである。なお、従来の遠心鋳造では、前記したように、溶湯に振動や剪断力がなるべくかからないようにするとの基本思想から、鋳造機と基礎の剛性を高め、鋳型回転数を極力一定に制御する操業がなされていたがラミネーション偏析の回避はできなかった。
【0009】
本発明者らは、前記従来の基本思想ではラミネーション偏析を解消できないことに鑑み、重力の影響でラミネーション偏析が生成するのなら、従来とは逆に溶湯に積極的に回転方向の加速度を付与すれば、そこで生まれた剪断力によって任意の本数のバンド状偏析を生成させることができるのではないかと考えた。この逆転の発想に基づき、ラミネーション偏析の抑制法を鋭意検討した緒果、鋳型回転速度を連続的あるいは断続的に変更して鋳型回転方向に加速度を付与することにより、無数のバンド状偏析を生成させることも原理的に可能であり、しかるに無数のバンド状偏析が生成すれば、マクロ的には均一な組織が得られたことになり、実用上も全く問題がないという知見を得た。また、鋳造品の凝固過程で鋳型回転数を強制的に変動させれば固相共存相および未凝固領部が攪拌されるため、
成分偏析の軽減や組織の微細化がもたらされる。
【0010】
本発明はこの知見に基づいて成されたものであり、その要旨は、軸心を中心として回転する鋳型に溶融金属を鋳込むにあたり、鋳込み開始から凝固完了までの間に、鋳型の回転数を強制的に変動させることを特徴とする遠心鋳造方法にある(鋳込み後から凝固途中に適用するものも含む)。
【0011】
すなわち本発明は、遠心鋳造での鋳型回転数を強制的に変動させることにより鋳造材(鋳込み材)に負荷する遠心力を連続的あるいは断続的に変化させ、かつ鋳型回転方向に加速度を付加することで、凝固進行過程における固液界面から液相領域を連続的あるいは断続的に剪断的流動させて凝固偏析を制御する鋳型回転数変動式の遠心鋳造法であり、偏析の分散作用に加え、未凝固領域の攪拌作用により、ラミネーション偏析炭化物偏析、成分偏析等を抑制するものである。
【0012】
本発明では、鋳型の回転数を、鋳込み材の外表面に負荷される遠心力の増減速度が重力倍数の変化率で0.5〜30G/sとなるように、制御する。ここで、遠心力の増減速度とは、単位時間あたりの遠心力の変化量をいう。
【0013】
また、本発明では、鋳型の回転数の変動幅を、鋳型回転数が最大のときの前記遠心力と鋳型回転数が最小のときの前記遠心力の差で定義される「対応遠心力差」が3〜50Gとなるように、制御する(G:遠心力の重力倍数)。
【発明の効果】
【0014】
本発明によれば、鋳込み管理規制を緩和したより安定的な操業条件下でラミネーション偏析のほとんどない遠心鋳造製品を生産できるようになるという優れた効果を奏する。
【発明を実施するための最良の形態】
【0015】
一定鋳型回転速度で遠心鋳造する従来の横型あるいは斜め型遠心鋳造法では、重力(IG)の影響で固液共存領域に剪断力が作用してラミネーション偏析等の粗大な組織偏析が不可避的に生成する。これに対し、本発明では、図1に示すように鋳込み中に軸心Oを中心として回転する鋳型4の回転数nを強制的に変動させるようにした。これにより、鋳込み材に負荷される遠心力Gnを変動させるとともに、鋳込み材に剪断力Gvを連続的あるいは断続的に付与する(Gv≠0)ことができ、したがって、任意に固液共存相の剪断作用と未凝固領域の攪拌作用を付与することができ、それゆえに組織偏析の分散と偏析成分の攪拌均一化を有効に促進できるのである。
【0016】
鋳型の回転数の変動パターンは特に限定されるものではなく、例えば、振幅、周期とも一定として連続的に変動させるパターン(図2(A))、振幅、周期のいずれか一方または両方を変化させながら連続的に変動させるパターン(図2(B))、断続的に変動させるパターン(図2(C))など、遠心力Gnの変動あるいは剪断力Gvを付与できるものであればいかなるパターンであってもよい。
【0017】
本発明では、鋳型の回転数の増減速度(増加速度、減少速度のいずれか一方または両方。以下同じ)を、鋳込み材の外表面に負荷される遠心力(重力倍数で表す。以下同じ)の増減速度が0.5〜30G/sとなるように、制御する。前記遠心力の増減速度が0.5G/s未満では、重力によるラミネーション偏析形成作用に打ち勝つ効果を得難く、一方、30G/s超えにすると設備のパワーを相当大きなものにする必要があり、効果の割りには経済的でない。さらに十分な効果を得るには前記遠心力の増減速度は1G/s以上とするのがより好ましい。
【0018】
また、攪拌作用を十分なものとするには、鋳型の回転数の変動幅を、鋳型回転数が最大のときの前記遠心力と鋳型回転数が最小のときの前記遠心力の差で定義される対応遠心力差が3〜50Gとなるように、制御する。対応遠心力差が3G未満では攪拌力が不足気味となって不均一な組織が出現しやすくなり、一方50Gを超えても攪拌の効果が飽和する。
【0019】
本発明では、凝固過程での固液共存領域に剪断力を付与することで攪拌均一化が叶って偏析防止および組織微細化を達成できるので、これらを目的とした鋳込み速度や鋳込み温度の厳密な管理は不要であり、操業をより安定化させることができる。
【0020】
なお、本発明は、鋳込まれる金属材料の種類によって限定されるものではないが、なかでもとくにラミネーション偏析による悪影響が問題となる圧延用ロール外殻層の材料として使用されているハイス鋼、NiG鋳鉄、高Cr鋳鉄、高Cr鋳鋼、アダマイト鋼、および各種高合金鋼に適用すればその効果が一段と顕著であるので、これらの材料種に適用することが好ましい。また、遠心鋳造鋳鉄管の鋳造にも応用できる。
【実施例】
【0021】
(実施例1)
表1に示す組成の材料A〜C(Tc=1250〜1350℃;材料Dも同じ)を溶解してなる溶湯を、鋳込み温度1520℃±30℃で横型遠心鋳造機の鋳型に供給し、外径250mm、内径150mmのスリーブロールを鋳造した。なお鋳込み速度は特に管理しなかった(実績では1〜10kg/sであった)。鋳込み中、材料Aでは本発明に従い、図4に示すように鋳型の回転数nを変動範囲950〜900rpm、周期6sで連続的に変動させて実施例1とした。このとき、スリーブロール表面の遠心力はn=950rpmのとき126G、n=900rpmのとき113Gであることから、遠心力の増減速度は平均約4.3G/sである。一方、材料B、Cでは従来通りn=950rpm(一定)とし比較例とした。比較例では当然ながら遠心力の増減はない。
【0022】
鋳造後、スリーブロール断面(ロール軸に直交する断面)を研磨後硝酸水溶液でエッチングして現出させたマクロ組織を観察し、実施例1では比較例に比べてラミネーション偏析が著しく抑制されていることを確認した。
【0023】
(実施例2)
実施例2としては、ロール胴部の外径φ710mm、胴長2050mm、全長5800mmの圧延用複合ロールを以下のような工程で製造した。
斜め型遠心鋳造機の鋳型の回転数nを本発明に従い変動範囲600〜560rpmとして図2(C)のパターンで断続的に変動させながら、鋳型内に表1に示す組成の材料Dを溶解してなる溶湯を、鋳込み温度1500℃±20℃で遠心鋳造し、肉厚70mmのロール外殻層を製造した。回転数nの増減速度は最大3rpm/sとした。このときロール外殻層表面の遠心力は、n=600rpmのとき143G、n=560rpmのとき125Gであり、遠心力の増減速度は最大1.35G/sである。また増減速の休止時間は6秒以下に設定した。なお、鋳込み速度は特に管理しなかった(実績ではおよそ140〜160kg/sであった)。
【0024】
外殻層を鋳込んだ18分後に中間層として肉厚40mmに相当する量の黒鉛鋼を1490℃で鋳込んだ。その後、鋳型を垂直に立て、上方から内層材(軸材)として球状黒鉛鋳鉄を1400℃で鋳込んで最終製品とした。
【0025】
製品の外殻層からサンプルを切り出し、ロール軸に直交する断面を研磨後硝酸水溶液でエッチングして現出させたマクロ組織を観察し、ラミネーション偏析がほとんどないことを確認した。
【0026】
したがって、本発明により、ラミネーション偏析のほとんどない遠心鋳造製品、たとえば、鋳物、ロール、鋳鉄管などを生産可能である。
【0027】
【表1】

Figure 0004010114
【0028】
【表2】
Figure 0004010114

【図面の簡単な説明】
【0029】
【図1】本発明の遠心鋳造方法の説明図である。
【図2】鋳型の回転数変更パターンの例を示す波形図である。
【図3】ラミネーション偏析の形態例を示す模式図である。
【図4】実施例1の鋳型回転数変更パターンを示す波形図である。
【符号の説明】
1 ロール外殻層
2 基地濃化層
3 炭化物濃化層
4 鋳型
遠心力Gn=rω2/g(G)、せん断力Gv=r(dw/dt)/g(G)、
回転数n=(ω/2π)x60(rpm)
r:半径(m)、ω:角速度(rad/s)、g:重力加速度(9.8m/s2)【Technical field】
[0001]
The present invention relates to a centrifugal casting method, and more particularly, to a centrifugal casting method that does not cause uneven structure such as lamination segregation in a centrifugal cast product.
[Background]
[0002]
For example, in a roll for steel rolling, the roll outer shell layer (cylindrical portion in contact with the material to be rolled) is a so-called centrifugal cast metal that is cast into a mold that rotates around an axis from the viewpoint of manufacturing cost reduction and energy saving. It is advantageous to manufacture by a casting method.
In the conventional centrifugal casting method, from the basic idea that it is better to solidify as quietly as possible, it is customary to perform casting while maintaining the mold rotational speed to be constant and accurately and suppressing mold vibration so that external force does not act as much as possible. It was.
[0003]
Patent No. 2778896 discloses a molten metal (molten metal) supply temperature (casting temperature) in order to improve the roughness resistance and crack resistance by making the structure of the roll outer shell layer fine and uniform. Is disclosed in a centrifugal casting method in which the average lamination speed (casting speed) is controlled to 2 to 40 mm / min while maintaining the temperature in the temperature range from the primary crystal formation temperature Tc (° C.) to Tc + 90 (° C.). Even in the invention aiming at the homogenization of the structure of the roll outer shell layer, the rotational speed of the mold is set to a constant value so that the gravity multiple of the centrifugal force on the molten metal surface is 140 G in one example and 120 G in another example. ing.
[0004]
In the solidification process in centrifugal casting, band-shaped segregation (referred to as lamination segregation) forming a band-like or patchy layer in the radial direction of the mold is generated. For example, in a hot cast roll cast by centrifugal casting, as shown in FIG. 3, a dendrite (base) thickening portion (base thickening layer 2) and a hard carbide thickening portion ( Lamination segregation in the form of alternately stacked carbide concentrated layers 3) is formed. In many cases, about 2 to 6 of these concentrated layers are formed within a thickness of about 30 to 100 mm.
[0005]
Such lamination segregation appears as segregation patterns on the worn or polished surface of the roll outer shell layer that is ground several times according to wear during use in rolling, and rolls such as roll surface roughness resistance and crack resistance Degrading properties. In addition, if a roll with lamination segregation is used in the final stand of the finishing mill, the segregation pattern is transferred to the surface of the material to be rolled and lowers the surface quality of the rolled product. Cannot be used.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0006]
This lamination segregation was thought to be unavoidable by conventional centrifugal casting methods.
The above-mentioned Japanese Patent No. 2778896 discloses a method for making the cast structure fine and uniform. However, in this method, since the casting speed is remarkably low, a double-skin defect or spatter-like state is formed on the roll outer shell layer surface. The defect is likely to occur. Also, in addition to the very low casting speed, the casting temperature is low and the management range is also narrow (Tc to Tc + 90 (° C)), so it is difficult to ensure the fluidity of the molten metal. It is also difficult to operate.
[0007]
However, if lamination segregation can be eliminated, extremely excellent roll characteristics will be realized, and various effects such as reduction in manufacturing cost, increase in freedom of alloy design, improvement in rolled product quality, improvement in rolling productivity, reduction in rolling cost, etc. There is expected.
Then, an object of this invention is to provide the centrifugal casting method which can eliminate lamination segregation.
[Means for Solving the Problems]
[0008]
In general, when metal materials are manufactured by centrifugal casting, dendrites or carbides crystallized in the molten metal during the solidification process are centrifuged due to the specific gravity difference from the molten metal (the heavier phase than the molten metal is on the outer side, and the lighter phase is on the central side). Moving). On the other hand, lamination segregation has a form in which dendrite concentrated layers and carbide concentrated layers are alternately overlapped to form a band shape. The formation of band-like segregation is thought to be due to the shear flow at the solid-liquid interface (solid-liquid coexisting phase) during the solidification process in centrifugal casting, and Onaka et al. No. 3 pp. 240-246) reports that gravity affects the occurrence of band-like segregation in horizontal centrifugal casting. According to this concept, it is difficult to avoid lamination segregation as long as horizontal or oblique centrifugal casting in which gravity acts in the direction of mold rotation is performed, as is actually experienced. In the conventional centrifugal casting, as described above, from the basic idea that vibration and shearing force are not applied to the molten metal as much as possible, there is an operation that increases the rigidity of the casting machine and the foundation and controls the mold rotation speed as constant as possible. However, lamination segregation could not be avoided.
[0009]
In view of the fact that lamination segregation cannot be eliminated by the conventional basic idea, the present inventors will positively give the molten metal an acceleration in the rotational direction, contrary to the conventional case, if lamination segregation is generated under the influence of gravity. For example, it was thought that an arbitrary number of band-shaped segregations could be generated by the shear force generated there. Based on the idea of reversal, we have intensively studied the method of suppressing lamination segregation. As a result, the mold rotation speed is changed continuously or intermittently, and acceleration is applied in the mold rotation direction to generate countless band-like segregation. In principle, it was possible to generate a large number of band-shaped segregations, and a macroscopically uniform structure was obtained, and there was no problem in practical use. Also, if the mold rotation speed is forcibly changed during the solidification process of the cast product, the solid phase coexisting phase and the unsolidified region will be agitated.
Reduces component segregation and refines the structure.
[0010]
The present invention has been made on the basis of this finding, and the gist of the present invention is that when the molten metal is cast into a mold that rotates about its axis, the rotational speed of the mold is set between the start of casting and the completion of solidification. The centrifugal casting method is characterized in that it is forcibly varied (including those applied during solidification after casting).
[0011]
That is, according to the present invention, the centrifugal force applied to the casting material (casting material) is changed continuously or intermittently by forcibly changing the rotational speed of the mold in centrifugal casting, and acceleration is applied in the mold rotation direction. Therefore, it is a centrifugal casting method of the mold rotation speed variation type that controls the solidification segregation by continuously or intermittently flowing the liquid phase region from the solid-liquid interface in the solidification progress process, and in addition to the segregation dispersing action, By stirring the unsolidified region, lamination segregation carbide segregation, component segregation and the like are suppressed.
[0012]
In the present invention, the rotational speed of the mold, such increase or decrease the speed of the centrifugal force exerted on the outer surface of the cast material is 0.5 to 30 g / s for a change rate of gravity multiples, that control. Here, the speed of increase / decrease in centrifugal force refers to the amount of change in centrifugal force per unit time.
[0013]
Further, in the present invention, the fluctuation range of the rotational speed of the mold is defined as “corresponding centrifugal force difference” defined by the difference between the centrifugal force when the mold rotational speed is maximum and the centrifugal force when the mold rotational speed is minimum. There as will be 3 to 50 g, that controls (G: gravitational multiple of centrifugal force).
【The invention's effect】
[0014]
According to the present invention, it is possible to produce a centrifugal cast product having almost no lamination segregation under a more stable operation condition with relaxed casting management regulations.
BEST MODE FOR CARRYING OUT THE INVENTION
[0015]
In the conventional horizontal or oblique centrifugal casting method in which centrifugal casting is performed at a constant mold rotation speed, shear force acts on the solid-liquid coexistence region due to the influence of gravity (IG), and coarse structure segregation such as lamination segregation is inevitably generated. To do. On the other hand, in the present invention, as shown in FIG. 1, the rotational speed n of the mold 4 that rotates about the axis O is forcedly changed during casting. As a result, the centrifugal force Gn applied to the casting material can be varied, and a shearing force Gv can be continuously or intermittently applied to the casting material (Gv ≠ 0). The shearing action and the stirring action in the unsolidified region can be imparted, and therefore, the dispersion of the segregation of the structure and the uniform stirring of the segregation component can be effectively promoted.
[0016]
The variation pattern of the rotation speed of the mold is not particularly limited. For example, a pattern in which both the amplitude and the period are continuously varied (FIG. 2A), one or both of the amplitude and the period are changed. However, any pattern can be used as long as it can provide a change in centrifugal force Gn or a shearing force Gv, such as a continuously changing pattern (FIG. 2B) and an intermittently changing pattern (FIG. 2C). May be.
[0017]
In the present invention, the speed of increase / decrease in the number of rotations of the mold (either or both of the increase speed and the decrease speed; the same applies hereinafter) is the centrifugal force applied to the outer surface of the casting (represented by the multiple of gravity; the same applies hereinafter). as increase or decrease speed is 0.5 to 30 g / s, that control. If the increase / decrease speed of the centrifugal force is less than 0.5 G / s, it will be difficult to achieve the effect of overcoming the lamination segregation due to gravity. On the other hand, if it exceeds 30 G / s, it will be necessary to increase the power of the equipment considerably. It is not economical. In order to obtain a further sufficient effect, the increase / decrease speed of the centrifugal force is more preferably 1 G / s or more.
[0018]
In addition, in order to achieve a sufficient stirring action, the fluctuation range of the rotational speed of the mold is defined by the difference between the centrifugal force when the mold rotational speed is maximum and the centrifugal force when the mold rotational speed is minimum. that as the corresponding centrifugal force difference is 3 to 50 g, that control. If the corresponding centrifugal force difference is less than 3G, the stirring force tends to be insufficient, and a non-uniform structure tends to appear. On the other hand, even if it exceeds 50G, the stirring effect is saturated.
[0019]
In the present invention, by applying a shear force to the solid-liquid coexistence region in the solidification process, uniform stirring can be achieved and segregation prevention and microstructure refinement can be achieved. Therefore, the casting speed and casting temperature for these purposes are strictly limited. Management is unnecessary, and the operation can be more stabilized.
[0020]
Note that the present invention is not limited by the type of metal material to be cast, but in particular, high-speed steel, NiG, which is used as a material for the roll outer shell layer for rolling, which is particularly problematic due to the segregation of lamination. When applied to cast iron, high Cr cast iron, high Cr cast steel, adamite steel, and various high alloy steels, the effect is more remarkable, so it is preferable to apply to these material types. It can also be applied to the casting of centrifugal cast iron pipes.
【Example】
[0021]
Example 1
A melt obtained by melting materials A to C (Tc = 1250 to 1350 ° C .; material D is the same) having the composition shown in Table 1 is supplied to the mold of a horizontal centrifugal casting machine at a casting temperature of 1520 ° C. ± 30 ° C. A sleeve roll having a diameter of 250 mm and an inner diameter of 150 mm was cast. The casting speed was not particularly controlled (the actual result was 1 to 10 kg / s). During casting, according to the present invention, in the material A, as shown in FIG. 4, the mold rotation speed n was continuously varied in a variation range of 950 to 900 rpm and a period of 6 s to be Example 1. At this time, since the centrifugal force on the surface of the sleeve roll is 126 G when n = 950 rpm and 113 G when n = 900 rpm, the increase / decrease speed of the centrifugal force is about 4.3 G / s on average. On the other hand, in the materials B and C, n = 950 rpm (constant) was used as a comparative example as before. Of course, there is no increase or decrease in centrifugal force in the comparative example.
[0022]
After casting, the sleeve roll cross section (cross section perpendicular to the roll axis) is polished and then etched with a nitric acid aqueous solution to observe the macrostructure. In Example 1, lamination segregation is significantly suppressed as compared with the comparative example. It was confirmed.
[0023]
(Example 2)
As Example 2, a rolling composite roll having an outer diameter φ710 mm of the roll body, a body length of 2050 mm, and a total length of 5800 mm was manufactured by the following process.
The material D having the composition shown in Table 1 was dissolved in the mold while intermittently varying the rotational speed n of the mold of the oblique centrifugal casting machine in the pattern shown in FIG. The resulting molten metal was centrifugally cast at a casting temperature of 1500 ° C. ± 20 ° C. to produce a roll outer shell layer having a thickness of 70 mm. The increase / decrease speed of the rotation speed n was 3 rpm / s at the maximum. At this time, the centrifugal force on the roll outer shell layer surface is 143 G when n = 600 rpm and 125 G when n = 560 rpm, and the increase / decrease speed of the centrifugal force is 1.35 G / s at the maximum. The pause time for acceleration / deceleration was set to 6 seconds or less. The casting speed was not particularly controlled (actually, it was about 140 to 160 kg / s).
[0024]
18 minutes after casting the outer shell layer, an amount of graphite steel corresponding to a wall thickness of 40 mm was cast at 1490 ° C as an intermediate layer. Thereafter, the mold was set up vertically, and spheroidal graphite cast iron was cast at 1400 ° C. as an inner layer material (shaft material) from above to obtain a final product.
[0025]
A sample was cut out from the outer shell layer of the product, the cross section perpendicular to the roll axis was polished and then etched with an aqueous nitric acid solution to observe the macrostructure, and it was confirmed that there was almost no lamination segregation.
[0026]
Therefore, according to the present invention, it is possible to produce centrifugal cast products having almost no lamination segregation, such as castings, rolls, cast iron pipes and the like.
[0027]
[Table 1]
Figure 0004010114
[0028]
[Table 2]
Figure 0004010114

[Brief description of the drawings]
[0029]
FIG. 1 is an explanatory view of a centrifugal casting method of the present invention.
FIG. 2 is a waveform diagram showing an example of a mold rotation speed changing pattern.
FIG. 3 is a schematic view showing an example of lamination segregation.
4 is a waveform diagram showing a mold rotation speed change pattern of Example 1. FIG.
[Explanation of symbols]
1 Roll outer shell layer 2 Base concentrated layer 3 Carbide concentrated layer 4 Mold centrifugal force Gn = rω 2 / g (G), shearing force Gv = r (dw / dt) / g (G),
Rotational speed n = (ω / 2π) x60 (rpm)
r: radius (m), ω: angular velocity (rad / s), g: gravitational acceleration (9.8 m / s 2 )

Claims (2)

軸心を中心として回転する鋳型に溶融金属を鋳込むにあたり、鋳込み開始から凝固完了までの間に、鋳型の回転数を強制的に、鋳込み材の外表面に負荷される遠心力の増減速度が重力倍数の変化率で0.5〜30G/sとなるように、連続的あるいは断続的に複数回増加および減少を繰り返して変動するように、かつ前記鋳型の回転数の変動幅を、対応遠心力差が3〜 50 Gとなるように、制御することを特徴とする遠心鋳造方法。When casting molten metal into a mold that rotates around its axis, the speed of increase or decrease in the centrifugal force applied to the outer surface of the casting material is forced between the start of casting and the completion of solidification. The variation rate of the rotation speed of the mold is varied corresponding to the centrifugal force difference so that the rate of change of gravity is changed to 0.5 to 30 G / s by repeatedly increasing or decreasing continuously or intermittently. The centrifugal casting method is characterized in that control is performed so that the pressure becomes 3 to 50 G. 請求項1に記載の遠心鋳造方法を含む遠心鋳造製ロールの製造方法。A method for producing a centrifugal casting roll including the centrifugal casting method according to claim 1 .
JP2000599536A 1999-02-16 2000-02-15 Centrifugal casting method Expired - Fee Related JP4010114B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3675099 1999-02-16
JP35173299 1999-12-10
PCT/JP2000/000823 WO2000048766A1 (en) 1999-02-16 2000-02-15 Centrifugal casting method

Publications (1)

Publication Number Publication Date
JP4010114B2 true JP4010114B2 (en) 2007-11-21

Family

ID=26375841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000599536A Expired - Fee Related JP4010114B2 (en) 1999-02-16 2000-02-15 Centrifugal casting method

Country Status (3)

Country Link
JP (1) JP4010114B2 (en)
KR (1) KR100665767B1 (en)
WO (1) WO2000048766A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175410B1 (en) * 2009-10-29 2012-08-20 현대제철 주식회사 Manufacturing Method for a Rolling Sleeve Roll used for Centrifugal Casting of Horizontal type
EP2507170A1 (en) * 2009-12-01 2012-10-10 Dow Corning Corporation Rotational casting process
KR101400031B1 (en) * 2012-01-31 2014-05-27 현대제철 주식회사 Method for manufacturing rolling roll
JP6459375B2 (en) * 2014-10-15 2019-01-30 株式会社Ihi Centrifugal casting method of metal material
JP7158312B2 (en) * 2019-02-28 2022-10-21 Jfeスチール株式会社 Hot rolling roll outer layer material, hot rolling composite roll, and method for manufacturing hot rolling roll outer layer material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4324402Y1 (en) * 1965-01-04 1968-10-15
JPS5791861A (en) * 1980-11-28 1982-06-08 Kubota Ltd Production of centrifugally cast work roll
JPH0323046A (en) * 1989-06-20 1991-01-31 Daido Steel Co Ltd Centrifugal casting method and centrifugal casting apparatus used thereto
JPH0577019A (en) * 1991-07-23 1993-03-30 Kubota Corp Metallic mold centrifugal casting method
JPH07185766A (en) * 1993-12-28 1995-07-25 Kubota Corp Centrifugal casting method
JPH07276022A (en) * 1994-04-06 1995-10-24 Kubota Corp Centrifugal casting method

Also Published As

Publication number Publication date
KR100665767B1 (en) 2007-01-09
WO2000048766A1 (en) 2000-08-24
KR20010041200A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US4830084A (en) Spray casting of articles
JP6948556B2 (en) Manufacturing method of composite roll for hot rolling made by centrifugal casting
US5305522A (en) Method of producing a compound roll
JP4010114B2 (en) Centrifugal casting method
JP4254075B2 (en) Manufacturing method of hot rolling roll
JP2000239779A (en) External layer material for rolling roll made by centrifugal casting, rolling roll and production thereof
CN210730928U (en) Radial vibration centrifugal machine
CN110548851B (en) Radial vibration centrifugal casting method
JP5935109B1 (en) Centrifugal casting method
JPH01254363A (en) Production of roll for rolling
JP7158312B2 (en) Hot rolling roll outer layer material, hot rolling composite roll, and method for manufacturing hot rolling roll outer layer material
JPH05285620A (en) Apparatus for manufacturing centrifugal casting roll
JP3179245B2 (en) Method of manufacturing sendust foil strip
JPH01150460A (en) Casting method for composite roll
JP7406073B2 (en) Manufacturing method for titanium ingots
JP2004255422A (en) Apparatus and method for producing solid-liquid metallic slurry
JPH038536A (en) Method for continuously casting round billet
JP5181195B2 (en) Centrifugal casting method
JPH01249246A (en) Machine and method for continuously casting strip
JP2002178134A (en) Method for micronizing cast structure and micronizing device
JP2006095595A (en) Centrifugal casting method for composite roll
JPS6124105B2 (en)
JPH04167951A (en) Method and apparatus for continuously producing metallic strip from semi-solidified metal
JP4300160B2 (en) Continuous casting method and casting material, metal workpiece, and continuous casting apparatus
HONDA Investigation of properties of foundry pig irons and development of centrifugally cast rolling rolls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees