JPH0862181A - Method and apparatus for measurement of transformation rate - Google Patents

Method and apparatus for measurement of transformation rate

Info

Publication number
JPH0862181A
JPH0862181A JP19885894A JP19885894A JPH0862181A JP H0862181 A JPH0862181 A JP H0862181A JP 19885894 A JP19885894 A JP 19885894A JP 19885894 A JP19885894 A JP 19885894A JP H0862181 A JPH0862181 A JP H0862181A
Authority
JP
Japan
Prior art keywords
magnetic flux
transformation
magnetic
transformation rate
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19885894A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsufuji
泰大 松藤
Akio Nagamune
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19885894A priority Critical patent/JPH0862181A/en
Publication of JPH0862181A publication Critical patent/JPH0862181A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a transformation-rate measuring apparatus of a steel plate on the basis of the attenuation factor of a magnetic-flux density. CONSTITUTION: In the transformation-rate measuring apparatus, a magnetic-flux generation means 10 is arranged on one side of a steel plate 12 to be inspected, a magnetic-flux detection means 3 which detects a magnetic flux leaked when the magnetic flux is passed through the steel plate is arranged on the other side so as to sandwich the steel plate, and the transformation rate of the steel plate is measured by a processing unit 8 on the basis of a magnetic- flux density detected by the magnetic-flux detection means. Regarding the steel plate which has been selected, the plate thickness t1 of the steel plate, the attenuation factor Ya of the magnetic-flux density in the completion of a transformation and, in addition, a characteristic curve wherein the product μ.t of the permeability μ by the plate thickness (t) of the steel plate is expressed on the horizontal axis and the attenuation factor Y of the magnetic-flux density is expressed on the vertical axis are stored in advance in the processing unit. A value on the horizontal axis at a time when the vertical axis Y becomes Ya in the curve is designated as Xa, and a value Xb on the horizontal axis corresponding to Yb at a time when the vertical axis Y becomes the attenuation factor of a magnetic-flux density flund from the measured output of a transformation rate in the running operation of a steel plate in the same plate thickness t1 is found from the characteristic curve F so as to be computed by (Xb/Xa)×100%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば熱延後の鋼板の
変態率を電磁気によってオンラインで測定する変態率測
定方法及びその測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transformation rate measuring method and an apparatus for measuring the transformation rate of a steel sheet after hot rolling by electromagnetic means online.

【0002】[0002]

【従来の技術】製鉄所で製造される鋼材の各種機械的特
性や物理的特性に大きく影響を与える最終的な組織を常
に一定状態に維持することは、高い品質を維持するため
に、非常に重要な事柄である。例えば、磁気特性のうち
透磁率は、硬度、結晶粒度等の機械的特性に対して高い
相関関係を有している。このため、透磁率と機械的特性
(例えば靱性)との相関関係をあらかじめ測定しておけ
ば、透磁率の測定を行うことによって鋼板の機械的特性
をある程度推定することが可能である。また、製造工程
管理面においても、熱間鋼の熱処理過程で、鋼は高温状
態におけるオーステナイト(γ)相からフェライト
(α)相に変態するが、その変態時期や変態率を監視す
ることは、鋼板の材質を管理する上で極めて重要であ
り、オンラインで上述の変態率を計測するセンサの開発
が望まれている。
2. Description of the Related Art In order to maintain high quality, it is very important to maintain a constant final structure that greatly affects various mechanical properties and physical properties of steel products manufactured in steel mills. This is an important matter. For example, of the magnetic properties, the magnetic permeability has a high correlation with mechanical properties such as hardness and grain size. Therefore, if the correlation between magnetic permeability and mechanical properties (for example, toughness) is measured in advance, it is possible to estimate the mechanical properties of the steel sheet to some extent by measuring the magnetic permeability. Also in terms of manufacturing process control, during the heat treatment process of hot steel, the steel transforms from the austenite (γ) phase to the ferrite (α) phase at high temperature, but it is important to monitor the transformation timing and transformation rate. It is extremely important to control the material of the steel sheet, and it is desired to develop a sensor that measures the above transformation rate online.

【0003】この相変態の測定において、鋼のγ−α相
変態が非磁性(γ相)から強磁性(α相)への変化とい
う物理現象を伴うことを利用し、磁気検出器を用いて変
態挙動を検出する方法がある。この方法は、鋼はキュリ
ー点付近で磁気特性が大きく変化するが、一般の大部分
の商用鋼のキュリー点は750℃以上と高く、これに対
して、冷却過程の鋼のγ−α相変態はより低温で進行す
るので、それに伴う磁気的特性の変化を検出すればよい
ことになる。また、製造過程で実際に連続して流れてい
る鋼板に対して磁気的特性の測定を行うためには、非接
触でかつオンライン状態で、これらの測定を実施する必
要がある。
In measuring the phase transformation, the fact that the γ-α phase transformation of steel is accompanied by a physical phenomenon of changing from non-magnetic (γ phase) to ferromagnetism (α phase) is utilized by using a magnetic detector. There is a method of detecting transformation behavior. According to this method, the magnetic properties of steel largely change near the Curie point, but the Curie point of most commercial steels is as high as 750 ° C. or higher, whereas the γ-α phase transformation of the steel during the cooling process is high. Since it progresses at a lower temperature, it suffices to detect a change in the magnetic characteristics accompanying it. In addition, in order to measure the magnetic properties of a steel sheet that actually flows continuously during the manufacturing process, it is necessary to perform these measurements in a non-contact and online state.

【0004】従来、このような鋼板における磁気的特性
を非接触でかつオンライン状態で測定する場合、鋼板を
通過する磁束の減衰率が鋼板の磁気的特性により変化す
るという性質を利用する変態率測定装置が提唱されてお
り、一例として、特開昭56−82443号公報に開示
されたものがある。図3は該文献に開示された変態率測
定装置の一従来例を示す構成ブロック図である。図3に
おいて、検査対象の鋼板21の一方の面側(図では下面
側)に、所定距離dを隔てて、コ字状の鉄芯22と励
磁コイル23とからなり、前記コ字状の鉄芯22の端部
によって構成された一対の磁極24a、24bを有する
電磁石によって構成される磁化器24が、鋼板21に対
向して配置されている。すなわち、一対の磁極24a、
24bの端面が、所定距離dをもって鋼板21に正対
するように、磁化器24が鋼板21の近所に配設されて
いる。
Conventionally, when measuring the magnetic characteristics of such a steel sheet in a non-contact and on-line state, a transformation rate measurement utilizing the property that the attenuation rate of the magnetic flux passing through the steel sheet changes depending on the magnetic characteristics of the steel sheet. A device has been proposed, and one example is disclosed in Japanese Patent Laid-Open No. 56-82443. FIG. 3 is a configuration block diagram showing a conventional example of the transformation rate measuring device disclosed in the document. In FIG. 3, a steel plate 21 to be inspected is provided with a U-shaped iron core 22 and an exciting coil 23 on one surface side (the lower surface side in the drawing) of a predetermined distance d 1 and has the U-shaped shape. A magnetizer 24 constituted by an electromagnet having a pair of magnetic poles 24 a, 24 b constituted by the ends of the iron core 22 is arranged facing the steel plate 21. That is, the pair of magnetic poles 24a,
The magnetizer 24 is arranged in the vicinity of the steel plate 21 so that the end face of 24 b faces the steel plate 21 with a predetermined distance d 1 .

【0005】そして、磁化器24の励磁コイル23に励
磁電源25から励磁電流が供給されると、磁極24a、
24bの間に励磁電流に比例して磁束が発生する。この
磁束は鋼板21の内部を通過する磁束の他に外部に漏洩
する磁束29も存在し、この磁束29の一部は鋼板21
の他方の面側に(図では上側)距離dだけ離して配置
された磁気検出素子26によって検出される。その他、
鋼板21の表面温度は温度計27で測定され、この温度
測定信号は演算装置28へ伝送される。磁気検出素子2
6によって検出された磁束も演算装置28へ伝送され
る。また、鋼種及び板厚の情報も演算装置28へ伝送さ
れ、それぞれ補正演算される。図3に示す測定におい
て、鋼板21の変態率が変化すると、鋼板21の透磁率
等の磁気特性も変化する。そうなると、鋼板21の内部
を通過する磁束量が変化するため、磁気検出素子26に
よって検出される磁束密度も、それに応じて変わる。ま
た、鋼板21を一定方向へ移動させながら、磁気検出素
子26で鋼板21の反対側に漏れた磁束29の密度を連
続測定することにより、その磁束密度が大きく変化した
地点を鋼板の変態率の変化地点とみなすことができる。
When an exciting current is supplied from the exciting power supply 25 to the exciting coil 23 of the magnetizer 24, the magnetic poles 24a,
During 24b, magnetic flux is generated in proportion to the exciting current. In addition to the magnetic flux passing through the inside of the steel plate 21, this magnetic flux also has a magnetic flux 29 that leaks to the outside.
(In the figure above) of the other surface side is detected by the magnetic detecting element 26 which are spaced apart by a distance d 2. Other,
The surface temperature of the steel plate 21 is measured by the thermometer 27, and this temperature measurement signal is transmitted to the arithmetic unit 28. Magnetic detection element 2
The magnetic flux detected by 6 is also transmitted to the arithmetic unit 28. Further, the information on the steel type and the plate thickness is also transmitted to the arithmetic unit 28, and correction calculation is performed on each. In the measurement shown in FIG. 3, when the transformation rate of the steel sheet 21 changes, the magnetic characteristics such as the magnetic permeability of the steel sheet 21 also change. Then, since the amount of magnetic flux passing through the inside of the steel plate 21 changes, the magnetic flux density detected by the magnetic detection element 26 also changes accordingly. Further, by continuously measuring the density of the magnetic flux 29 leaked to the opposite side of the steel sheet 21 by the magnetic detection element 26 while moving the steel sheet 21 in a certain direction, the point where the magnetic flux density greatly changes is determined by the transformation rate of the steel sheet. It can be regarded as a change point.

【0006】[0006]

【発明が解決しようとする課題】上述のような従来の例
えば鋼板の変態率測定方法及びその測定装置は、鋼板の
変態進行に伴う透磁率変化を利用したものであり、さら
に、センサ出力を鋼種、板厚、鋼板温度により補正し熱
延ラインを走行する鋼板の変態率を変態開始から終了に
わたって定量的に測定する手段を提供したものとなって
いる。しかしながら、磁束の減衰量からの鋼板変態率の
具体的な算出法や、鋼種毎の板厚及び温度補正法につい
ては、一切明示されておらず、従って、上記の従来技術
に関する記述のみでは、高精度変態率測定方法乃至その
測定装置を構成するには、不十分であると言わざるを得
ない。
The above-mentioned conventional method for measuring the transformation rate of a steel sheet and its measuring apparatus, for example, utilize the change in the magnetic permeability as the transformation of the steel sheet progresses. The present invention provides a means for quantitatively measuring the transformation rate of a steel sheet traveling in a hot rolling line by correcting the sheet thickness and the steel sheet temperature from the start to the end of transformation. However, no specific calculation method of the steel plate transformation rate from the attenuation amount of the magnetic flux and the plate thickness and temperature correction method for each steel type are disclosed, and therefore, the description of the above-mentioned conventional technology is not enough. It cannot be said that this method is insufficient for constructing an accurate transformation rate measuring method or a measuring apparatus therefor.

【0007】本発明は上述のような問題点を解決するた
めになされたもので、磁束密度の減衰率からの鋼板の変
態率の算出法や、鋼種毎のセンサ出力の板厚補正及び温
度補正法の確立により、これらの補正法に基づく鋼板の
高精度変態率測定方法及びその測定装置を提供すること
を目的とするものである。
The present invention has been made to solve the above-mentioned problems, and it is a method of calculating the transformation rate of a steel sheet from the attenuation rate of the magnetic flux density, and the sheet thickness correction and temperature correction of the sensor output for each steel type. By establishing the method, it is an object of the present invention to provide a highly accurate transformation rate measuring method for a steel sheet and a measuring apparatus therefor based on these correction methods.

【0008】[0008]

【課題を解決するための手段】本発明に係る変態率測定
方法は、被検鋼板を挾んで、その一方の側に磁束を発生
させる磁束発生手段、他方の側に磁束が鋼板を貫き漏洩
する磁束を検出する磁束検出手段をそれぞれ設け、この
磁束検出手段で検出される磁束密度から鋼板の変態率を
測定する変態率測定装置を使用する変態率測定方法にお
いて、ある選定された鋼板について、あらかじめ鋼板の
板厚tと、変態完了時の磁束密度の減衰率Yaと、横
軸を鋼板の透磁率μと板厚tの積μ・tとし、縦軸を磁
束検出手段の磁気検出素子の位置における磁束密度の減
衰率Yとする特性曲線Fとを求めておき、この特性曲線
Fで縦軸YがYaとなるときの横軸の値をXaとし、縦
軸Yが特性曲線Fから同一鋼種の板厚tの鋼板が走行
する場合の変態率測定装置の出力から求められる磁束密
度の減衰率となるときのYb1 に対応する横軸の値Xb
1 を求め、変態率測定装置設置場所での鋼板変態率を
(Xb1 /Xa)×100%で算出・表示するものであ
る。この場合板厚tとは異なる板厚tの鋼板が走行
する場合のY軸が磁束密度の減衰率Ybn となるときの
横軸の値Xbn を求め、変態率測定装置設置場所での鋼
板変態率を{Xbn /(Xa×t/t)}×100
%で算出・表示することもできる。
According to the transformation rate measuring method of the present invention, a steel sheet to be tested is sandwiched between the magnetic flux generating means for generating a magnetic flux on one side, and the magnetic flux penetrates the steel sheet on the other side to leak. In the transformation rate measuring method using a transformation rate measuring device for measuring the transformation rate of the steel sheet from the magnetic flux density detected by the magnetic flux detecting means, the magnetic flux detecting means for detecting the magnetic flux is provided. The plate thickness t 1 of the steel plate, the attenuation factor Ya of the magnetic flux density at the completion of transformation, the horizontal axis represents the product μ · t of the magnetic permeability μ of the steel plate and the plate thickness t, and the vertical axis represents the magnetic detection element of the magnetic flux detection means. A characteristic curve F, which is the attenuation rate Y of the magnetic flux density at the position, is obtained, and the value of the horizontal axis when the vertical axis Y is Ya in the characteristic curve F is Xa, and the vertical axis Y is the same as the characteristic curve F. transformation rate when the steel plate of the steel grade of plate thickness t 1 is traveling Value Xb of the horizontal axis corresponding to Yb1 when the attenuation rate of the magnetic flux density obtained from the output of the constant device
1 is calculated, and the steel plate transformation rate at the transformation rate measuring device installation site is calculated and displayed as (Xb1 / Xa) * 100%. In this case, when a steel plate having a plate thickness t n different from the plate thickness t 1 travels, a value Xbn on the horizontal axis when the Y-axis becomes the attenuation rate Ybn of the magnetic flux density is obtained, and the steel plate at the transformation rate measuring device installation location is obtained. the transformation ratio {Xbn / (Xa × t n / t 1)} × 100
It can also be calculated and displayed as a percentage.

【0009】そして、本発明に係る変態率測定装置は、
被検鋼板を挾んで、その一方の側に磁束を発生させる磁
束発生手段、他方の側に磁束が鋼板を貫き漏洩する磁束
を検出する磁束検出手段をそれぞれ設け、この磁束検出
手段で検出される磁束密度に基づいて演算処理装置によ
り鋼板の変態率を測定する変態率測定装置において、あ
る選定された鋼板について、あらかじめ演算処理装置に
鋼板の板厚tと、変態完了時の磁束密度の減衰率Ya
と、さらに、横軸を鋼板の透磁率μと板厚tの積μ・t
とし、縦軸を磁束検出手段の磁気検出素子の位置におけ
る磁束密度の減衰率Yとする特性曲線Fとを格納してお
き、この特性曲線Fで縦軸YがYaとなるときの横軸の
値をXaとし、縦軸Yが特性曲線Fから同一鋼種の板厚
の鋼板が走行する場合の変態率測定装置出力から求
められる磁束密度の減衰率となるときのYbに対応する
横軸の値Xbを求め、変態率測定装置設置場所での鋼板
変態率を、(Xb/Xa)×100%で算出・表示する
ものである。ここで、板厚tとは異なる板厚tの鋼
板が走行する場合のY軸が磁束密度の減衰率Ybn とな
るときの横軸の値Xbn を求め、変態率測定装置設置場
所での鋼板変態率を{Xbn /(Xa×t/t)}
×100%で算出・表示することができる。
The transformation rate measuring device according to the present invention is
Magnetic flux generating means for generating magnetic flux on one side of the steel sheet to be inspected and magnetic flux detecting means for detecting magnetic flux leaking through the steel sheet on the other side are respectively provided and detected by this magnetic flux detecting means. In a transformation rate measuring device that measures a transformation rate of a steel sheet by a calculation processing device based on the magnetic flux density, a plate thickness t 1 of the steel sheet and a decay of the magnetic flux density at the completion of transformation are calculated in advance in the calculation processing device for a certain selected steel sheet. Rate Ya
And the horizontal axis is the product of the magnetic permeability μ of the steel plate and the plate thickness t μ · t
The characteristic curve F having the vertical axis as the attenuation rate Y of the magnetic flux density at the position of the magnetic detection element of the magnetic flux detecting means is stored, and the horizontal axis when the vertical axis Y is Ya in the characteristic curve F is stored. The value is Xa, and the horizontal axis corresponds to Yb when the vertical axis Y is the attenuation rate of the magnetic flux density obtained from the output of the transformation rate measuring device when the steel sheet of the same steel type and the plate thickness t 1 travels from the characteristic curve F. The value Xb is calculated and the steel plate transformation rate at the transformation rate measuring device installation location is calculated and displayed as (Xb / Xa) × 100%. Here, determine the abscissa value Xbn when Y axis when the steel different thickness t n is traveling is the attenuation factor Ybn of the magnetic flux density and the thickness t 1, in transformation rate measuring device location the steel sheet transformation ratio {Xbn / (Xa × t n / t 1)}
× 100% can be calculated and displayed.

【0010】そして、上述の変態率測定装置において、
変態率測定装置と同一構成からなる実験装置により、既
知の板厚を有する鋼板を加熱炉により変態点以下の温度
域まで加熱した後、冷却させながら変態完了後の磁束検
出手段の検出部の磁束密度減衰率の温度特性を測定した
データYa(T)を格納し、熱延後の冷却ゾーンの測定
点でオンライン測定する際に、データYa(T)にオン
ライン測定装置と同一個所で測定された鋼板温度T1を
入力し、得られた結果をその測定場所での変態完了時の
磁束密度減衰率Ya(T1)とすることにより、この値
と変態率測定装置の出力から得られる磁束密度減衰率と
から、測定点での鋼板変態率を導出することで鋼板温度
の補正をするようにしてもよい。また、今のべた変態率
測定装置において、熱延後の冷却ゾーンで変態率測定が
要求される鋼種に対しては、前記の実験装置による実験
を実施し、各々の結果を格納し、オンライン測定時には
走行する鋼板の鋼種を入力することにより、鋼種の補正
を行ってもよい。
In the above-mentioned transformation rate measuring device,
Using an experimental device consisting of the same structure as the transformation rate measuring device, after heating a steel plate having a known plate thickness to a temperature range below the transformation point by a heating furnace, while cooling it, the magnetic flux of the detection part of the magnetic flux detection means after the transformation is completed. Data Ya (T), which was obtained by measuring the temperature characteristics of the density decay rate, was stored, and when online measurement was performed at the measurement point in the cooling zone after hot rolling, the data Ya (T) was measured at the same location as the online measurement device. By inputting the steel sheet temperature T1 and setting the obtained result as the magnetic flux density attenuation rate Ya (T1) at the time of the transformation at the measurement location, the magnetic flux density attenuation rate obtained from this value and the output of the transformation rate measuring device Therefore, the steel plate temperature may be corrected by deriving the steel plate transformation rate at the measurement point. In addition, in the current solid transformation rate measuring device, for the steel types that require transformation rate measurement in the cooling zone after hot rolling, the experiment with the above-mentioned experimental device was conducted, each result was stored, and online measurement was performed. Sometimes, the steel type may be corrected by inputting the steel type of the traveling steel plate.

【0011】[0011]

【作用】ここで、センサ出力からの変態率算出方法及び
板厚、温度による変態率補正法について詳細に説明す
る。図2は、有限要素法を用いた磁場解析により、実機
モデル下で鋼板の変態進行のパラメータとしての比透磁
率μと鋼板の板厚tとの積μ・tを増加させたときの磁
束密度の減衰率を求めたシミュレーション線図である。
この図で示されるように、μとμ・tとの関係は1本の
曲線Fで近似される。図から分かるように、あらかじめ
100%変態時の磁束密度減衰率が得られれば、途中の
変態率はセンサ出力より求まる磁束密度減衰率から導出
することができる。例えば、図2において、変態率を求
めたいある板厚tの鋼種Aについて、100%変態時
の磁束密度減衰率Yaが既知であり、測定点での磁束密
度減衰率Ybが変態率センサから求まっているとする。
そうすると、これらYa、Ybから、これに対応する横
軸上の点Xa、Xbを読み取ることにより、これらのX
a、Xbから、変態率は(Xb/Xa)×100%で表
すことができる。
Now, the method of calculating the transformation rate from the sensor output and the method of correcting the transformation rate based on the plate thickness and temperature will be described in detail. FIG. 2 shows the magnetic flux density when the product μ · t of the relative permeability μ as a parameter of the transformation progress of the steel plate and the plate thickness t of the steel plate under the actual machine model is increased by the magnetic field analysis using the finite element method. It is a simulation diagram which calculated | required the attenuation rate of.
As shown in this figure, the relationship between μ and μ · t is approximated by a single curve F. As can be seen from the figure, if the magnetic flux density attenuation rate at 100% transformation is obtained in advance, the transformation rate in the middle can be derived from the magnetic flux density attenuation rate obtained from the sensor output. For example, in FIG. 2, the magnetic flux density attenuation rate Ya at the time of 100% transformation is known for the steel type A having a certain plate thickness t 1 whose transformation rate is to be determined, and the magnetic flux density attenuation rate Yb at the measurement point is calculated from the transformation rate sensor. Suppose that you have been asked.
Then, by reading the points Xa and Xb on the horizontal axis corresponding to these Ya and Yb, these X and
From a and Xb, the transformation rate can be expressed by (Xb / Xa) × 100%.

【0012】次に、同一鋼種Aにおいて、板厚tとは
異なる板厚が例えばtの鋼板については、板厚がt
の時のYaが既知であれば、Yaから求まるXaを(t
/t)倍したものを前記変態率の式の分母としてや
れば、途中の変態率が求められるので、板厚補正は容易
に実施できる。なお、図2に示す比透磁率と板厚との積
に依存する磁束密度の減衰率特性曲線Fは、実機モデル
下での有限要素法を用いた磁場解析により求める方法以
外に、実機を使ったオフライン実験において、寸法効果
が無視できるほど十分大きくて、鋼種及び材質が同じ、
すなわち透磁率が等しい常温サンプル材を重ねながら板
厚を増していき、板厚増加に対するセンサ出力変化を測
定することにより求めてもよい。
Next, in the same steel type A, for a steel plate having a plate thickness different from the plate thickness t 1 of , for example, t 2 , the plate thickness is t 1
If Ya at the time of is known, Xa obtained from Ya is calculated as (t
If the value obtained by multiplying by 2 / t 1 ) is used as the denominator of the transformation rate formula, the transformation rate in the middle can be obtained, and thus the plate thickness can be easily corrected. The attenuation rate characteristic curve F of the magnetic flux density depending on the product of the relative permeability and the plate thickness shown in FIG. 2 is obtained by using an actual machine in addition to the method obtained by the magnetic field analysis using the finite element method under the actual machine model. In offline experiments, the size effect is large enough to be ignored, the steel type and material are the same,
That is, it may be determined by increasing the plate thickness while stacking room temperature sample materials having the same magnetic permeability and measuring the sensor output change with respect to the plate thickness increase.

【0013】ところで、鋼板の変態終了後の透磁率は温
度特性を持っており(鉄鋼便覧、巻1、基礎[日本鉄鋼
協会:昭和56年6月20日発行]、322頁)、上述
の100%変態時の磁束密度減衰率Yaにも温度依存性
がある。すなわち、ある鋼種、板厚で変態率が100%
の鋼板に対して、例えば700℃で変態したものと、6
00℃で変態したものとでは、センサ出力が異なる。従
って、オフライン実験にて鋼板を加熱炉等を用いて一旦
加熱し、冷却しながらこの温度特性を求める必要があ
る。しかしながら、ここで注意すべき点は、変態点以上
まで加熱してしまうとそれから冷える過程においては、
実ラインでの圧延操作が加えられず、また冷却速度も異
なることから、熱延ラインで製造される鋼板の材質とは
違ったものとなり、それが変態率センサ出力に影響を与
えることである。従って、オフライン実験時の加熱及び
冷却の操作により、オンライン材の材質が損なわれない
ように、上記Ya(T)はサンプルを変態点以下の温度
域(730℃程度)まで加熱した後、センサ励磁コイル
間に取り出し、冷却しながら計測するのがよい。
By the way, the magnetic permeability of the steel sheet after the transformation has a temperature characteristic (Steel Manual, Vol. 1, Basic [The Iron and Steel Institute of Japan: June 20, 1981], page 322), and the above-mentioned 100. The magnetic flux density attenuation rate Ya at the time of% transformation also has temperature dependence. That is, the transformation rate is 100% for a certain steel type and plate thickness.
For example, the steel sheet of No. 6 was transformed at 700 ° C, and
The sensor output is different from that transformed at 00 ° C. Therefore, in the off-line experiment, it is necessary to heat the steel sheet once using a heating furnace or the like, and obtain the temperature characteristic while cooling. However, the point to be noted here is that in the process of cooling after heating above the transformation point,
Since the rolling operation in the actual line is not applied and the cooling rate is different, the material is different from the material of the steel sheet manufactured in the hot rolling line, which affects the transformation rate sensor output. Therefore, in order to prevent the material of the online material from being damaged by the heating and cooling operations during the offline experiment, the above Ya (T) heats the sample to a temperature range below the transformation point (about 730 ° C.) and then excites the sensor. It is better to take out between the coils and measure while cooling.

【0014】こうして採取された、板厚tが既知であ
る鋼種についての変態率100%時の磁束密度減衰率Y
a(T)は、同一鋼種のオンライン計測時の温度補正用
データとして格納される。そして、これに変態率測定装
置と同一個所に設置された例えば放射温度計の指示値T
1を入力し、オンライン材についてのその温度T1での
変態率100%時の磁束密度減衰率Ya(T1)が求め
られる。この値と、変態率センサ出力値とから、前述し
たような方法で、必要に応じて板厚補正がなされ、変態
率センサ設置場所での変態率が得られる以上の操作は、
変態率測定が必要とされる鋼種毎に実施され、このた
め、温度補正用データは必要鋼種分だけ格納され、また
オンライン計測時には流れる板の鋼種が入力されること
となる。
The magnetic flux density decay rate Y when the transformation rate is 100% for the steel type having the known plate thickness t 1 sampled in this manner
a (T) is stored as temperature correction data during online measurement of the same steel type. Then, for example, an indication value T of a radiation thermometer installed at the same place as the transformation rate measuring device
When 1 is input, the magnetic flux density attenuation rate Ya (T1) of the online material at the temperature T1 at the transformation rate of 100% is obtained. From this value and the transformation rate sensor output value, the plate thickness correction is performed as necessary by the method as described above, and the transformation rate at the transformation rate sensor installation location is obtained as described above.
The transformation rate measurement is performed for each required steel type, and therefore, the temperature correction data is stored only for the required steel type, and the steel type of the flowing plate is input during the online measurement.

【0015】[0015]

【実施例】図1は本発明による変態率測定測定装置の一
実施例を示す模式構成説明図である。図1において、1
2は被検体としての鋼板であり、また10は磁化器であ
り、鉄芯10aと励磁コイル10bとにより構成され、
励磁コイル10bは励磁電源13に接続されている。こ
の場合、磁化器10は、オンラインで走行する鋼板12
の下側に所定距離d1だけ離して設置される。なお、励
磁電源13は、周波数fで発振する低周波発振器14を
内蔵しており、励磁コイル10bをこの低周波数fの交
流電流を流して磁化器10を交番励磁している。また、
1は高周波電源、2は抵抗であり、3は磁化器10の漏
洩磁束を検出する磁気センサであり、センサコア3aと
これに券回する検出コイル3bとにより構成され、その
出力は磁気検出回路4に接続・送信される。磁気検出回
路4は磁気センサ3からの入力信号に基づき、検出磁束
密度に比例した電圧信号V2を出力し、ローパスフィル
タ5(以下LPFという)ハイパスフィルタ6(以下H
PFという)を通過した後、その出力V3をロックイン
アンプ7へ送信するようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic structural explanatory view showing one embodiment of a transformation rate measuring and measuring apparatus according to the present invention. In FIG. 1, 1
Reference numeral 2 is a steel plate as an object, 10 is a magnetizer, and is composed of an iron core 10a and an exciting coil 10b.
The exciting coil 10b is connected to the exciting power supply 13. In this case, the magnetizer 10 is a steel plate 12 that runs online.
It is installed on the lower side by a predetermined distance d1. The excitation power supply 13 has a built-in low frequency oscillator 14 that oscillates at a frequency f, and an alternating current of the low frequency f is passed through the excitation coil 10b to alternately excite the magnetizer 10. Also,
Reference numeral 1 is a high frequency power supply, 2 is a resistance, 3 is a magnetic sensor for detecting the leakage magnetic flux of the magnetizer 10, and is composed of a sensor core 3a and a detection coil 3b wound around the sensor core 3a, and its output is a magnetic detection circuit 4 Connected to and sent to. The magnetic detection circuit 4 outputs a voltage signal V2 proportional to the detected magnetic flux density based on an input signal from the magnetic sensor 3, and a low pass filter 5 (hereinafter referred to as LPF) high pass filter 6 (hereinafter referred to as HF).
After passing through PF), its output V3 is transmitted to the lock-in amplifier 7.

【0016】ここで、高周波電源1、抵抗2、磁気セン
サ3及び磁気検出回路4により構成される磁気測定装置
は、本出願人によって先に出願した特開平1−3089
82号公報の「磁気測定方法及び磁気測定装置」に開示
されている装置と同一のものを使用している。すなわ
ち、磁気センサ3は、強磁性材料で形成されたセンサコ
ア3aに検出コイル3bを巻いて構成され、この検出コ
イル3bには、高周波電源1から出力される定電圧信号
が抵抗2を介して供給されることにより、励磁電流が常
時流れている。そして、センサコア3aは、飽和域まで
励磁された状態になっている。また、磁気検出回路4
は、検出コイル3bの両端に、前記の高周波励磁電流に
基づき交互に発生する正電圧と負電圧をそれぞれ個別に
検波する正電圧検波器と負電圧検波器と、この2つの検
波器の出力電圧を加算してその差電圧を得る加算器によ
り構成されている。
Here, the magnetic measuring device composed of the high frequency power source 1, the resistor 2, the magnetic sensor 3 and the magnetic detecting circuit 4 is disclosed in Japanese Patent Application Laid-Open No. 1-3089 previously filed by the present applicant.
The same device as that disclosed in "Magnetic measuring method and magnetic measuring device" of Japanese Patent No. 82 is used. That is, the magnetic sensor 3 is configured by winding the detection coil 3b around the sensor core 3a made of a ferromagnetic material, and the constant voltage signal output from the high frequency power supply 1 is supplied to the detection coil 3b through the resistor 2. As a result, the exciting current is constantly flowing. The sensor core 3a is in a state of being excited up to the saturation region. In addition, the magnetic detection circuit 4
Is a positive voltage detector and a negative voltage detector which individually detect a positive voltage and a negative voltage, which are alternately generated based on the high frequency exciting current, at both ends of the detection coil 3b, and output voltages of these two detectors. Is added to obtain the difference voltage.

【0017】上述の構成において、いま飽和域まで励磁
された磁気センサ3の設置領域に磁束が全く存在しない
状態では、検出コイル3bの両端に交互に発生する正電
圧と負電圧の各波高値Vpと−Vnは等しくなってい
る。従って、この2つの波高値を検波した正負の直流電
圧を加算器で加算した出力は零となる。しかし、この状
態の時、磁気センサ3に外部磁束が加えられると、検出
コイル3bの両端に発生する正電圧と負電圧の波高値の
総和は変化しないが、正負の各波高値Vpと−Vnの値
に差が生ずる。従って、この2つの波高値を検波した正
負の直流電圧を加算器で加算してやれば、得られる差電
圧(Vp−Vn)がこの磁気センサ3に加えられた外部
磁束密度に対応した値になる。このようにして、走行す
る鋼板12から漏洩して磁気センサ3に印加された磁束
密度に対応した検出信号V2が順次磁気検出回路4から
出力される。なお、この磁気センサ3の検出信号に基づ
き磁気検出回路4から出力される検出信号V2の応答周
波数は、前述の発振器14の周波数fより十分高いもの
となっている。
In the above-mentioned configuration, in the state where there is no magnetic flux in the installation region of the magnetic sensor 3 which is excited to the saturation region, the peak value Vp of the positive voltage and the negative voltage alternately generated at both ends of the detection coil 3b. And -Vn are equal. Therefore, the output obtained by adding the positive and negative DC voltages obtained by detecting the two peak values by the adder becomes zero. However, in this state, when an external magnetic flux is applied to the magnetic sensor 3, the sum of the peak values of the positive voltage and the negative voltage generated at both ends of the detection coil 3b does not change, but the positive and negative peak values Vp and -Vn. There is a difference in the value of. Therefore, if positive and negative DC voltages obtained by detecting these two peak values are added by an adder, the obtained difference voltage (Vp-Vn) becomes a value corresponding to the external magnetic flux density applied to the magnetic sensor 3. In this way, the detection signal V2 corresponding to the magnetic flux density leaked from the traveling steel plate 12 and applied to the magnetic sensor 3 is sequentially output from the magnetic detection circuit 4. The response frequency of the detection signal V2 output from the magnetic detection circuit 4 based on the detection signal of the magnetic sensor 3 is sufficiently higher than the frequency f of the oscillator 14 described above.

【0018】磁気検出回路4の出力信号は、検出信号以
外のノイズ成分を除去するように、LPF5、HPF6
を通過後、ロックインアンプ7に入力される。また、低
周波発振器14の出力信号も同期信号としてロックイン
アンプ7に入力される。ロックインアンプ7は、同期検
波器と増幅器とを内蔵しており、磁気検出回路4からの
入力信号を低周波発振器14の出力信号によって同期検
波し、この検波信号を増幅した電気信号を出力する。そ
して、この出力信号の電圧値が検出部の磁束密度減衰率
に対応した値となり、演算処理装置8へ送信される。そ
して、演算処理装置8には、前述の鋼板透磁率μと板厚
tの積に依存する磁束密度の減衰特性曲線F(図2参
照)や、鋼種A,B,…毎の各磁束密度減衰率の温度特
性曲線Ya(T),Ya(T),…が格納されてい
る。そして、これらのパラメータを随時活用できるよう
になっているので、鋼種、板厚、ロックインアンプ出力
V4、放射温度計9による鋼板温度指示値11が入力さ
れることにより、最終的にセンサ設置場所の鋼板変態率
が出力されるようになっている。
The output signal of the magnetic detection circuit 4 is LPF5, HPF6 so as to remove noise components other than the detection signal.
After passing through, it is input to the lock-in amplifier 7. The output signal of the low frequency oscillator 14 is also input to the lock-in amplifier 7 as a synchronization signal. The lock-in amplifier 7 has a built-in synchronous detector and an amplifier, synchronously detects an input signal from the magnetic detection circuit 4 by an output signal of the low-frequency oscillator 14, and outputs an electric signal obtained by amplifying the detected signal. . Then, the voltage value of this output signal becomes a value corresponding to the magnetic flux density attenuation rate of the detection unit, and is transmitted to the arithmetic processing unit 8. Then, in the arithmetic processing unit 8, the attenuation characteristic curve F (see FIG. 2) of the magnetic flux density depending on the product of the above-mentioned steel plate permeability μ and the plate thickness t, and each magnetic flux density attenuation for each steel type A, B, ... The temperature characteristic curves Ya A (T), Ya B (T), ... Are stored. Since these parameters can be utilized as needed, the steel type, the plate thickness, the lock-in amplifier output V4, and the steel plate temperature instruction value 11 from the radiation thermometer 9 are input, so that the sensor installation location is finally reached. The steel plate transformation rate of is output.

【0019】以上のように、鋼板の変態率を磁束密度の
減衰率を求めて実施する測定方法乃至その装置におい
て、可飽和型の磁気センサ3を磁気検出器として使用す
ることにより、高感度の磁気センサが実現され、これを
使用することによって、センサ出力からの変態率算出法
及び板厚及び温度補正法が容易に行われるようになっ
た。そのため、鋼板12と磁気センサ3との距離d
1m以上離して計測することが可能となり、また、この
ように1m以上離すことにより、鋼板12のパスライン
変動の影響を除去することができるようになったため、
高いS/N比での鋼板の変態率計測が可能となった。
As described above, in the measuring method and apparatus for measuring the transformation rate of the steel sheet by determining the attenuation rate of the magnetic flux density, by using the saturable magnetic sensor 3 as a magnetic detector, high sensitivity is obtained. A magnetic sensor has been realized, and by using the magnetic sensor, a transformation rate calculation method from a sensor output and a plate thickness and temperature correction method have been easily performed. Therefore, the distance d 2 between the steel plate 12 and the magnetic sensor 3 can be measured with a distance of 1 m or more, and the influence of the pass line fluctuation of the steel plate 12 can be removed by separating with a distance of 1 m or more. Because,
It has become possible to measure the transformation rate of steel sheets with a high S / N ratio.

【0020】[0020]

【発明の効果】以上のように本発明によれば、被検鋼板
を挾んで、その一方の側に磁束を発生させる磁束発生手
段、他方の側に磁束が鋼板を貫き漏洩する磁束を検出す
る磁束検出手段をそれぞれ設け、この磁束検出手段で検
出される磁束密度に基づいて演算処理装置により鋼板の
変態率を測定する変態率測定において、鋼種毎に板厚が
既知の鋼板について、100%変態時の磁束密度の減衰
率に関して、板厚と透磁率の積に対する磁束密度の減衰
特性を、あらかじめオフライン的に実験して測定してお
くので、0〜100%までの途中の変態率はセンサ出力
より求まる磁束密度減衰率から容易に導出することがで
きるようになった。そして、この測定手法を応用して、
実際にオンライン測定をするに当たっては、熱延後の冷
却ゾーンを走行する板厚既知の鋼板に対して、センサ設
置場所での鋼板温度を入力した結果に得られた100%
変態時の磁束密度減衰率と、前述の磁束密度の減衰特性
曲線とから、変態率の温度補正及び板厚補正が可能とな
ったので、精度のよい鋼板の変態率測定が達成できる効
果が得られた。
As described above, according to the present invention, magnetic flux generating means for sandwiching a steel sheet to be tested to generate magnetic flux on one side thereof and detecting magnetic flux on the other side of the magnetic flux leaking through the steel sheet. In the transformation rate measurement in which each of the magnetic flux detection means is provided and the transformation rate of the steel sheet is measured by the arithmetic processing device based on the magnetic flux density detected by the magnetic flux detection means, 100% transformation is performed for the steel sheet whose plate thickness is known for each steel type. Regarding the attenuation rate of the magnetic flux density at that time, the attenuation characteristic of the magnetic flux density with respect to the product of the plate thickness and the magnetic permeability is experimentally measured off-line in advance, so the transformation rate in the middle of 0 to 100% is the sensor output. It has become possible to easily derive from the magnetic flux density attenuation rate that can be obtained more. And applying this measurement method,
In actual online measurement, 100% obtained as a result of inputting the steel plate temperature at the sensor installation place for the steel plate having a known plate thickness that runs in the cooling zone after hot rolling
From the magnetic flux density attenuation rate during transformation and the above-mentioned magnetic flux density attenuation characteristic curve, it is possible to correct the transformation rate with respect to temperature and the sheet thickness. Was given.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による変態率測定装置の一実施例を示す
構成説明図である。
FIG. 1 is a structural explanatory view showing an embodiment of a transformation rate measuring device according to the present invention.

【図2】本発明の変態率測定装置の動作原理を説明する
シミュレーション線図である。
FIG. 2 is a simulation diagram explaining the operating principle of the transformation rate measuring device of the present invention.

【図3】従来の変態率測定装置の模式構成説明図であ
る。
FIG. 3 is a schematic configuration explanatory view of a conventional transformation rate measuring device.

【符号の説明】[Explanation of symbols]

1 高周波電源 2 抵抗 3 磁気センサ 3a センサコア 3b 検出コイル 4 磁気検出回路 5 ローパスフィルタ(LPF) 6 ハイパスフィルタ(HPF) 7 ロックインアンプ 8,28 演算処理装置 9 放射温度計 10,24 磁化器 10a,22 鉄芯 10b,23 励磁コイル 11 温度計指示値 12,21 鋼板 13,25 励磁電源 14 低周波発振器 24a,24b 磁極 26 磁気検出素子 27 温度計 29 磁束 1 high-frequency power supply 2 resistance 3 magnetic sensor 3a sensor core 3b detection coil 4 magnetic detection circuit 5 low-pass filter (LPF) 6 high-pass filter (HPF) 7 lock-in amplifier 8, 28 arithmetic processing unit 9 radiation thermometer 10, 24 magnetizer 10a, 22 iron core 10b, 23 excitation coil 11 thermometer indication value 12, 21 steel plate 13, 25 excitation power supply 14 low frequency oscillator 24a, 24b magnetic pole 26 magnetic detection element 27 thermometer 29 magnetic flux

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検鋼板を挾んで、その一方の側に磁束
を発生させる磁束発生手段、他方の側に前記磁束が前記
鋼板を貫き漏洩する磁束を検出する磁束検出手段をそれ
ぞれ設け、この磁束検出手段で検出される磁束密度から
前記鋼板の変態率を測定する変態率測定装置を使用する
変態率測定方法において、 ある選定された鋼板について、あらかじめ前記鋼板の板
厚tと、 変態完了時の磁束密度の減衰率Yaと、 横軸を前記鋼板の透磁率μと前記板厚tの積μ・tと
し、縦軸を前記磁束検出手段の磁気検出素子の位置にお
ける磁束密度の減衰率Yとする特性曲線Fとを求めてお
き、 この特性曲線Fで縦軸Yが前記Yaとなるときの横軸の
値をXaとし、縦軸Yが前記特性曲線Fから同一鋼種の
前記板厚tの鋼板が走行する場合の前記変態率測定装
置の出力から求められる磁束密度の減衰率となるときの
Yb1 に対応する横軸の値Xb1 を求め、 前記変態率測定装置設置場所での鋼板変態率を(Xb1
/Xa)×100%で算出・表示することを特徴とする
変態率測定方法。
1. A magnetic flux generating means for sandwiching a steel sheet to be tested and generating a magnetic flux on one side thereof, and a magnetic flux detecting means for detecting a magnetic flux leaking through the steel sheet by the magnetic flux on the other side, respectively. In a transformation rate measuring method using a transformation rate measuring device for measuring the transformation rate of the steel sheet from the magnetic flux density detected by the magnetic flux detecting means, for a selected steel sheet, the sheet thickness t 1 of the steel sheet and completion of transformation Decay rate Ya of the magnetic flux density at that time, the horizontal axis is the product μ · t of the magnetic permeability μ of the steel sheet and the sheet thickness t, and the vertical axis is the decay rate of the magnetic flux density at the position of the magnetic detecting element of the magnetic flux detecting means. The characteristic curve F is defined as Y, and the value of the horizontal axis when the vertical axis Y of the characteristic curve F is Ya is Xa, and the vertical axis Y is the plate thickness of the same steel type from the characteristic curve F. the transformation in the case of steel sheet of t 1 is traveling Value Xb1 of horizontal axis corresponding to Yb1 when the attenuation rate of the magnetic flux density obtained from the output of the measuring device obtains, the steel transformation rate in the transformation rate measuring device location (Xb1
/ Xa) × 100%, which is calculated and displayed.
【請求項2】 前記板厚tとは異なる板厚tの鋼板
が走行する場合のY軸が磁束密度の減衰率Ybn となる
ときの横軸の値Xbn を求め、 前記変態率測定装置設置場所での鋼板変態率を{Xbn
/(Xa×t/t)}×100%で算出・表示する
ことを特徴とする請求項1記載の変態率測定方法。
2. A transformation rate measuring device for determining a value Xbn on the horizontal axis when the Y axis is the attenuation rate Ybn of the magnetic flux density when a steel sheet having a thickness t n different from the thickness t 1 is running. The steel plate transformation rate at the installation location is {Xbn
The transformation rate measuring method according to claim 1, wherein the transformation rate measuring method is calculated and displayed as / (Xa × t n / t 1 )} × 100%.
【請求項3】 被検鋼板を挾んで、その一方の側に磁束
を発生させる磁束発生手段、他方の側に前記磁束が前記
鋼板を貫き漏洩する磁束を検出する磁束検出手段をそれ
ぞれ設け、この磁束検出手段で検出される磁束密度に基
づいて演算処理装置により前記鋼板の変態率を測定する
変態率測定装置において、 ある選定された鋼板について、あらかじめ前記演算処理
装置に前記鋼板の板厚tと、 変態完了時の磁束密度の減衰率Yaと、 さらに、横軸を前記鋼板の透磁率μと前記板厚tの積μ
・tとし、縦軸を前記磁束検出手段の磁気検出素子の位
置における磁束密度の減衰率Yとする特性曲線Fとを格
納しておき、 この特性曲線Fで縦軸Yが前記Yaとなるときの横軸の
値をXaとし、縦軸Yが前記特性曲線Fから同一鋼種の
前記板厚tの鋼板が走行する場合の前記変態率測定装
置出力から求められる磁束密度の減衰率となるときのY
bに対応する横軸の値Xbを求め、 前記変態率測定装置設置場所での鋼板変態率を、(Xb
/Xa)×100%で算出・表示することを特徴とする
変態率測定装置。
3. A magnetic flux generating means for sandwiching the steel sheet to be tested and generating a magnetic flux on one side thereof, and a magnetic flux detecting means for detecting a magnetic flux leaking through the steel sheet by the magnetic flux on the other side, respectively. In a transformation rate measuring device for measuring a transformation rate of the steel sheet by an arithmetic processing device based on the magnetic flux density detected by the magnetic flux detecting means, for a certain selected steel sheet, the arithmetic processing device previously has a thickness t 1 of the steel sheet. And the attenuation rate Ya of the magnetic flux density at the completion of transformation, and the horizontal axis is the product μ of the magnetic permeability μ of the steel plate and the plate thickness t.
A characteristic curve F, where t is the vertical axis, and the vertical axis is the attenuation rate Y of the magnetic flux density at the position of the magnetic detection element of the magnetic flux detection means, and the vertical axis Y is the ya in the characteristic curve F. The value of the horizontal axis of X is Xa, and the vertical axis Y is the attenuation rate of the magnetic flux density obtained from the output of the transformation rate measuring device when a steel sheet of the same steel type with the sheet thickness t 1 travels from the characteristic curve F. Y
The value Xb on the horizontal axis corresponding to b is obtained, and the steel plate transformation rate at the transformation rate measuring device installation location is given by (Xb
/ Xa) × 100% for calculating and displaying the transformation rate measuring device.
【請求項4】 前記板厚tとは異なる板厚tの鋼板
が走行する場合のY軸が磁束密度の減衰率Ybn となる
ときの横軸の値Xbn を求め、 前記変態率測定装置設置場所での鋼板変態率を{Xbn
/(Xa×t/t)}×100%で算出・表示する
ことを特徴とする請求項1記載の変態率測定装置。
4. A transformation rate measuring device for obtaining a value Xbn on the horizontal axis when the Y axis is the attenuation rate Ybn of the magnetic flux density when a steel sheet having a thickness t n different from the thickness t 1 is running. The steel plate transformation rate at the installation location is {Xbn
The transformation rate measuring device according to claim 1, wherein the transformation rate measuring device is calculated and displayed as / (Xa × t n / t 1 )} × 100%.
【請求項5】 前記変態率測定装置と同一構成からなる
実験装置により、既知の板厚を有する鋼板を加熱炉によ
り変態点以下の温度域まで加熱した後、冷却させながら
変態完了後の前記磁束検出手段の検出部の磁束密度減衰
率の温度特性を測定したデータYa(T)を格納し、 熱延後の冷却ゾーンの測定点でオンライン測定する際
に、前記データYa(T)にオンライン測定装置と同一
個所で測定された鋼板温度T1を入力し、得られた結果
をその測定場所での変態完了時の磁束密度減衰率Ya
(T1)とすることにより、この値と前記変態率測定装
置の出力から得られる磁束密度減衰率とから、測定点で
の鋼板変態率を導出することを特徴とする請求項3又は
4記載の変態率測定装置。
5. An experimental apparatus having the same structure as the transformation rate measuring apparatus is used to heat a steel sheet having a known sheet thickness to a temperature range below the transformation point in a heating furnace, and then cool the magnetic flux after the transformation is completed. The data Ya (T) obtained by measuring the temperature characteristic of the magnetic flux density attenuation rate of the detection part of the detection means is stored, and when online measurement is performed at the measurement point of the cooling zone after hot rolling, the data Ya (T) is online measured. The steel plate temperature T1 measured at the same place as the device is input, and the obtained result is the magnetic flux density attenuation rate Ya at the time of completion of transformation at the measurement place.
The steel plate transformation rate at the measurement point is derived from this value and the magnetic flux density attenuation rate obtained from the output of the transformation rate measuring device by setting (T1). Transformation rate measuring device.
【請求項6】 熱延後の冷却ゾーンで変態率測定が要求
される鋼種に対しては、前記の実験装置による実験を実
施し、各々の結果を格納し、オンライン測定時には走行
する鋼板の前記鋼種を入力することにより、鋼種の補正
を行うことを特徴とする請求項3、4又は5記載の変態
率測定装置。
6. For steel grades for which transformation rate measurement is required in the cooling zone after hot rolling, experiments are conducted by the above-mentioned experimental apparatus, each result is stored, and during online measurement, the traveling steel sheet is tested. The transformation rate measuring device according to claim 3, wherein the steel type is corrected by inputting the steel type.
JP19885894A 1994-08-24 1994-08-24 Method and apparatus for measurement of transformation rate Pending JPH0862181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19885894A JPH0862181A (en) 1994-08-24 1994-08-24 Method and apparatus for measurement of transformation rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19885894A JPH0862181A (en) 1994-08-24 1994-08-24 Method and apparatus for measurement of transformation rate

Publications (1)

Publication Number Publication Date
JPH0862181A true JPH0862181A (en) 1996-03-08

Family

ID=16398093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19885894A Pending JPH0862181A (en) 1994-08-24 1994-08-24 Method and apparatus for measurement of transformation rate

Country Status (1)

Country Link
JP (1) JPH0862181A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1025588B1 (en) * 2018-06-01 2019-04-24 Centre De Recherches Metallurgiques Asbl - Centrum Voor Research In De Metallurgie Vzw DEVICE FOR ONLINE MEASUREMENT OF THE PERCENTAGE OF AUSTENITY IN STEELS
KR20210079551A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Apparatus and Method for Sensing Quality of Steel Plate Surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1025588B1 (en) * 2018-06-01 2019-04-24 Centre De Recherches Metallurgiques Asbl - Centrum Voor Research In De Metallurgie Vzw DEVICE FOR ONLINE MEASUREMENT OF THE PERCENTAGE OF AUSTENITY IN STEELS
WO2019228692A1 (en) 2018-06-01 2019-12-05 Centre De Recherches Metallurgiques Asbl - Centrum Voor Research In De Metallurgie Vzw Device for in-line measuring the percentage of austenite in steels
JP2021526655A (en) * 2018-06-01 2021-10-07 サントル・ドゥ・ルシェルシェ・メタリュルジク・アエスベエル−セントルム・フォール・リサーチ・イン・デ・メタルルージエ・フェーゼットヴェー Equipment for in-line measurement of the proportion of austenite in steel
US11215600B2 (en) 2018-06-01 2022-01-04 Centre de Recherches Metallurgiques ASBL—Centrum Voor Research in de Metallurgie VZW Device for the in-line measurement of the percentage of austenite in steels
KR20210079551A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Apparatus and Method for Sensing Quality of Steel Plate Surface

Similar Documents

Publication Publication Date Title
RU2593677C2 (en) Electromagnetic sensor and calibration thereof
EP0442693B1 (en) An electromagnetic conductivity meter and a conductivity measuring method
JP2005257701A (en) Method and apparatus for measuring material characteristics of magnetic substance material
JPH0466863A (en) Residual stress measuring method by steel working
JPS6325302B2 (en)
JPH0862181A (en) Method and apparatus for measurement of transformation rate
JPH07128295A (en) Method for measuring crystal grain size of steel plate
JPH0242402B2 (en)
JPH07190991A (en) Transformation rate-measuring method and device
JP3050042B2 (en) Transformation rate measuring device
JPH05281063A (en) Measuring device for tension of steel material
JPH11352109A (en) Device and method for inspecting eddy current
JP3948594B2 (en) Method for measuring Si concentration in steel
JP3755403B2 (en) Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material
CN114846323A (en) Apparatus and method for testing surface material of steel plate
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JPH06213872A (en) Method for measuring crystal grain diameter of steel plate
KR102553226B1 (en) Electro-magnetic Test Device
JPS62174651A (en) Method and device for deciding hardness of magnetic body
JPS6017350A (en) Method for measuring transformation rate of metal
JPH01269049A (en) Method of inspecting deterioration of metallic material
JPH03160361A (en) Transformation quantity measuring apparatus for steel material
JPH09166582A (en) Electromagnetic flaw detection method
JP2522732Y2 (en) Iron loss value measuring device
JP2000304725A (en) Method for measuring thickness of transformation layer of steel material