JPH03160361A - Transformation quantity measuring apparatus for steel material - Google Patents

Transformation quantity measuring apparatus for steel material

Info

Publication number
JPH03160361A
JPH03160361A JP29889289A JP29889289A JPH03160361A JP H03160361 A JPH03160361 A JP H03160361A JP 29889289 A JP29889289 A JP 29889289A JP 29889289 A JP29889289 A JP 29889289A JP H03160361 A JPH03160361 A JP H03160361A
Authority
JP
Japan
Prior art keywords
magnetic flux
transformation
steel material
coil
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29889289A
Other languages
Japanese (ja)
Inventor
Bonpei Wada
凡平 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29889289A priority Critical patent/JPH03160361A/en
Publication of JPH03160361A publication Critical patent/JPH03160361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To achieve easy and accurate measurement of a transformation value during and after a treatment by arranging any of a magnetic field generator and a magnetic flux detector to contain a coil for detecting excitation or a magnetic flux to arrange such a form of roll as to rotate in contact with a steel material to be measured. CONSTITUTION:A low frequency current is applied to an excitation coil 2b of an exciting roll 2 rotating in contact with an object 1 to be measured from an exciter 6 to generate a magnetic field. A component transmitted through the object 1 to be measured of magnetic fluxes generated from the coil 2b is detected by a detection coil 3b of a detection roll 3 rotating in contact with an opposite surface of the object 1 to be measured. A phase difference and an intensity of a magnetic flux taken into a phase difference detector 4 and a magnetic flux detector 5 are detected. Signals of the detectors 4 and 5 are inputted into a transformation value computing device 7 together with a thermometer 8 to calculate a transformation value. That is, a phase difference is determined primarily based on a frequency of the device 6 and a permeability and an average permeability of a steel material and the average permeability is determined based on a plate thickness and the transformation value, thereby enabling calculation of the transformation value depending on the phase difference, the average permeability, the plate thickness and the like.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、鋼材の熱間圧延ライン等において、走行す
る被処理鋼材の変態量をオンラインで精度良く測定する
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an apparatus for accurately measuring the amount of transformation of a running steel material on-line in a hot rolling line for steel materials or the like.

く従来技術とその課題〉 近年、圧延後の熱処理を必要としないで低温靭性の優れ
た高強度鋼板を製造することを可能とした“制御圧延”
の採用が一般化してきたが、この制御圧延の一形態とし
て、所謂“二相域圧延″が知られている。これは、〔オ
ーステナイト(γ)一フエライト(α)〕なる変態が生
じる比較的低温の゛〔γ+α〕二相域”下で圧延を行い
、この時のγとαの比率を調整して圧延後の鋼材の機械
的強度を制御する鋼材の製造手段である。
Conventional technology and its issues In recent years, “controlled rolling” has made it possible to produce high-strength steel sheets with excellent low-temperature toughness without the need for post-rolling heat treatment.
The so-called "two-phase region rolling" is known as one form of controlled rolling. This is achieved by rolling in a relatively low-temperature ``[γ+α] two-phase region'' where the transformation of ``austenite (γ) and ferrite (α)'' occurs, and by adjusting the ratio of γ and α at this time. This is a means of manufacturing steel materials that controls the mechanical strength of steel materials.

ところで、上記“二相域圧延”においては、圧延中のT
とαの比率が圧延後の鋼材の機械的強度に極めて著しい
影響を与えることから、所望強度鋼材を得るためには二
相域圧延時におけるγからαへの変B虱を精度良く検知
することが重要となる。
By the way, in the above-mentioned "two-phase region rolling", T during rolling is
Since the ratio of γ and α has a very significant effect on the mechanical strength of the steel after rolling, in order to obtain the desired strength steel, it is necessary to accurately detect the change from γ to α during rolling in the two-phase region. becomes important.

鋼材の変態量を検知する手段としては、「磁気変態点近
傍下のα相が一般に強磁性を示すのに対してγ相は非磁
性であり、この両者の比率変化に応じて鋼材の磁化率が
変化する」との現象を利用したものが従来から種々提案
されてきたが、その1つに、第3図(a)で示す如き“
オンラインにて鋼板の変態量を測定する装置(特開昭5
9−174749号)″がある。
As a means of detecting the amount of transformation in steel materials, ``the α phase below the magnetic transformation point generally exhibits ferromagnetism, whereas the γ phase is non-magnetic, and the magnetic susceptibility of the steel material is determined according to the change in the ratio of the two. Various methods have been proposed in the past that take advantage of the phenomenon of "changes in the
Device for measuring the amount of transformation of steel sheets online (Unexamined Japanese Patent Publication No. 5
9-174749)''.

この装置は、第3図(a)に示したように、熱間圧延直
前の調板1を非接触状態で挟んで、一方に磁界発生器1
2を、また他方に磁束検知器13をそれぞれ配設して構
威されており 〈符号l4で示されるのは磁束収束器で
ある)九磁界発生器12より発生し綱板1を透過して漏
洩する磁束の強度を磁束検知器13により検出し、この
値に基づいて鋼板1の変態量を検知するものである。
As shown in FIG. 3(a), this device holds a conditioning plate 1 immediately before hot rolling in a non-contact state, and a magnetic field generator 1 is placed on one side.
2, and a magnetic flux detector 13 on the other side. The intensity of the leaking magnetic flux is detected by the magnetic flux detector 13, and the amount of transformation of the steel plate 1 is detected based on this value.

しかしながら、上記提案になる変態量測定装置には次の
ような問題点があった。
However, the above-mentioned proposed transformation amount measuring device had the following problems.

即ち、一般に鋼板の圧延工程では被処理鋼板に曲がりが
発生するのが不可避であり、また搬送系の不備等も加わ
って磁界.発生器12及び磁束検知器13に対する鋼板
1の位置を一定に保つことは困難である。従って、磁界
発生器12と磁束検知器13に対する鋼板1の位置が一
定せず、そのため相互位置関係が第3図(a)の状態か
ら第3図(blに示す如き“鋼板1と磁界発生器12と
の距離が長くなる状態”もしばしば生じる。ところが、
このような鋼板位置の相対的変化が起きると磁界発生器
12から発生した磁束のうち鋼板1と磁界発生器12と
の間の空隙を通るものの比率が増大することとなり、銅
板1を透過して磁束検知器13で検出される漏洩磁束の
強さにも変化が生じて、同一変態量の鋼板を被測定材と
した場合でも検出誤差が出る結果となるのを如何ともし
難かった。
That is, in general, during the rolling process of steel plates, it is unavoidable that the steel plate to be processed is bent, and also due to defects in the conveyance system, etc., the magnetic field. It is difficult to keep the position of the steel plate 1 constant with respect to the generator 12 and the magnetic flux detector 13. Therefore, the position of the steel plate 1 with respect to the magnetic field generator 12 and the magnetic flux detector 13 is not constant, and therefore the mutual positional relationship changes from the state shown in FIG. 3(a) to the state shown in FIG. A situation in which the distance from 12 becomes longer often occurs.However,
When such a relative change in the position of the steel plate occurs, the proportion of magnetic flux generated from the magnetic field generator 12 that passes through the gap between the steel plate 1 and the magnetic field generator 12 increases, and the ratio of the magnetic flux passing through the copper plate 1 increases. The strength of the leakage magnetic flux detected by the magnetic flux detector 13 also changes, and it is difficult to prevent detection errors from occurring even when a steel plate having the same amount of transformation is used as the material to be measured.

そこで、磁束が鋼材を透過する際に強磁性のα相の量に
応じて位相に遅れが生じるとの現象に着目した本出願人
は、鋼材の変態量をオンラインにて正確に測定すべく、
先に、磁界を印加した鋼材からの漏洩磁束より上記“位
相の遅れ(tM材透過前の位相と鋼材透過後の位相のず
れ)“を非接触状態で検出し、これに基づいて変B量を
算出しようとの提案を行った(特開昭61−21094
2号)。
Therefore, the applicant focused on the phenomenon that when magnetic flux passes through a steel material, there is a phase delay depending on the amount of ferromagnetic α phase, and in order to accurately measure the amount of transformation of steel material online,
First, the above-mentioned "phase delay (difference between the phase before passing through the tM material and the phase after passing through the steel material)" is detected from the leakage magnetic flux from the steel material to which a magnetic field has been applied, and based on this, the amount of variation B is determined. (Japanese Unexamined Patent Publication No. 61-21094)
No. 2).

第4図は、上記本出願人の提案に係る“鋼材の変態量計
測装置”の要部概要図であり、磁界発生器12からの磁
束を直接検出する磁束検知器15と鋼Fi1を透過した
漏洩磁束を検出する磁束検知器l3との出力信号の位相
差を位相差検出器(図示せず)によって検出し、検出し
た位相差より変態量演算器(図示せず)によって鋼材の
変態量を算出するものである。そして、この変態量計測
装置によると、圧延工程における鯛材の曲がり発生や鋼
材搬送系の不備等にそれほど影響されることなくその変
態量をはり正確に検知できることが確認されている。
FIG. 4 is a schematic diagram of the main parts of the "device for measuring the amount of transformation of steel" proposed by the applicant, in which the magnetic flux detector 15 directly detects the magnetic flux from the magnetic field generator 12 and the magnetic flux that passes through the steel Fi1. A phase difference detector (not shown) detects the phase difference between the output signal and the magnetic flux detector l3 that detects leakage magnetic flux, and a transformation amount calculator (not shown) calculates the amount of transformation of the steel material based on the detected phase difference. It is calculated. It has been confirmed that this transformation amount measuring device can accurately detect the transformation amount without being affected by bending of the sea bream material during the rolling process or defects in the steel material conveyance system.

ところが、本発明者は、その後の数多くの実際作業を通
じて“本出願人の提案に係る上記鋼材変態量計測千段゜
”にも次のような不都合点のあることを認識するに至っ
た.つまり、上記手段では、“鋼板の曲がり発生”や“
鋼板端面部のそり発生”等によって磁束検知器に鋼板が
接触して該検知器を破壊するのを防ぐため第4図で示す
゛距離X”を十分にとる必要があるが、そのため“距離
X″が大きくなっても磁束検知器13からの明瞭な出力
信号が確保されるように“磁界発生器12からの発生磁
界”をより強力なものとする必要があった.しかも、こ
れは前記特開昭59−174749号に係る提案にも共
通するものであるが、変態量の算出値がどうしても磁束
測定部における“雰囲気の磁気特性”の影響を受けがち
となり、例えば圧延ラインでは圧延中のスケールの飛散
や水滴の飛散等により雰囲気の磁気特性が絶えず変化す
ることからその影響を受けてしまい、磁束検出値に検出
誤差を生じて変態量算出値が狂うと言った不都合も認め
られた. このようなことから、本発明の目的は、処理ラインを走
行中の鋼材(圧延中,圧延直前或いは圧延直後の鋼板等
)の変態量を測定雰囲気に影響されることなく、また磁
界発生器の出力を格別に高くする等の手立てを必要とす
ることもなく高精度で検出できる手段を確立することに
置かれた。
However, through numerous subsequent practical works, the present inventor came to realize that the ``1000-step method for measuring the amount of steel transformation proposed by the present applicant'' also had the following disadvantages. In other words, with the above means, "the occurrence of bending of the steel plate" and "
In order to prevent the steel plate from coming into contact with the magnetic flux detector and destroying the detector due to warping of the end face of the steel plate, etc., it is necessary to take a sufficient distance X as shown in Figure 4. It was necessary to make the ``magnetic field generated by the magnetic field generator 12'' stronger so that a clear output signal from the magnetic flux detector 13 could be ensured even if the ``magnetic field generated by the magnetic field generator 12'' became large. Moreover, although this is also common to the proposal related to JP-A No. 59-174749, the calculated value of the amount of transformation tends to be influenced by the "magnetic characteristics of the atmosphere" in the magnetic flux measuring section, for example, On the rolling line, the magnetic properties of the atmosphere constantly change due to the scattering of scales and water droplets during rolling, and this causes a detection error in the detected magnetic flux value, causing an inconvenience in the calculation of the amount of transformation. was also recognized. Therefore, it is an object of the present invention to measure the amount of transformation of steel materials running on a processing line (such as steel plates during rolling, just before rolling, or just after rolling) without being affected by the atmosphere, and to The aim was to establish a means of detecting with high precision without requiring measures such as increasing the output.

く課題を解決するための手段〉 本発明は、上記目的を達威すべく行われた様々な観点か
らの数多くの実験・研究の結果を基に完威されたもので
あり、その特徴とするところは「例えば前記特開昭59
−174749号や特開昭61−210942号として
提案された如き“磁界を印加した鋼材からの漏洩磁束に
基づいて該鋼材の変態量を測定する装置”において、磁
界発生器及び磁束検知器の何れをも、励磁コイル又は検
出コイルを内蔵して被測定鋼材と接触回転するロール形
態とした点」 にある。
Means for Solving the Problems> The present invention has been perfected based on the results of numerous experiments and studies conducted from various viewpoints in order to achieve the above objects, and its characteristics include: However, ``For example, the above-mentioned Japanese Patent Application Laid-Open No.
In the "apparatus for measuring the amount of transformation of a steel material based on the leakage magnetic flux from the steel material to which a magnetic field is applied" as proposed in No. 174749 and JP-A No. 61-210942, either a magnetic field generator or a magnetic flux detector is used. The invention also has the feature that it has a built-in excitation coil or detection coil and is in the form of a roll that rotates in contact with the steel material to be measured.

以下、本発明を実施例に基づいてより詳細に説明する。Hereinafter, the present invention will be explained in more detail based on examples.

第1図は、本発明に係る鋼材の変態量測定装置の一例を
示した概念図であり、被測定物(鋼板)1に磁界を印加
する励磁ロール2、被測定物(鋼板)1を透過した磁束
(漏洩磁束)を検知する検出ロール3、検出口−ル3内
の検出コイルの出力から位相差を検出する位相差検出器
4、検出口−ル3内の検出コイルの出力から漏洩磁束強
度を検出する磁束検出器5、励磁ロール2内の励磁コイ
ルを励磁する励磁装置6、温度計,磁束検出器,更には
位相差検出器の出力を基に変態量を求める変B量演算器
7、及び被測定物(鋼板)1の温度を検出する温度計8
を主要構戒装置としたものである。
FIG. 1 is a conceptual diagram showing an example of an apparatus for measuring the amount of transformation of steel according to the present invention. A detection roll 3 detects the magnetic flux (leakage magnetic flux), a phase difference detector 4 detects the phase difference from the output of the detection coil in the detection port 3, and a leakage magnetic flux is detected from the output of the detection coil in the detection port 3. A magnetic flux detector 5 that detects the intensity, an excitation device 6 that excites the excitation coil in the excitation roll 2, a thermometer, a magnetic flux detector, and a variable B amount calculator that calculates the amount of transformation based on the output of the phase difference detector. 7, and a thermometer 8 for detecting the temperature of the object to be measured (steel plate) 1
The main control device was

ここで、磁界発生器たる励磁ロール2及び磁束検知器た
る検出口−ル3は第2図で示す如くに構威されている。
Here, the excitation roll 2, which is a magnetic field generator, and the detection hole 3, which is a magnetic flux detector, are arranged as shown in FIG.

即ち、第2図における符号2a及び3aはそれぞれステ
ンレス鋼等の透磁率の低い材質で作られた励磁ロール本
体及び検出ロール本体であるが、励磁ロール2はこの励
磁ロール本体28内壁に密着させて励磁コイル2bを内
蔵し、検出ロール3は検出口−ル本体3a内壁に密着さ
せて検出コイル3bを内蔵している。つまり、励磁コイ
ル2b及び検出コイル3bは、従来のように鉄芯等に巻
付けられておらずに外側がロール本体2a. 3aで覆
われ、かつそれぞれロール本体2a, 3aと軸方向が
ーになる構造となっている。このため、励磁ロールたる
磁界発生器と検出口−ルたる磁束検知器とを被測定物(
鋼板)1と接触させ、接触式の漏洩磁束測定を行うこと
が可能となる。また、コイルがロールの内壁にロールと
同一の軸をもって取付けられることにより、例えば圧延
ワークロールの中に組み込んだ形態で変態率測定装置を
構或することも可能で、設置スペースのない圧延プロセ
スにおいても変態率測定が極めて容易となる。
That is, the symbols 2a and 3a in FIG. 2 are an excitation roll main body and a detection roll main body, respectively, which are made of a material with low magnetic permeability such as stainless steel. An excitation coil 2b is built-in, and the detection roll 3 has a detection coil 3b built-in in close contact with the inner wall of the detection port main body 3a. That is, the excitation coil 2b and the detection coil 3b are not wound around an iron core or the like as in the conventional case, but the outside is wound around the roll body 2a. 3a, and has a structure in which the roll bodies 2a and 3a are axially opposite to each other. For this reason, the magnetic field generator, which is the excitation roll, and the magnetic flux detector, which is the detection port, are connected to the object to be measured (
It is possible to perform contact-type leakage magnetic flux measurement by making contact with the steel plate) 1. In addition, by attaching the coil to the inner wall of the roll with the same axis as the roll, it is possible to construct a transformation rate measuring device, for example, by incorporating it into a rolling work roll, which is useful in rolling processes where there is no installation space. This also makes it extremely easy to measure the metamorphosis rate.

ロール本体に内蔵されるコイルの数は単数又は複数の何
れであっても良いが、コイル数か多いほど励磁能力又は
検出能力が上がるため、コイル長L(第2図参照)をで
きるだけ短くして多数個のコイルを内蔵させ検出精度の
向上を図るここが推奨される。
The number of coils built into the roll body may be either single or multiple, but the greater the number of coils, the higher the excitation ability or detection ability, so the coil length L (see Figure 2) should be as short as possible. It is recommended to incorporate a large number of coils to improve detection accuracy.

なお、前記各ロール本体の材質として透磁率の低いもの
を使用したのは、被測定物(鋼板)1を通る磁力線を多
くするためである。つまり、ロール本体の材質として透
磁率の低いものを選べば被測定物を通る磁力線が多くな
るため、被測定物の磁性の変化によって生じる“検出コ
イル3bに流れる電流の変化”が検出し易くなる訳であ
る。
The reason for using a material with low magnetic permeability as the material of each roll body is to increase the number of lines of magnetic force passing through the object to be measured (steel plate) 1. In other words, if a material with low magnetic permeability is selected for the roll body, more lines of magnetic force will pass through the object to be measured, making it easier to detect "changes in the current flowing through the detection coil 3b" caused by changes in the magnetism of the object to be measured. This is the translation.

温度計8は、鋼板の温度変化による誤差要因を除去する
ために取付けられたものであるが、各ロール本体や各コ
イルにもそれぞれの温度を検知する温度検知素子が取付
けられており、これらの温度が磁束検出器に取り込まれ
るようになっている。
The thermometer 8 was installed to eliminate error factors caused by temperature changes in the steel plate, but each roll body and each coil are also equipped with temperature detection elements that detect their respective temperatures. Temperature is captured by a magnetic flux detector.

これは、温度変化によるコイルの電気抵抗の変動及びロ
ールの誘電率,透磁率の変化を補正するためのものであ
る。
This is to correct changes in the electrical resistance of the coil and changes in the dielectric constant and magnetic permeability of the roll due to temperature changes.

ところで、励磁ロール2の励磁コイル2bに与える電流
は、検出コイル3b側に流れる電流を大きくするために
出来るだけ周波数の低い方が良い。従って、励磁装置6
としては励磁コイル2bを低周波数で励磁するものとす
べきである。
By the way, the frequency of the current applied to the excitation coil 2b of the excitation roll 2 is preferably as low as possible in order to increase the current flowing to the detection coil 3b side. Therefore, the excitation device 6
Therefore, the excitation coil 2b should be excited at a low frequency.

〈作用〉 第1図及び第2図で示した変態量測定装置にて鋼材の変
態量を測定するには、まず被測定物1に接触して回転す
る励磁ロール2の励磁コイル2bに励磁装置6より低周
波電流を与えて磁界を発生させる。
<Operation> In order to measure the amount of transformation of a steel material using the amount of transformation measuring device shown in FIGS. 6 to generate a magnetic field by applying a low frequency current.

励磁コイル2bから発生した磁束のうちの被測定物1を
透過した戊分は、同じく被測定物1の反対面に接触して
回転する検出口−ル3の検出コイル3bにより検出され
、位相差検出器4及び磁束検出器5に取り込まれて位相
差及び磁束強度の検出が行われる。
The part of the magnetic flux generated from the excitation coil 2b that passes through the object to be measured 1 is detected by the detection coil 3b of the detection ring 3, which also rotates in contact with the opposite surface of the object to be measured 1, and the phase difference is The signal is taken into the detector 4 and the magnetic flux detector 5, and the phase difference and magnetic flux intensity are detected.

そして、位相差検出器4,磁束検出器5がらの信号(磁
束検出器5からの信号には必要に応じて各ロールや各コ
イルの温度に関する要素も組み込まれる)、更には温度
計8からの信号に基づき、変態量演算器7が被測定物1
の変態量(率)精度良く算出する。
Then, the signals from the phase difference detector 4 and the magnetic flux detector 5 (the signal from the magnetic flux detector 5 also incorporates elements related to the temperature of each roll and each coil as necessary), and furthermore, the signals from the thermometer 8. Based on the signal, the transformation amount calculator 7
Calculate the amount (rate) of metamorphosis with high accuracy.

なお、前記位相差を基に鋼材の変態量が算出できる理由
は次の通りである。
The reason why the amount of transformation of the steel material can be calculated based on the phase difference is as follows.

即ち、位相差θが交流電流の周波数f.洞材の導電率σ
 (導電率は鋼材の化学組戒と表面温度によって定まる
)及び鋼材の平均透磁率?に基づいて一義的に決定され
ることは知られており、該位相差θは下記+1)式で表
わされる。
That is, the phase difference θ is the frequency f of the alternating current. Electrical conductivity σ of the hollow material
(The electrical conductivity is determined by the chemical composition and surface temperature of the steel material) and the average magnetic permeability of the steel material? It is known that the phase difference θ is uniquely determined based on the following equation +1).

θ=F(f,  σ,μ)   ・・・(1)また、平
均透磁率丁は鋼材の板厚Wと変態量ηとに基づいて定ま
り、式 μ=G(W,  η)      ・・・(2)にて表
わされる。
θ=F(f, σ, μ)...(1) Also, the average magnetic permeability is determined based on the steel plate thickness W and the amount of transformation η, and is expressed by the formula μ=G(W, η)... It is expressed as (2).

従って、θl  fl  σが分かると1が算出され、
その7値とW等とに基づいて変態量ηの算出が可能な訳
である。
Therefore, if θl fl σ is known, 1 is calculated,
This means that the amount of transformation η can be calculated based on the seven values and W, etc.

なお、この場合、先にも述べたように鋼材の温度変化に
よる誤差要因を除去するためには鋼材温度に関するデー
タをも考慮する必要があり、また温度変化によるコイル
の電気抵抗変動やロールの誘電率,透磁率変化を補正す
るためには各ロール及びコイルの温度に関するデータを
考慮すべきであることは言うまでもない。
In this case, as mentioned earlier, in order to eliminate error factors caused by temperature changes in the steel material, it is necessary to consider data regarding the temperature of the steel material, as well as changes in the electrical resistance of the coil due to temperature changes and the dielectric strength of the rolls. It goes without saying that data regarding the temperature of each roll and coil should be taken into account in order to correct for changes in magnetic flux and permeability.

一方、漏洩磁束強度を基に鋼材の変態量が算出できる理
由は次の通りである。
On the other hand, the reason why the amount of transformation of the steel material can be calculated based on the leakage magnetic flux intensity is as follows.

即ち、鋼材の変態量ηに対応して漏洩磁束強度rが変化
することは周知であるので、両者の関係に影響を及ぼす
鋼材の化学組成k,板形状d及び加工条件P毎に、漏洩
磁束強度rと変態量ηとの関係を温度tをパラメータと
して実験的に求めた関係曲線を準備しておけば、検出さ
れた漏洩磁束強度rに基づいて相応する関係曲線を選択
し、変態量ηを算出することが可能である。また、上記
関係曲線が鋼材の化学組成k,板形状d.加工条件P,
温度t及び漏洩磁束強度rの関係式η=f(r,  d
,  k,  t, P)  =(31で表わされてい
るときは、この関係式に基づき、漏洩磁束強度rから変
態量ηが算出できる訳である。
In other words, since it is well known that the leakage magnetic flux intensity r changes in accordance with the transformation amount η of the steel material, the leakage magnetic flux varies depending on the chemical composition k, plate shape d, and processing conditions P of the steel material that affect the relationship between the two. By preparing a relationship curve that experimentally determines the relationship between the strength r and the amount of transformation η using the temperature t as a parameter, the corresponding relationship curve can be selected based on the detected leakage magnetic flux strength r, and the amount of transformation η can be determined based on the detected leakage flux strength r. It is possible to calculate Also, the above relationship curve is the chemical composition k of the steel material, the plate shape d. Processing conditions P,
The relational expression between temperature t and leakage magnetic flux strength r is η=f(r, d
, k, t, P) = (31), the amount of transformation η can be calculated from the leakage magnetic flux intensity r based on this relational expression.

さて、上述の説明からも明らかではあるが、本発明は、
例えば前記特開昭59−174749号や特開昭61−
210942号として提案された如き“磁界を印加した
鋼材からの漏洩磁束に基づいて該鋼材の変態量を測定す
る装置”における磁界発生器及び磁束検知器を“励磁コ
イル又は検出コイルを内蔵して被測定物と接触回転する
ロール形態のもの”とした点を骨子としているが、これ
によって漏洩磁束の検出が“磁界発生器及び磁束検知器
と被測定物とを接触させた状態”で行うことが可能とな
り、従って、非接触で変態率の測定を行う従来技術に指
摘されていた「測定値が雰囲気の透磁率及び導電率の影
響を受ける」と言った問題や「発生磁界を強力なものに
しないと安定した測定がなされない」等の不都合を払拭
することができる。
Now, as is clear from the above explanation, the present invention
For example, the above-mentioned JP-A-59-174749 and JP-A-61-
No. 210942, the magnetic field generator and magnetic flux detector in the "device for measuring the amount of transformation of a steel material based on the leakage magnetic flux from the steel material to which a magnetic field is applied" are "equipped with an excitation coil or a detection coil. The main point is that the sensor is in the form of a roll that rotates in contact with the object to be measured, but this allows detection of leakage magnetic flux to be carried out with the magnetic field generator and magnetic flux detector in contact with the object to be measured. This makes it possible to solve the problem of ``measured values being affected by the magnetic permeability and conductivity of the atmosphere,'' which had been pointed out in conventional techniques that measure transformation rates without contact, and ``to make the generated magnetic field strong.'' It is possible to eliminate inconveniences such as "unless you do so, stable measurements cannot be made."

《効果の総括〉 以上に説明した如く、この発明によれば、磁束が鋼材を
透過する際に強磁性のα相によって生じる遅れや鋼材を
透過した漏洩磁束強度の検出を、圧延工程等による鋼材
の曲がりや先・後端部のそり上がり、更には雰囲気の変
化に影響されることなく、しかも比較的弱い印加磁界の
下で精度良く簡単に実施することが可能となり、鋼材処
理ラインにおける処理中及び処理後の鋼材の変態量測定
を容易かつ正確に行えるようになるなど、産業上極めて
有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, the delay caused by the ferromagnetic α phase when magnetic flux passes through the steel material and the detection of the leakage magnetic flux intensity that has passed through the steel material can be detected by It is not affected by bending, warping of the leading and trailing ends, or even changes in the atmosphere, and can be performed easily and accurately under a relatively weak applied magnetic field, making it possible to easily carry out the process with high accuracy during processing on the steel processing line. Also, extremely useful industrial effects are brought about, such as the ability to easily and accurately measure the amount of transformation of steel materials after treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る鋼材の変態量測定装置の一実施
例を示した概念図である。 第2図は、第1図における励磁ロール及び検出口−ルの
概略説明図である. 第3図は、従来の変態量測定装置の概略説明図であり、
第3図(a)は適正測定時の状況を、そして第3図山)
は不適正測定時の状況をそれぞれ表している。 第4図は、従来の変態量測定装置の別例に係る概略説明
図である。 図面において、 1・・・被測定物(鋼板), 2a・・・励磁ロール本体, 3・・・検出ロール, 3b・・・検出コイル, 5・・・磁束検出器,, 7・・・変態量演算器, 13. 15・・・磁束検知器, 2・・・励磁ロール, 2b・・・励磁コイル, 3a・・・検出ロール本体, 4・・・位相差検出器 6・・・励磁装置, 12・・・磁界発生器. 14・・・磁束収束器。
FIG. 1 is a conceptual diagram showing an embodiment of a steel transformation amount measuring device according to the present invention. FIG. 2 is a schematic explanatory diagram of the excitation roll and detection port in FIG. 1. FIG. 3 is a schematic explanatory diagram of a conventional transformation amount measuring device,
Figure 3(a) shows the situation during proper measurement, and Figure 3(a) shows the situation during proper measurement.
represents the situation at the time of inappropriate measurement. FIG. 4 is a schematic explanatory diagram of another example of the conventional transformation amount measuring device. In the drawings, 1... object to be measured (steel plate), 2a... excitation roll body, 3... detection roll, 3b... detection coil, 5... magnetic flux detector, 7... transformation Quantity calculator, 13. 15... Magnetic flux detector, 2... Excitation roll, 2b... Excitation coil, 3a... Detection roll body, 4... Phase difference detector 6... Excitation device, 12... Magnetic field Generator. 14...Magnetic flux concentrator.

Claims (1)

【特許請求の範囲】[Claims] 磁界を印加した鋼材からの漏洩磁束に基づいて該鋼材の
変態量を測定する装置において、磁界発生器及び磁束検
知器の何れをも、励磁又は磁束検出用コイルを内蔵して
被測定鋼材と接触回転するロール形態としたことを特徴
とする、鋼材の変態量測定装置。
In a device that measures the amount of transformation of a steel material based on leakage magnetic flux from the steel material to which a magnetic field is applied, both the magnetic field generator and the magnetic flux detector have a built-in excitation or magnetic flux detection coil and are in contact with the steel material to be measured. A device for measuring the amount of transformation of steel, characterized in that it is in the form of a rotating roll.
JP29889289A 1989-11-17 1989-11-17 Transformation quantity measuring apparatus for steel material Pending JPH03160361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29889289A JPH03160361A (en) 1989-11-17 1989-11-17 Transformation quantity measuring apparatus for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29889289A JPH03160361A (en) 1989-11-17 1989-11-17 Transformation quantity measuring apparatus for steel material

Publications (1)

Publication Number Publication Date
JPH03160361A true JPH03160361A (en) 1991-07-10

Family

ID=17865514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29889289A Pending JPH03160361A (en) 1989-11-17 1989-11-17 Transformation quantity measuring apparatus for steel material

Country Status (1)

Country Link
JP (1) JPH03160361A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220630A (en) * 2005-02-14 2006-08-24 Marktec Corp Probe for eddy current flaw detection
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
CN103499636A (en) * 2013-10-11 2014-01-08 中国科学院大学 Method for nondestructively testing micro-defects in sheet ferromagnetic materials based on measurement of magnetostatic force
CN108333032A (en) * 2018-03-14 2018-07-27 苏州热工研究院有限公司 A kind of magnetic NDT method method of ferritic transformation amount after austenitic stainless steel ion irradiation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
JP2006220630A (en) * 2005-02-14 2006-08-24 Marktec Corp Probe for eddy current flaw detection
JP4484723B2 (en) * 2005-02-14 2010-06-16 マークテック株式会社 Eddy current testing probe
CN103499636A (en) * 2013-10-11 2014-01-08 中国科学院大学 Method for nondestructively testing micro-defects in sheet ferromagnetic materials based on measurement of magnetostatic force
CN108333032A (en) * 2018-03-14 2018-07-27 苏州热工研究院有限公司 A kind of magnetic NDT method method of ferritic transformation amount after austenitic stainless steel ion irradiation

Similar Documents

Publication Publication Date Title
US10144987B2 (en) Sensors
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
US3936734A (en) Method for contactless measurement of conductivity and/or temperature on metals by means of eddy currents
US4686471A (en) System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
JP7343575B2 (en) Device for in-line measurement of the proportion of austenite in steel
JPH03255380A (en) Apparatus for measuring magnetic permeability
KR900006692B1 (en) Method of controlling of hot rolled steel sheet and system therefor
JPH03160361A (en) Transformation quantity measuring apparatus for steel material
KR100711471B1 (en) On-line transformation ratio determination device of hot rolled steel sheet
JP4192708B2 (en) Magnetic sensor
JPS59188508A (en) On-line detector for amount of transformation and flatness of steel material
JPH1068705A (en) Method and device for measuring transformation ratio of steel
JPH05281063A (en) Measuring device for tension of steel material
JP3755403B2 (en) Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JPS6153561A (en) Evaluator for low magnetic-permeability material
KR900005481B1 (en) On-line inspection instrument for aknomal quantities and flatness of iron matters
KR102553226B1 (en) Electro-magnetic Test Device
JPS6015020B2 (en) Electromagnetic induction detection device using orthogonal crossed magnetic fields
JPS61210942A (en) Device for measuring transformation quantity of steel
JPS6228604A (en) Noncontact type profile measuring instrument
JPH07198681A (en) Property measuring device for metal material
JPS63253253A (en) Method for measuring transformation rate of hot rolled steel plate
JPH0536484B2 (en)
JPS6370158A (en) Method and apparatus for measuring mechanical test value for material to be measured