JPS59188508A - On-line detector for amount of transformation and flatness of steel material - Google Patents

On-line detector for amount of transformation and flatness of steel material

Info

Publication number
JPS59188508A
JPS59188508A JP6414783A JP6414783A JPS59188508A JP S59188508 A JPS59188508 A JP S59188508A JP 6414783 A JP6414783 A JP 6414783A JP 6414783 A JP6414783 A JP 6414783A JP S59188508 A JPS59188508 A JP S59188508A
Authority
JP
Japan
Prior art keywords
detection
transformation
steel material
flatness
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6414783A
Other languages
Japanese (ja)
Other versions
JPH0242402B2 (en
Inventor
Masahiko Morita
正彦 森田
Osamu Hashimoto
修 橋本
Tomoo Tanaka
田中 智夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6414783A priority Critical patent/JPS59188508A/en
Publication of JPS59188508A publication Critical patent/JPS59188508A/en
Publication of JPH0242402B2 publication Critical patent/JPH0242402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • G01B7/345Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect the amount of transformation and flatness of a steel material by arranging an exciting coil on one side of the steel material to be measured and plural detection coils at different positions, and processing detection signals from the detection coils. CONSTITUTION:When the steel material is in gamma single phase, pieces 141 and 142 of magnetic flux interlinking with the detection coils 151 and 152 through the exciting coil 13 excited by an AC exciting device 12 are generated with intensities corresponding to distances l1 and l2 from the exciting coil 13 and voltages proportional to them are induced. When alpha-phase precipitation by transition from gamma to alpha occurs to the steel material, the steel material 1 varies in magnetic field intensity and the pieces 141 and 142 of magnetic flux vary in initial intensity, and the variations are detected as variations in induced voltages across the detection coils 151 and 152. Further, when lift-off (flatness) variation is caused, the induced voltages across the detection coils 151 and 152 vary. Detection signals 161 and 162 are transmitted to an arithmetic device 17 and processed to calculate the amount of tranformation and flatness in the steel material 1.

Description

【発明の詳細な説明】 本発明はw4材の変態量及び平坦性、又はそのいずれか
一方をオンラインで検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for online detection of the amount of transformation and/or flatness of W4 material.

鋼の強化方法には加工硬化、析出硬化、固溶強化、細粒
化強化及び変態組織強化等、種々あるが、近年、網製品
の製造コスト低減指向を背景とし、低い合金成分量の鋼
素材を用い、熱間圧延のままの状態でより高強度の!!
ii材を製造する手段として、熱延後の制御冷却による
変態@織強化技術の利用が従来以上に活性化しつつある
There are various methods of strengthening steel, such as work hardening, precipitation hardening, solid solution strengthening, grain refinement strengthening, and transformation structure strengthening. With this method, even higher strength can be achieved in the hot rolled state! !
As a means of manufacturing II materials, the use of transformation@weave strengthening technology through controlled cooling after hot rolling is becoming more active than ever.

ところで、変態組織強化技術を利用する場合、言うまで
もなく鋼の変態挙動について正確な知識が必要である。
By the way, when using transformation structure strengthening technology, it goes without saying that accurate knowledge about the transformation behavior of steel is required.

鋼の変態挙動については、一般的には実験至的に調査さ
れたものが知られているが、実機で製造する場合のそれ
は実験室での結果とは大幅に異なることが多い。その実
態は十分に把握されてはいないが、このように実機での
変態挙動が実験室の結果と異なる原因の1つは、変態挙
動が前工程あるいは上流工程における熱歪履歴等によっ
て複雑に変化することによるためと言われている。従っ
て例えば、(イ)熱延鋼材の品質を左右する大きな要素
である長手方向及び幅方向における材質の均質性を向上
せしめるために、圧延加工温度履歴の差に基づく局所的
な変態挙動の変化を把握する手段として、或いはまた、
(ロ)高強度で靭性の浸れた鋼材、例えば高張カライン
パイプ用鋼板等を製造するために圧下を加える時点での
γ相とα相との比率を把握する手段として、更、こはま
た、(ハノ高強度でかつ加工性の浸れた薄鋼板を製造す
るために混合組織鋼の製造技術に於ける急冷開始時点で
のγ相とα相の比率を把握する手段として、柚の変態挙
動に関するオンライン情報が精密に検出できれば、熱間
圧延ライン、熱処理ラインを用いた各種鋼材の製造分野
に於いて極めて大ぎな利益が期待できることになる。
The transformation behavior of steel is generally known to have been investigated experimentally, but the results obtained when manufacturing with actual equipment are often significantly different from the results obtained in the laboratory. Although the actual situation is not fully understood, one of the reasons why the transformation behavior in the actual machine differs from the laboratory results is that the transformation behavior changes in a complicated manner due to the history of thermal strain in the previous or upstream process. It is said that this is because it depends on what you do. Therefore, for example, (a) in order to improve the homogeneity of the material in the longitudinal and width directions, which are major factors that affect the quality of hot-rolled steel products, we are trying to reduce local changes in transformation behavior based on differences in rolling temperature history. As a means of understanding, or also,
(b) As a means of grasping the ratio of the γ phase and α phase at the time of applying reduction in order to manufacture steel materials with high strength and toughness, such as steel plates for high-strength Kalline pipes, it is also possible to , (Hano) We investigated the transformation behavior of yuzu as a means of understanding the ratio of γ phase to α phase at the start of quenching in the production technology of mixed-structure steel to produce thin steel sheets with high strength and excellent workability. If accurate online information on steel can be detected, it will be possible to expect great benefits in the field of manufacturing various steel materials using hot rolling lines and heat treatment lines.

従来、こうした鋼材の変態挙動をオンラインで検出する
5伝として以下のような方法が提案されている。その1
つは、例えば特公昭56−24017号のように相変態
の際の潜熱による温度上昇を製造ラインに設置した温度
計によって検出し、変態挙動を把握しようとする方法で
ある。しかし、この方法の場合、得られる情報か極めて
慨略的であること、応答性が遅いこと及び温度計をセン
サとして用いるため、たとえば水冷中の測定が出光ない
なとの欠点がある。
Conventionally, the following methods have been proposed as five methods for online detection of the transformation behavior of steel materials. Part 1
The first method is, for example, as disclosed in Japanese Patent Publication No. 56-24017, in which the temperature rise due to latent heat during phase transformation is detected by a thermometer installed in the production line, and the transformation behavior is attempted to be ascertained. However, this method has the drawbacks that the information obtained is very general, the response is slow, and because a thermometer is used as a sensor, no light is emitted during measurements during water cooling, for example.

また、y、I開昭49−114518号、51−136
442号及しζh特公昭3−25309号のように、鋼
材表面にX線を照則し、その回折強度3− から変態量を測定する方法も提案されている。しかしな
がら、この方法は強度のX線を照射するため、X線障害
に対する安全防護措置を講する必要があること、従って
このため検出装置自体が大樹りになり、設置費用の上昇
、設置数の制限あるいはメンテナンス等に問題が生じる
こと、加えて、得られる情報が被測定材の表皮下約50
μm以内の表層部のものであって、マクロ的情報となり
難いなどの欠点を有している。
Also, y, I Kaisho 49-114518, 51-136
442 and ζh Japanese Patent Publication No. 3-25309, methods have been proposed in which X-rays are directed onto the surface of a steel material and the amount of transformation is measured from the diffraction intensity 3-. However, since this method irradiates intense X-rays, it is necessary to take safety measures against X-ray damage, and therefore the detection device itself becomes a large tree, increasing installation costs and limiting the number of installations. Otherwise, maintenance problems may occur, and in addition, the information obtained may be approximately 50% below the epidermis of the material to be measured.
It is a surface layer within μm, and has the disadvantage that it is difficult to provide macroscopic information.

これに対し、鋼のγ相→α相変態が常磁性(γ相)から
強磁性(α相)への変化という物理的規象を伴なうこと
を利用し、磁気検出器を用いて変態挙動を検出する方法
があり、例えば特開昭50−104754号、あるいは
特開昭56−82443号などがこれに該当する。これ
らの方法は測定可能な温度範囲が被測定鋼のキュリ一点
以下の温度域に限定されるという問題を有しているが、
一般の大部分の商用鋼のキュリ一点は約756℃以上と
高く、これに対し冷却過程での鋼の変態範囲は非平衡的
に低温側に移行するので、変態の大4一 部分はキュリ一点以下の温度範囲で進行するため、上記
問題は一部の鋼を除けば実際的障害とはならないこと、
そして上記した磁気手段によらない伯の方法に比べて、
簡便かつ応答性が良好であり、しかも水冷中においても
測定可能であるなどの利点を有しており、実用的かつ有
効な方法と言える。
In contrast, by utilizing the fact that the γ phase → α phase transformation of steel is accompanied by the physical phenomenon of changing from paramagnetism (γ phase) to ferromagnetism (α phase), we can detect the transformation using a magnetic detector. There are methods for detecting behavior, such as Japanese Patent Laid-Open No. 50-104754 or Japanese Patent Laid-Open No. 56-82443. These methods have the problem that the measurable temperature range is limited to the temperature range below the Curie point of the steel being measured.
The Curie point of most commercial steels is as high as approximately 756°C or higher, whereas the transformation range of steel during the cooling process shifts to the lower temperature side in a non-equilibrium manner, so the 4 major transformation points are below the Curie point. The above-mentioned problem does not pose a practical problem except for some steels, since the process proceeds in the temperature range of
And compared to Haku's method which does not use magnetic means mentioned above,
It has the advantage of being simple and responsive, and can be measured even during water cooling, so it can be said to be a practical and effective method.

しかしながら上記の如き一般的利点を有すると言えども
既提案の特開昭50−104754号及び特開昭56−
82448号における磁気検出装置には以下のような問
題が未解決でありまだ十分に実用に供し得る検出装置で
あるとは言い難い。
However, although they have the general advantages as mentioned above, the previously proposed JP-A-50-104754 and JP-A-56-
The magnetic detection device disclosed in No. 82448 has unresolved problems as described below, and it is difficult to say that the magnetic detection device is still suitable for practical use.

まず初めに特開昭50=104754号について述べる
。該提案は磁気検出装置を用いた熱間圧延方法に係るも
のであって、磁気検出装置そのものに関する提案でなく
、その実施に際し使用する検出装置の機能、構造に関す
る詳細が不明確であるが、該提案の明II書に記載され
ているところによると、励磁したピックアップコイルを
被測定鋼に近接させておき、被測定鋼のγ相→α相変態
にともなって生ずるピックアップコイル自身のインビー
ダンス変化から変態の有無を定性的に検知するものであ
る。しかしながら、前記したごとき鋼材の製造分野に適
用するためには磁気検出装置の機能としては変態の進行
状況を定量的に検出し得る機能を有することか必要であ
って、該提案のように単に変態の有無を定性的に検知し
得るだけの機能の検出装置では、適用する価値が低いと
言わざるを得ない。
First, we will discuss Japanese Patent Application Laid-open No. 104754. The proposal relates to a hot rolling method using a magnetic detection device, and is not a proposal regarding the magnetic detection device itself, and the details regarding the function and structure of the detection device used for implementation are unclear. According to the proposal in Mei II, an excited pickup coil is placed close to the steel to be measured, and the impedance change of the pickup coil itself that occurs as the steel to be measured changes from γ phase to α phase. This method qualitatively detects the presence or absence of metamorphosis. However, in order to apply it to the above-mentioned steel manufacturing field, it is necessary for the magnetic detection device to have a function that can quantitatively detect the progress of transformation. It must be said that a detection device whose function is only to qualitatively detect the presence or absence of a substance has little value in application.

次に特開昭56−82443号について述べる。Next, JP-A-56-82443 will be described.

第1図は該提案における磁気検出装置の構成を示すブロ
ック線図である。この磁気検出装置は、U字鉄心で構成
された磁極2に巻回された励磁コイル3と、磁束検出器
6とを一定の間隔℃をおいて被測定材たる鋼材1を挾ん
で配置し、励磁装置4によって励磁コイル3を励磁する
ことにより発生する磁束5のうち、鋼材1を貫通し漏洩
して磁束検出器6に至る磁束5oの強さを検出するよう
にしたものであって、鋼材1中の変態量に対応して磁束
5oの強さが変化することから、変態量を検出するもの
である。尚、図において、7は温度計、8は演算装置、
9は材料、板厚等の条件信号である。この方法は前記特
開昭50−104754号に比べると原理的には変態量
を定量的に測定し得る機能を有しているとは言え、実際
の製造ラインに適用する上で次のような欠点がある。
FIG. 1 is a block diagram showing the configuration of the magnetic detection device in the proposal. In this magnetic detection device, an excitation coil 3 wound around a magnetic pole 2 constituted by a U-shaped iron core and a magnetic flux detector 6 are arranged at a constant interval of degrees Celsius, sandwiching a steel material 1 as a material to be measured. Among the magnetic flux 5 generated by exciting the excitation coil 3 by the excitation device 4, the strength of the magnetic flux 5o that penetrates the steel material 1, leaks, and reaches the magnetic flux detector 6 is detected. The amount of transformation is detected because the strength of the magnetic flux 5o changes in accordance with the amount of transformation in 1. In the figure, 7 is a thermometer, 8 is a calculation device,
9 is a condition signal such as material, plate thickness, etc. Although this method has the ability to quantitatively measure the amount of transformation in principle compared to the method of JP-A-50-104754, it has the following problems when applied to an actual production line. There are drawbacks.

即ち、上記構成による場合、磁束5oの強さく vA束
密度)は磁極2と磁束検出器6との距離(にほぼ反比例
するので、十分な精度で変態量を検出するためには、こ
の間の距離℃を少なくとも約150mm以下としなけれ
ばならないが、実際の製造ラインに適用する上で、この
ような狭い間隙中を磁束検出器6と接触させずに鋼材1
を移動させることは至難であると言わざるを得ない。こ
の理由は、例えばホットストリップミル及びプレートミ
ルで製造される熱延鋼板の熱延後の形状はそり曲り、あ
るいは波打ち等を伴なうものであって、必ずしも平坦で
ないこと、特に圧延鋼材の先端及び後端近傍においてこ
の傾向が強く、搬送に際し鋼材との接触が避は難いため
である。このような事故を避けるために例えは鋼+lr
の先端、後端部の7− 通過時に一時的に上記間隙を大ぎくする方法も考えられ
るが、(オ質的なバラツキは先端、後端部近傍において
生じ易く、この部分の検出ができなければ、検出装置を
設置する価値が半減するものである。また該提案の磁気
検出装置は、被測定材たる鋼材1の板厚tの違いによっ
て、磁束5が経由する磁気回路中に占める空隙部分が変
化するので検出出力を板厚tによって補正する必要があ
ること、また測定精度が現実の板厚tに依存する等の問
題をも含むものであるが、通常の熱間圧延機で圧延され
る鋼材1の板厚tは例えばホットストリップミルで1.
2〜30mm、プレートミルでは5.0〜300 an
と多様であって、これらの補正は煩雑であり、かつまた
現実の板厚tに応じた検出精度の適正化は前記した鋼材
1の搬送性の観点から実質的に行うのは困難である。
That is, in the case of the above configuration, the strength of the magnetic flux 5o (vA flux density) is approximately inversely proportional to the distance between the magnetic pole 2 and the magnetic flux detector 6, so in order to detect the amount of transformation with sufficient accuracy, the distance between this ℃ must be kept at least about 150 mm or less, but when applied to an actual production line, the steel material 1 must be kept in such a narrow gap without coming into contact with the magnetic flux detector 6.
It must be said that it is extremely difficult to move the The reason for this is that the shape of hot-rolled steel sheets produced by hot strip mills and plate mills, for example, is warped or wavy and is not necessarily flat, especially at the tip of the rolled steel material. This is because this tendency is strong near the rear end, and it is difficult to avoid contact with the steel material during transportation. To avoid such accidents, for example, steel + lr
Although it is possible to temporarily widen the above-mentioned gap when passing the tip and rear ends of For example, the value of installing a detection device is halved.Furthermore, the proposed magnetic detection device reduces the gap occupied by the magnetic circuit through which the magnetic flux 5 passes, due to the difference in the plate thickness t of the steel material 1, which is the material to be measured. changes, so the detection output needs to be corrected depending on the plate thickness t, and the measurement accuracy depends on the actual plate thickness t. The plate thickness t of 1 is, for example, 1.
2-30mm, plate mill 5.0-300an
These corrections are complicated, and it is difficult to optimize the detection accuracy according to the actual plate thickness t from the viewpoint of the transportability of the steel material 1 described above.

以上の如く、特開昭56−82443号が提案する磁気
検出装置は実際の製造ラインに適用する上で問題が多い
と言わざるを腎ないものである。
As mentioned above, it must be said that the magnetic detection device proposed in Japanese Patent Application Laid-Open No. 56-82443 has many problems when applied to an actual manufacturing line.

本発明は以上の如き従来技術の問題点を解消す8− ◇ために開発8れたちのであって、従来の方法では1テ
い得なかった鋼(オの変態量の検出を精密に行うと共に
、更には鋼材の平坦性をも間断に精度よく検出し得る多
機能な磁気検出装置を提供することをその目的としCい
る。
The present invention was developed to solve the problems of the prior art as described above. Furthermore, it is an object of the present invention to provide a multifunctional magnetic detection device that can accurately detect the flatness of steel materials from time to time.

本発明は、匈(2の変態量及び平坦性のオンライン検出
装置において、被測定材たる鋼材のいずれか一方の側に
配置せしめ、交流励磁によって交番磁束を発生1在とし
た励(nコイルと、該励磁コイルと同一側に且つ励磁コ
イルからの距離が互いに異なる位置に配置せしめ、該励
磁コイルによって相互誘導されるようにしt:2個以上
の検出コイルと、各検出」イルにおける鎖交1j1東漫
の違いによって生しる検出信号の違いからm Uの変態
量及び平坦性、又(ユぞのいずれか一方のみを求める演
算¥置と、を肯えることにより前記目的を達成したしの
である。
The present invention is an on-line detection device for the amount of transformation and flatness of the coil (2), which is arranged on either side of the steel material to be measured, and generates an alternating magnetic flux by alternating current excitation (n coil). , arranged on the same side as the excitation coil and at different distances from the excitation coil so that they are mutually induced by the excitation coil. We have achieved the above objective by confirming the amount of transformation and flatness of mU from the difference in the detection signal caused by the difference in Toman, and the calculation to obtain only one of them. be.

以下に本弁明を図示の実卵例に基ついて詳細に説明する
The present invention will be explained in detail below based on the illustrated example of an actual egg.

第2図は、小砕i+j]の第1実施例を示す。図中、1
は被測定材たる鋼材、12は交流励磁装置、13は励磁
コイル、15+、152は励磁コイル13からの距離が
A+、β2と互いに異なる位置に設けた検出コイルであ
る。141は励磁コイル13にて発生され、鋼材1を通
じて検出コイル151に鎖交する磁束、同じく142は
検出コイル152に鎖交する磁束である。
FIG. 2 shows a first embodiment of pulverization i+j]. In the figure, 1
12 is a steel material to be measured, 12 is an AC excitation device, 13 is an excitation coil, and 15+ and 152 are detection coils provided at different distances from the excitation coil 13, such as A+ and β2. 141 is a magnetic flux generated by the excitation coil 13 and interlinks with the detection coil 151 through the steel material 1; similarly, 142 is a magnetic flux that interlinks with the detection coil 152.

さて鋼材1が変態を開始していない状態、即ちγ単相の
時は常磁性状態であるから、検出コイル151.152
に鎖交する磁束14+、142は励磁コイル13からの
距離J11、J12に応じた一定の強さにありそれぞれ
これらに比例した誘起電圧が発生している状態(以下初
期状態〉にある。
Now, since the steel material 1 is in a paramagnetic state when it has not started transformation, that is, when it is in the γ single phase, the detection coils 151 and 152
The magnetic fluxes 14+ and 142 interlinked with each other have a constant strength corresponding to the distances J11 and J12 from the excitation coil 13, and are in a state (hereinafter referred to as initial state) in which induced voltages proportional to these are generated.

鋼材1にγ→α変態が生じ、強磁性のα相が析出すると
、α相は磁化され、鋼材1の磁界強さに変動が起こり、
磁束141.142の強さが初期状態からずれるので、
検出コイル15+、152の誘起電圧の変化として夫々
から検出される。また、w4材1と励磁コイル13との
距離L(以下リフトオフと称す。リフトオフの測定は平
坦性測定と同義である。)が変化した場合にも、検出コ
イル151.152の誘起電圧が夫々変化する。このよ
うな検出コイル151.152における検出信号16+
、162を演算装置17に伝送し、検出コイル151と
152との測定信号の大きさを相対的に対比させ、予め
演算装置17に記憶せしめである後掲の関係にしたがっ
て変態量とリフトオフLとを分離演算する。
When the γ → α transformation occurs in the steel material 1 and a ferromagnetic α phase is precipitated, the α phase is magnetized, causing a fluctuation in the magnetic field strength of the steel material 1.
Since the strength of magnetic flux 141 and 142 deviates from the initial state,
It is detected as a change in the induced voltage of the detection coils 15+ and 152, respectively. Also, when the distance L between the W4 material 1 and the excitation coil 13 (hereinafter referred to as lift-off. Lift-off measurement is synonymous with flatness measurement) changes, the induced voltages of the detection coils 151 and 152 change, respectively. do. Detection signal 16+ in such detection coil 151.152
. Calculate separately.

次に検出コイル151と152の検出信号161.16
2の大きさから、鋼材1中の変態量とリフトオフLとを
求める手法について述べる。
Next, detection signals 161.16 of detection coils 151 and 152
A method for determining the amount of transformation in the steel material 1 and the lift-off L from the magnitude of 2 will be described.

第3図は基本的に第2図の構成からなる検出装置におい
て、励磁コイル13と検出コイル151までの距離p1
を5Qn+m、同じく検出コイル152までの距離12
を100mmとし、鋼材1のγ→α変態置装びリフトオ
フLが変化した場合の、検出コイル151と152の検
出信号(初期状態からの誘起電圧の変化量)の関係を示
すものである。第3図において各破線で示すのは夫々変
態量が一定でリフトオフLのみが変化した場合、また−
 11− 各実線で示すのは夫々リフトオフLが一定で変態量のみ
が変化した場合の関係である。第3図から明らかなよう
に、検出コイル151と152の間の検出信号161.
162の大きさの関係はリフトオフLが変化した場合に
は例えば0→a−+b→0→d→e−+fのように曲線
的関係になるに対し、変態量の変化に対しては例えばO
→j−+i−+11→0→fのようにほぼ直線的関係と
なる。即ち2つの検出コイル151.152の検出信号
161.162によって定まるベクトル量は変態量とリ
フトオフLに対しそれぞれ固有の関係を有するものであ
ることがわかる。従って第3図に示す関係を予め精密に
求め、第2図中の演算装置17に記憶せしめておき、検
出コイル151及び152から検出される検出信号16
+、162をこれと対比させ演算せしめれば、変態量及
びリフトオフLを同時に求めることが出来る。
FIG. 3 shows a distance p1 between the excitation coil 13 and the detection coil 151 in a detection device basically having the configuration shown in FIG.
is 5Qn+m, and the distance to the detection coil 152 is 12
is 100 mm, and shows the relationship between the detection signals (the amount of change in induced voltage from the initial state) of the detection coils 151 and 152 when the lift-off L of the γ→α transformation device of the steel material 1 changes. In Fig. 3, each broken line indicates the case where the amount of transformation is constant and only the lift-off L changes, and -
11- Each solid line shows the relationship when the lift-off L is constant and only the amount of transformation changes. As is clear from FIG. 3, the detection signal 161. between the detection coils 151 and 152.
The relationship between the magnitudes of 162 and 162 becomes a curved relationship, for example, 0→a-+b→0→d→e-+f when the lift-off L changes, but when the amount of transformation changes, for example, O
The relationship is almost linear as →j-+i-+11→0→f. That is, it can be seen that the vector quantities determined by the detection signals 161 and 162 of the two detection coils 151 and 152 have a unique relationship with the transformation quantity and the lift-off L, respectively. Therefore, the relationship shown in FIG. 3 is precisely determined in advance and stored in the arithmetic unit 17 in FIG.
+, 162 are compared with this and calculated, the amount of transformation and lift-off L can be determined at the same time.

尚、上記は検出コイルを2個用いた場合について説明し
たが、当然のことながら検出コイルの数がこれより多い
場合でも同様であり、検出コイル 12− の数を多くして3元的、4元的に測定した方がより精密
な測定を行ない得ることはもちろんである。
In addition, although the above description is based on the case where two detection coils are used, it goes without saying that the same applies even when the number of detection coils is larger than this. Of course, it is possible to perform more precise measurements by measuring originally.

又、以上の説明で明らかな如く本発明はその構成上、必
要に応じて「変態量のみ」、「変態量と平坦性」、[平
坦性のみJの情報を選択的に求め得るものであるが、「
平坦性のみ」の情報入手に着目する場合は、被測定材は
、励磁コイル、検出コイル間の相互誘導に何らかの影響
を与えるものでありさえづれば「WA材」に限定される
ものではない。従ってこのように平坦性の情報のみを必
要とする場合、特許請求の範囲の記載を含め「鋼材」の
語はrm材その他励磁コイル、検出コイル間の相互誘導
効果に影響を及ぼす材料をその成分中に有する板状材」
と読み変えるものとする。尚、いずれか一方の情報のみ
が必要な場合は当該一方の情報のみが出力されるように
すれば足りるのは言うまでもない。
Furthermore, as is clear from the above explanation, the present invention is configured such that information on "transformation amount only", "transformation amount and flatness", and [flatness only J] can be selectively determined as necessary. but,"
When focusing on obtaining information on "flatness only", the material to be measured is not limited to "WA material" as long as it has some effect on the mutual induction between the excitation coil and the detection coil. Therefore, when only flatness information is required, the term "steel material", including in the claims, refers to RM material and other materials that affect the mutual induction effect between the excitation coil and the detection coil. "Plate-shaped material inside"
shall be read as It goes without saying that if only one of the pieces of information is required, it is sufficient to output only that one piece of information.

次に本発明を具体的に実施する段階に於いて望ましい態
様について述ぺる。
Next, preferred embodiments at the stage of concretely implementing the present invention will be described.

先ず検出コイルと励磁コイルとの配置について説明する
。第4図は本発明の第2実施例であって、第2図に示し
た第1実施例の場合と基本的構成は同様であるが、検出
コイル151を励磁コイル13と同心円にして配置せし
めたものである。第5図は第4図に示す検出装置におい
て励磁コイル13と検出コイル152との距離λ2を種
々変化させた場合のリフトオフLの検出精度を示すもの
であるが、これから明らかなようにに2が20+nm未
満及び200mmを越えた場合にはいずれもリフトオフ
Lの検出精度は悪化する傾向を承し、良好な検出精度を
得るためにはρ2として最適範囲が存在することがわか
る。なお以上の傾向は変態量の検出精度に関しても同様
である。この原因は次の理由によるものと解される。即
ち、β2が200 mmを超えた場合には、第4図にお
ける検出コイル152の検出信号162が著しく小さく
なるため、ノイズ等による影響を受は易< S / N
比が劣化する。−万β2が20mm未満の場合には、第
4図における検出コイル151.152での変態量とリ
フトオフLに対する感応のしかたの差が極めて少なくな
るため、検出信号16+、162から両者を分離定量化
させることが困難となり検出精度が劣化するというもの
である。本発明は、上記知見から、検出コイルは励磁コ
イル中心から半径200 mm以内の範囲で、かつ夫々
検出コイル間で20IIl1以上の距離を維持するよう
に配置するのが望ましいことがわかる。
First, the arrangement of the detection coil and excitation coil will be explained. FIG. 4 shows a second embodiment of the present invention, which has the same basic configuration as the first embodiment shown in FIG. It is something that FIG. 5 shows the detection accuracy of lift-off L when the distance λ2 between the excitation coil 13 and the detection coil 152 is variously changed in the detection device shown in FIG. It can be seen that the detection accuracy of lift-off L tends to deteriorate both when it is less than 20+ nm and when it exceeds 200 mm, and there is an optimum range for ρ2 in order to obtain good detection accuracy. Note that the above tendency also applies to the detection accuracy of the amount of metamorphosis. The reason for this is understood to be as follows. That is, when β2 exceeds 200 mm, the detection signal 162 of the detection coil 152 in FIG. 4 becomes extremely small, so it is not easily affected by noise etc.
The ratio deteriorates. - If β2 is less than 20 mm, the difference between the amount of transformation in the detection coils 151 and 152 in FIG. This makes it difficult to do so, and the detection accuracy deteriorates. According to the present invention, based on the above findings, it is found that it is desirable to arrange the detection coils within a radius of 200 mm from the center of the excitation coil, and to maintain a distance of 20IIl1 or more between the detection coils.

次にコアの効果について述べる。磁気検出装置はその難
点の1つとしてリフトオフの増大とともに検出信号の大
きさが反比例的に小さくなると言う一般的特性を有する
ため、検出可能なリフトオフの範囲が限定されることで
ある。言うまでもなく実際の各f!li製造ラインに適
用する場合、検出精度の観点では言うに及ばず、検出装
置の耐熱性、被測定材の搬送性及び形状等の観点からも
上記範囲は大きい程望ましく、本発明はこの点に鑑み研
究を重ねた結果、励磁コイル及び検出コイルに必要に応
じて独立した専用コアを設けることにより同一リフトオ
フにおける検出信号の大きさを著しく増大し得ることを
見出した。
Next, we will discuss the effects of the core. One of the drawbacks of a magnetic detection device is that it has a general characteristic that the magnitude of a detection signal decreases inversely as lift-off increases, so that the range of lift-off that can be detected is limited. Needless to say, each actual f! When applied to an li manufacturing line, it is desirable that the range is as large as possible not only from the viewpoint of detection accuracy but also from the viewpoints of heat resistance of the detection device, transportability of the material to be measured, shape, etc., and the present invention addresses this point. As a result of repeated research, it has been found that the magnitude of the detection signal at the same lift-off can be significantly increased by providing independent dedicated cores for the excitation coil and detection coil as necessary.

 15− 第6図〜第8図は夫々各コイルにコアを設けた場合の本
発明の第3〜第5実施例であり、第6図は励磁コイル1
3に棒状型コア9oを設けた場合、同じく第7図は励磁
コイル13と検出コイル151及び152にそれぞれ棒
状型コア1901191.192を設けた場合を示す。
15- Figures 6 to 8 show third to fifth embodiments of the present invention in which each coil is provided with a core, and Figure 6 shows the excitation coil 1.
Similarly, FIG. 7 shows a case where rod-shaped cores 1901191 and 192 are provided in the excitation coil 13 and the detection coils 151 and 152, respectively.

また第8図は、励磁コイル13と検出コイル151と検
出コイル152とをE字型コア193で連結せしめたも
のである。第9図は、第4図の第2実施例の検出装置を
用い、鋼材1のγ→α変態率が100%、リフトオフL
が100mmの状態での検出コイル152における検出
信号162の大きさを基準として同じ条件下で第2図、
及び第6〜第8図の各検出装置によって検出した検出信
号162の大きさを相対比較して示すものである。なお
、第9図の結果はコアに関するもの以外の条件はすべて
同一である。
Further, FIG. 8 shows a configuration in which the excitation coil 13, the detection coil 151, and the detection coil 152 are connected by an E-shaped core 193. FIG. 9 shows that the γ→α transformation rate of steel material 1 is 100% and the lift-off L is measured using the detection device of the second embodiment shown in FIG.
2 under the same conditions with reference to the magnitude of the detection signal 162 in the detection coil 152 when the diameter is 100 mm,
8 shows a relative comparison of the magnitudes of the detection signals 162 detected by each of the detection devices shown in FIGS. 6 to 8. Note that the results shown in FIG. 9 are all the same under conditions other than those related to the core.

第9図により、第6図の励磁コイル13に棒状型コア1
9oを設けた場合(第3寅施例)及び第7図の励磁コイ
ル13及び検出コイル151、16− 152に棒状型コア19o、19+、192を夫々設け
た場合(第4実施例)には第4図のコアを設けない場合
(第2実施例)に比べて検出信号162の大きさが増大
する傾向が明らかであり、棒状型コア19o〜192を
設けることにより、リフトオフLの大きい領域での検出
精度の向上が計れることがわかる。尚、第8図のE字型
コア(193)を設けた第5実施例の場合、リフトオフ
Lが50mm以下の範囲では検出信号162の大きさは
本発明の他の実施例に比べて大きいが、リフトオフLが
50IIIIIIを越えて増大(るに従い急激に低下し
、第9図から明らかなようにリフトオフ100mmの状
態における検出信号162の大きさはむしろ小さくなる
ことが確認されている。従ってこの第5実施例は被測定
材たる鋼材1の平坦度が良好な比較的小規模なラインに
用いると良好である。
According to FIG. 9, the rod-shaped core 1 is attached to the excitation coil 13 in FIG.
9o (third embodiment) and when rod-shaped cores 19o, 19+, and 192 are provided for the excitation coil 13 and detection coils 151, 16-152 in FIG. 7, respectively (fourth embodiment). It is clear that the magnitude of the detection signal 162 tends to increase compared to the case where no core is provided (second embodiment) as shown in FIG. 4, and by providing the rod-shaped cores 19o to 192, It can be seen that the detection accuracy can be improved. In the case of the fifth embodiment provided with the E-shaped core (193) shown in FIG. 8, the magnitude of the detection signal 162 is larger than that of other embodiments of the present invention in the range where the lift-off L is 50 mm or less. , it has been confirmed that the magnitude of the detection signal 162 in the state where the lift-off L is 100 mm is rather small.As it is clear from FIG. Embodiment 5 is suitable for use in relatively small-scale lines where the steel material 1 to be measured has good flatness.

次に本発明における望ましい励磁条件について述べる。Next, desirable excitation conditions in the present invention will be described.

周知の如く、今日磁性体への磁束の浸透深さは、磁束の
周波数に大きく依存することが知れている。即ち、検出
装置の励磁コイルの励磁周波数の増大とともに被測定材
への浸透深さが減少するものである。ところで一般に熱
延後の鋼材は温度分布あるいは圧延加工等の影響によっ
て表皮下では特異な変態挙動を示すことが知られており
、最終製品における材質と関連づける上で、このような
特異鎖酸での検出情報は意義が少なくなるものである。
As is well known, it is now known that the depth of penetration of magnetic flux into a magnetic material largely depends on the frequency of the magnetic flux. That is, as the excitation frequency of the excitation coil of the detection device increases, the penetration depth into the material to be measured decreases. By the way, it is generally known that steel materials after hot rolling exhibit unique transformation behavior under the skin due to the influence of temperature distribution or rolling processing, etc., and in relation to the material quality of the final product, it is necessary to The detected information becomes less meaningful.

従って、測定に際しては検出装置の励磁条件の適正化が
望まれる。本発明者ら・の調査によると、熱延鋼材での
変態特性が特異挙動を示す領域は、表皮下約200μm
以内の範囲であり、これらを回避するためには脛に束の
浸透深さを200μm以上とすることが望ましく、検出
装置の励磁電流の周波数は上記観点から10KHzより
低いことが望ましいことになる。これに対し、周波数が
低くなる程、磁束の浸透深さは大きくなり検出される変
態量の情報はよりマクロ的となるが、一方において検出
装置の応答速度の悪化及び検出信号のS 、、、/ N
比の低下などの不都合を生じる。
Therefore, when making measurements, it is desirable to optimize the excitation conditions of the detection device. According to the research conducted by the present inventors, the region in which the transformation properties of hot rolled steel exhibit peculiar behavior is approximately 200 μm below the surface skin.
In order to avoid these problems, it is desirable that the penetration depth of the bundle into the shin is 200 μm or more, and from the above point of view, it is desirable that the frequency of the excitation current of the detection device is lower than 10 KHz. On the other hand, as the frequency decreases, the penetration depth of the magnetic flux increases and the detected information on the amount of transformation becomes more macroscopic, but on the other hand, the response speed of the detection device deteriorates and the S of the detection signal... / N
This causes inconveniences such as a decrease in the ratio.

このような問題を回避する上で励Tlk周波数は5H2
未満とならないことが望ましい。なお最も好ましい励磁
周波数の範囲は30Hz〜1KH2(ある。
To avoid such problems, the excitation Tlk frequency should be set to 5H2.
It is desirable that it not be less than Note that the most preferable excitation frequency range is 30Hz to 1KH2.

不発明は上記の如く、励[ηコイルと同一側に励磁コイ
ルからの距離が互いに異なるように少なくとも2個以上
の検出コイルを配置せしめ、該検出信号により被測定4
号たる鋼(オの変態量及び平坦性EリフトオフJとを同
時に求めるようにしたため、(イ)検出にhl気による
相互誘導を利用しているので、正確であり且つ応答性が
良くオンラインでの定量検出手段としc (Iれている
;(ロ)検出装置の各1幾器を被;1Ilj定(47二
る鋼材の一方の側に集中配置できるので、&’A 41
7tの平坦性があまり良くない製造ラインでも十分実用
イヒが可能である; (ハ)鋼材の一方の側に問器を配して磁気測定するにも
かかわらずリフトオフの変動による影響を受けることな
く鋼材の変態量を検出できる;にノリフトオーノ、即ち
tU i4の平坦1生(こ関するオンライン情報を臼せ
て、又(す単独に検出できる;19− (ホ> +U磁気測定よって鋼材の平坦性を検出可能と
しながら鋼材の変態量による影響を受けることがない; くべ)高熱環境下、水中下等の種々の環境に置いて広く
使用可能である; 等の効果が得られるものである。従って各種熱間圧延工
程や熱処理工程での鋼材の変態量のオンライン検出は熱
論のこと、これに平坦性のオンライン検出をも合せて行
なうことができ、更には鋼材に限定されることなく、被
測定材が励磁コイル、検出コイル間の相互誘導に何らか
の影響を与えるものでありさえすれば、変態挙動の有無
とは無関係に当該被測定材の平坦性をオンラインで検出
できるなど、極めて広範囲な用途に供することが可能で
ある。
As described above, the invention is to arrange at least two or more detection coils on the same side as the excitation [η coil and at different distances from the excitation coil, and to detect the measurement target 4 by the detection signal.
Since the transformation amount and flatness E lift-off J of the major steel (E) are determined at the same time, (B) mutual induction by HL gas is used for detection, which is accurate and responsive and can be performed online. As a quantitative detection means, one or more of each of the detection devices are used;
It is possible to put it into practical use even on a production line where the flatness of 7t is not very good; (c) Even though the magnetic field is measured by placing an interrogator on one side of the steel material, it is not affected by lift-off fluctuations. The amount of transformation of the steel material can be detected; the flatness of the steel material can be detected by using the online information related to the flatness of the steel material; It can be detected without being affected by the amount of transformation of the steel material; (b) It can be widely used in various environments such as high temperature environments and underwater; Online detection of the amount of transformation of steel materials during hot rolling and heat treatment processes is thermal theory, and online detection of flatness can also be performed. As long as it has some effect on the mutual induction between the excitation coil and the detection coil, it can be used for an extremely wide range of applications, such as being able to detect the flatness of the material to be measured online regardless of the presence or absence of transformation behavior. Is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、磁気測定式の変態量検出装置の従来例を示し
た一部に断面図を含むブロック線図、第2図は、本発明
の第1実施例を示す第1図相当のブロック線図、 20− 第3図は、本発明の詳細な説明するための、リフトオフ
及び変態量の増減と検出コイルでの検出信号との相関関
係を示す線図、 第4図は、本発明の第2実施例を示す第2図相当のブロ
ック線図、 第5図は、第2実施例における検出コイル間隔とリフト
オフヨ11定誤差との関係を示す線図、第6図〜第8図
は、夫々本発明の第3〜第5実施例を示す第2図相当の
ブロック線図、第9図は、励磁コイル又は検出コイルに
コアを設けた際の検出信号の大きさについて、各実施例
を第2実施例に対して比較した関係を示す線図である。 12・・・交流励Elj ’iA &、13・・・励磁
コイル、 141.142・・・磁束、 151.152・・・検出コイル、 A1.ft2・・・勤務にコイルと検出コイルとの距離
、L・・・鋼材と励磁コイルとの距離yリフトオフ;、
161.162・・・検出信号、 17・・・演算装置、 19o〜192・・・棒状型コア、 193・・・E字型コア。 代理人 高 矢  論 (ばか1名) 23− 第1図 第2図 第3図 第4図 第5図 ? ; 0    50   100   150   200
兜4回1丁δ=rT5BJa鑞コイlしと劇ヒ出コイl
しの距寓法(mml第6図 第7図 第8図 第9図
FIG. 1 is a block diagram partially including a sectional view showing a conventional example of a magnetic measurement type transformation amount detection device, and FIG. 2 is a block diagram corresponding to FIG. 1 showing a first embodiment of the present invention. 20- Fig. 3 is a diagram showing the correlation between the increase/decrease in lift-off and the amount of transformation and the detection signal in the detection coil for detailed explanation of the present invention; A block diagram corresponding to FIG. 2 showing the second embodiment, FIG. 5 is a diagram showing the relationship between the detection coil spacing and the constant error of the lift-off yaw 11 in the second embodiment, and FIGS. 6 to 8 are FIG. 9 is a block diagram corresponding to FIG. 2 showing the third to fifth embodiments of the present invention, and FIG. FIG. 6 is a diagram showing a comparative relationship with respect to the second example. 12... AC excitation Elj 'iA &, 13... Excitation coil, 141.142... Magnetic flux, 151.152... Detection coil, A1. ft2...Distance between the working coil and the detection coil, L...Distance between the steel material and the excitation coil y lift-off;
161.162...Detection signal, 17...Arithmetic device, 19o-192... Rod-shaped core, 193...E-shaped core. Agent Takaya Theory (1 idiot) 23- Figure 1 Figure 2 Figure 3 Figure 4 Figure 5? ; 0 50 100 150 200
Kabuto 4 times 1-cho δ = rT5BJa Azui Koi and Gekihide Koi
Shino distance method (mml Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 〈1)被測定材たる鋼材のいずれが一方の側に配置せし
め、交流励磁によって交番磁束を発生自在とした励磁コ
イルと、 該励磁コイルと同一側に且つ励磁コイルからの距離が互
いに異なる位置に配置せしめ、該励磁コイルによって相
互誘導されるようにした2個以上の検出コイルと、 各検出コイルにおける鎖交磁束農の違いによって生じる
検出信号の違いから鋼材の変態量及び平坦性、又はその
いずれか一方のみを求める演算装置と、 を備えて成ることを特徴とする鋼材の変態量及び平坦性
のオンライン検出装置。 (2)上記2個以上の検出コイルを、夫々励磁コイルか
ら200 mm以内の範囲で且つ夫々の間隔が20mm
以上となるように配置せしめたことを特徴とする特許請
求の範囲第1項記載の鋼材の変態量及び平坦性のオンラ
イン検出装置。 (3)上記励磁コイル及び検出コイルのうち少なくとも
1個が、各コイル間に跨がらない専用コアを備えたこと
を特徴とする特許請求の範囲第1項又は第2項のいずれ
かに2戟のw4材の変態量及び平坦性のオンライン検出
装置。 (4)上記励磁コイルに流す励1&電流は、その周波数
が5Hz〜l0KH2の範囲のものであることを特徴と
する特許請求の範囲第1項〜第3項のいずれかに記載の
鋼材の変態量及び平坦性のオンライン検出装置。
[Scope of Claims] <1) An excitation coil in which the steel material to be measured is placed on one side and can freely generate alternating magnetic flux by alternating current excitation; Two or more detection coils are arranged at different distances from each other and are mutually induced by the excitation coil, and the difference in detection signal caused by the difference in magnetic flux linkage in each detection coil determines the amount of transformation of the steel material. 1. An online detection device for the amount of transformation and flatness of a steel material, comprising: an arithmetic device that determines flatness or only one of them; (2) The above-mentioned two or more detection coils are arranged within a range of 200 mm from the excitation coil, and at a distance of 20 mm from each other.
An on-line detection device for the amount of transformation and flatness of a steel material according to claim 1, characterized in that the device is arranged as described above. (3) At least one of the excitation coil and the detection coil is provided with a dedicated core that does not span between the coils. Online detection device for the amount of transformation and flatness of W4 material. (4) The transformation of steel material according to any one of claims 1 to 3, wherein the excitation current flowing through the excitation coil has a frequency in the range of 5Hz to 10KH2. Online quantity and flatness detection device.
JP6414783A 1983-04-12 1983-04-12 On-line detector for amount of transformation and flatness of steel material Granted JPS59188508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6414783A JPS59188508A (en) 1983-04-12 1983-04-12 On-line detector for amount of transformation and flatness of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6414783A JPS59188508A (en) 1983-04-12 1983-04-12 On-line detector for amount of transformation and flatness of steel material

Publications (2)

Publication Number Publication Date
JPS59188508A true JPS59188508A (en) 1984-10-25
JPH0242402B2 JPH0242402B2 (en) 1990-09-21

Family

ID=13249670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6414783A Granted JPS59188508A (en) 1983-04-12 1983-04-12 On-line detector for amount of transformation and flatness of steel material

Country Status (1)

Country Link
JP (1) JPS59188508A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110723A (en) * 1984-11-02 1986-05-29 Kawasaki Steel Corp Cooling controlling method of hot-rolled steel plate
US4648916A (en) * 1984-10-19 1987-03-10 Kawasaki Steel Corporation Method of controlling cooling of hot-rolled steel sheet and system therefor
JP2007078558A (en) * 2005-09-15 2007-03-29 Toshiba Corp Moving distance measuring device and moving distance measuring method
JP2012063181A (en) * 2010-09-14 2012-03-29 Delta Tooling Co Ltd Hardening state inspection device and hardening state inspection method
JP2013160737A (en) * 2012-02-09 2013-08-19 Toyota Central R&D Labs Inc Non-contact sensor
WO2016067385A1 (en) * 2014-10-29 2016-05-06 三菱電機株式会社 Car position detection device
WO2019003727A1 (en) 2017-06-28 2019-01-03 Jfeスチール株式会社 Method for measuring magnetic transformation rate of steel plate in annealing furnace, device for measuring magnetic transformation rate of same, continuous annealing process, and continuous hot-dip galvanizing process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079714B2 (en) * 2009-01-15 2012-11-21 新日本製鐵株式会社 Surface state measuring apparatus and surface state measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443904A (en) * 1977-09-14 1979-04-06 Meikou Kk Manufacture of paper soap

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443904A (en) * 1977-09-14 1979-04-06 Meikou Kk Manufacture of paper soap

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648916A (en) * 1984-10-19 1987-03-10 Kawasaki Steel Corporation Method of controlling cooling of hot-rolled steel sheet and system therefor
JPS61110723A (en) * 1984-11-02 1986-05-29 Kawasaki Steel Corp Cooling controlling method of hot-rolled steel plate
JPH0536484B2 (en) * 1984-11-02 1993-05-31 Kawasaki Steel Co
JP2007078558A (en) * 2005-09-15 2007-03-29 Toshiba Corp Moving distance measuring device and moving distance measuring method
JP4542973B2 (en) * 2005-09-15 2010-09-15 株式会社東芝 Moving distance measuring device and moving distance measuring method
JP2012063181A (en) * 2010-09-14 2012-03-29 Delta Tooling Co Ltd Hardening state inspection device and hardening state inspection method
JP2013160737A (en) * 2012-02-09 2013-08-19 Toyota Central R&D Labs Inc Non-contact sensor
WO2016067385A1 (en) * 2014-10-29 2016-05-06 三菱電機株式会社 Car position detection device
JPWO2016067385A1 (en) * 2014-10-29 2017-04-27 三菱電機株式会社 Car position detector
WO2019003727A1 (en) 2017-06-28 2019-01-03 Jfeスチール株式会社 Method for measuring magnetic transformation rate of steel plate in annealing furnace, device for measuring magnetic transformation rate of same, continuous annealing process, and continuous hot-dip galvanizing process
KR20200009074A (en) 2017-06-28 2020-01-29 제이에프이 스틸 가부시키가이샤 Method for measuring magnetic strain rate of steel sheet in annealing furnace, magnetic strain rate measuring device, continuous annealing process, continuous hot dip galvanizing process
US11125721B2 (en) 2017-06-28 2021-09-21 Jfe Steel Corporation Method for measuring magnetic transformation rate of steel sheet in annealing furnace, apparatus for measuring the same, continuous annealing process, and continuous galvanizing process

Also Published As

Publication number Publication date
JPH0242402B2 (en) 1990-09-21

Similar Documents

Publication Publication Date Title
JP6472778B2 (en) System for monitoring microstructure of metal target, method thereof, and method of manufacturing metal target
US4686471A (en) System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
JP2005257701A (en) Method and apparatus for measuring material characteristics of magnetic substance material
JPS59188508A (en) On-line detector for amount of transformation and flatness of steel material
JPS6352345B2 (en)
KR100711471B1 (en) On-line transformation ratio determination device of hot rolled steel sheet
JP3707547B2 (en) Method for measuring Si concentration in steel material and method for producing electrical steel sheet
JP6607242B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JPS6110749A (en) Apparatus for measuring surface and internal characteristics of running plate material
JPH05281063A (en) Measuring device for tension of steel material
JPH1068705A (en) Method and device for measuring transformation ratio of steel
JPS6017350A (en) Method for measuring transformation rate of metal
KR900005481B1 (en) On-line inspection instrument for aknomal quantities and flatness of iron matters
JP2000227421A (en) Eddy current examination
JP3755403B2 (en) Method for measuring transformation state of magnetic material and measuring device for transformation state of magnetic material
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPH03160361A (en) Transformation quantity measuring apparatus for steel material
CA1260064A (en) System for online-detecting transformation value and/or flatness of steel or magnetic material
RU2795102C1 (en) Device for testing steel plate surface material properties and method for testing steel plate surface material properties
JPS59110737A (en) Method and apparatus for controlling heat treatment in continuous annealing
JPS59109859A (en) Measuring device of grain size of steel plate
JP3950372B2 (en) Method and apparatus for detecting cracks in steel strip
JPH0862181A (en) Method and apparatus for measurement of transformation rate
JP2663767B2 (en) Transformation rate measuring method and apparatus
JPS61147126A (en) Measuring method of temperature of steel material by electromagnetic induction