JPS61147126A - Measuring method of temperature of steel material by electromagnetic induction - Google Patents

Measuring method of temperature of steel material by electromagnetic induction

Info

Publication number
JPS61147126A
JPS61147126A JP26892884A JP26892884A JPS61147126A JP S61147126 A JPS61147126 A JP S61147126A JP 26892884 A JP26892884 A JP 26892884A JP 26892884 A JP26892884 A JP 26892884A JP S61147126 A JPS61147126 A JP S61147126A
Authority
JP
Japan
Prior art keywords
temperature
coil
steel material
excitation
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26892884A
Other languages
Japanese (ja)
Other versions
JPH049450B2 (en
Inventor
Masahiko Morita
正彦 森田
Ensuke Ishibashi
石橋 延介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26892884A priority Critical patent/JPS61147126A/en
Publication of JPS61147126A publication Critical patent/JPS61147126A/en
Publication of JPH049450B2 publication Critical patent/JPH049450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils

Abstract

PURPOSE:To measure temperature speedily without any restriction of plate thickness even if a lift-off is large by using an exciting coil and two induction coils, setting an excitation frequency above a value determined by a specific expression according to the plate thickness of a steel material to be measured, and detecting the quantity of variation in each induced voltage and calculating a parameter from a specific expression. CONSTITUTION:The exciting coil 60 which is arranged at either side of the steel material 16 to be measured and the induction coils 62 and 64 which are arranged at said side at different distances from the coil 60 are used to set the excitation frequency of the coil 60 above the value fc determined of a rela tion of fc=12.5/t<2> according to the plate thickness (t) of the steel material. Then, the coil 60 is excited to detect the quantities DELTAE1 and DELTAE2 of variation from the reference states of induced voltages of the coils 62 and 64, and the parameter M is calculated from M=DELTAE1.K<alpha>,(alpha=-DELTAE2/DELTAE1), so that the temperature of the steel material is calculated from the value.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、電磁誘導による鋼材の温度測定方法に係り、
特に、熱間圧延ラインあるいは連続焼鈍等の熱処理ライ
ンにおいて製造される鋼材の材質制御を行う目的で使用
するのに好適な、磁気誘導方式の検出コイルを用いる鋼
材の温度測定方法に関する。
The present invention relates to a method for measuring temperature of steel materials by electromagnetic induction,
In particular, the present invention relates to a method of measuring the temperature of steel using a magnetic induction detection coil, which is suitable for controlling the material quality of steel produced in a hot rolling line or a heat treatment line such as continuous annealing.

【従来の技術】[Conventional technology]

例えば、ホットストリップミルあるいはプレートミルの
ような熱間圧延ラインにおいては、熱間圧延後の鋼材に
ll111m冷却を施し、鋼の機械的佐賀を強靭化する
方法が採用され、又、熱処理ラインにおいては、焼入れ
、焼戻し、焼鈍し等の種々の熱18理を施し、鋼の機械
的性質を調整する方法が採用されている。 上記のような処理において、最終的な鋼の機械的性質を
所望の範囲に調整する上で最も重要なことは、被処理鋼
の熱履歴を制御することであり、そのIII m 18
度を向上せしめるための基本的要件として、処理工程中
の鋼の温度を正確に検出することが重要である。 従来、T集的規模の前記のような製造ラインにおいて通
常用いられているのは放tIJ温度計であるが、周知の
ように、放射温度計は、被測定体の放射率の変動が直接
測定精度に影響を与えること、及び、水冷中の鋼材のよ
うに、冷却水による水腹に覆われた状態、あるいは、水
蒸気等が充満しているような測定環境下等では、実質的
に測定が不可能であり、温度11J IIIに利用する
上で甚だ不充分であった。 又、渦流式温度計を用いる測温法も知られているが、そ
れらの大部分は、測定精度の面から測温範囲が約200
℃未満の低温域に限定されるため、前記製造ラインへの
適用が不可能である。 このような渦流式温度計を高温域での測温に用いること
ができるように改善するものとして、特開昭59−87
330が提案されている。この提案による温度測定方法
では、第6図に示す如く、同軸配置した1次コイル12
及び2次コイル14からなるプO−プ型の検出コイル1
0が用いられる。このような検出コイル10の1次コイ
ル12に高周波電流を流すと、2次コイル14には、被
測定体16の透磁率μ、導電率σ、検出コイル10と被
測定体16との距離(以下、リフトオフと称する)h、
及び1次コイル12の励81(電流)周波数「によって
定まる一定の誘起電圧v2が誘起される。被測定体16
の厚さが検出コイル10の直径に対して充分に大きく、
実質的に無限大とみなされる条件で、且つ、透磁率μ及
び励磁周波数fの範囲を特定すれば、透磁率μ、導電率
σ及び励磁周波数[による前記誘起電圧■2の複素電圧
平面上の変化は、リフトオフhを固定した条件として考
えると、第7図に示すflRII CM上を、パラメー
タK(−μ、・σ・[)に対応して動くようになる。こ
のような特定された測定条件範囲のもとで、予め第7図
中の曲ICM上に特定の点として、^lfI域測温に対
しては点X、低温域測温に対しては点X′を設定し、こ
れらの基準貞X、X=に対応した誘起電圧v2が発生す
るような基準励磁周波数[0で1111温を行い、11
瀉中に被測定体16の温度変化によって、透磁率μ又は
導電率σの変化が生じて誘起電圧V2が基準点からずれ
た場合に、このずれを元に戻すように、励磁周波数rを
可変ill Illする。この時、基準励磁周波数 「
0と修正後の励磁周波数1との偏差Δr  <−r−r
、>は、被測定体16のμ/ρの温度による変化量Δ(
μ7・′ρ)と正比例の関係にあるから、予め被測定体
16のΔ(μ、・′σ)と温度変化量との関係曲線を求
めておき、周波数偏差Δ1から変化I(μ/σ)を求め
、次いでΔ(μ、・/σ)から温度を検出するようにし
ている。 これらの測定は、例えば第8図に示すような回路構成に
よって行われるが、リフトオフhの変動する測定条件下
では、この変動補正を正確に行わなければ測定精度が著
しく悪化するので、この補正のために移相器20、同期
検波器22、積分器24、リフトオフ変動補正演算器2
6等を用いる必要がある。第8図において、28は高周
波発振器、30は増幅器、31は基準位相差演算器、3
2.34は移相器、36.38は同期検波器、40.4
2は積分器、44は位相差演算器、46は周波数コンバ
ータ、48は周波数一温度変換演算器、50は発振周波
数制御回路である。
For example, in hot rolling lines such as hot strip mills or plate mills, a method is adopted in which the steel material after hot rolling is cooled by 111m to strengthen the mechanical strength of the steel, and in heat treatment lines, The mechanical properties of steel are adjusted by subjecting it to various thermal treatments such as quenching, tempering, and annealing. In the above-mentioned treatment, the most important thing in adjusting the mechanical properties of the final steel to the desired range is to control the thermal history of the steel to be treated, and its III m 18
Accurately detecting the temperature of the steel during the treatment process is a fundamental requirement for improving the temperature. Conventionally, radiation thermometers have been commonly used in the above-mentioned production lines on a T-intensive scale, but as is well known, radiation thermometers can directly measure fluctuations in the emissivity of the object to be measured. This may affect the accuracy, and it is virtually impossible to measure in a measurement environment where the steel material is water-cooled, is covered with a water belly caused by cooling water, or is filled with water vapor, etc. This was impossible, and it was extremely insufficient for use at a temperature of 11J III. Temperature measurement methods using eddy current thermometers are also known, but most of them have a temperature measurement range of about 200 mm due to measurement accuracy.
Since it is limited to a low temperature range below .degree. C., it cannot be applied to the above manufacturing line. In order to improve such an eddy current thermometer so that it can be used for temperature measurement in a high temperature range, Japanese Patent Application Laid-Open No. 59-87
330 has been proposed. In the temperature measurement method according to this proposal, as shown in FIG.
and a secondary coil 14.
0 is used. When a high-frequency current is passed through the primary coil 12 of the detection coil 10, the secondary coil 14 has the magnetic permeability μ, the electrical conductivity σ, and the distance between the detection coil 10 and the measurement object 16 ( (hereinafter referred to as lift-off)h,
A constant induced voltage v2 determined by the excitation 81 (current) frequency of the primary coil 12 is induced.
is sufficiently large relative to the diameter of the detection coil 10;
Under conditions that are considered to be practically infinite, and by specifying the range of magnetic permeability μ and excitation frequency f, the above induced voltage (2) on the complex voltage plane due to magnetic permeability μ, conductivity σ, and excitation frequency [ If the lift-off h is considered as a fixed condition, the change will move on the flRII CM shown in FIG. 7 in response to the parameters K(-μ, ·σ · [). Under such a specified range of measurement conditions, point X' is set, and the reference excitation frequency [1111 temperature is performed at 0, 11
When the induced voltage V2 deviates from the reference point due to a change in the magnetic permeability μ or conductivity σ due to a temperature change in the measured object 16 during cooling, the excitation frequency r is varied so as to restore this deviation. ill Ill. At this time, the reference excitation frequency “
Deviation Δr between excitation frequency 0 and corrected excitation frequency 1 <-rr
, > is the amount of change Δ(
Since the relationship is directly proportional to μ7・'ρ), a relationship curve between Δ(μ,・'σ) of the measured object 16 and the amount of temperature change is determined in advance, and the change I(μ/σ) is determined from the frequency deviation Δ1. ), and then the temperature is detected from Δ(μ, ./σ). These measurements are performed using, for example, a circuit configuration as shown in Fig. 8, but under measurement conditions where the lift-off h fluctuates, measurement accuracy will deteriorate significantly if this fluctuation correction is not performed accurately. Therefore, a phase shifter 20, a synchronous detector 22, an integrator 24, a lift-off fluctuation correction calculator 2
It is necessary to use 6th grade. In FIG. 8, 28 is a high frequency oscillator, 30 is an amplifier, 31 is a reference phase difference calculator, 3
2.34 is a phase shifter, 36.38 is a synchronous detector, 40.4
2 is an integrator, 44 is a phase difference calculator, 46 is a frequency converter, 48 is a frequency-to-temperature conversion calculator, and 50 is an oscillation frequency control circuit.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、特開昭59−87330で提案された測
温方法は、検出コイル10の直径に対して無限大とみな
される厚さを持った被測定体16の1度を測定する場合
において漸く適用できる方法である。従って、板厚が0
.2〜2nの範囲の、連袂焼鈍炉で熱処理されるような
冷延鋼帯、及び、板厚が1〜20mの範囲の、ホットス
トリップミルで製造される熱延鋼帯、あるいは、板厚1
0〜70 zmの範囲の、プレートミルで製造される熱
延iiI板等を対象として測温する場合には、検出コイ
ル10の直径を著しく小さくしなければならないことと
なり、測定精度の悪化及び検出限界リフトオフの減少等
によって、実貿的に測定に使用することができなかった
。 又、瀧度綽出にあたって、必要な周波数偏差Δrを検出
するのに、励磁周波数「を可変制御しなければならない
こと、及び、リフトオフhが変動する条件のもとでは、
この変動補正を行ねなければならないこと等の原因によ
り、ハード及びソフトの両面において複雑な機構を要す
るため、ii[が高価となるだけでなく、、nsに時間
がかがる。 従って、例えば鋼の焼入れのような急激な温度変化を生
ずる測定に対しては、連続的な冷却曲線を検出すること
ができない。又、ホットストリップミルのランアウトテ
ーブル上での?1!温のように、被測定体が高速で移動
しているような場合には、周波数偏差Δfを求める操作
をしている間に測定位置が変化するので、各測定位置に
対応する正確な温度を検出することができない等の難点
を生じていた。
However, the temperature measurement method proposed in JP-A-59-87330 can only be applied to the case of measuring 1 degree of the object to be measured 16 whose thickness is considered to be infinite compared to the diameter of the detection coil 10. It's a method. Therefore, the plate thickness is 0
.. Cold-rolled steel strips heat-treated in a continuous annealing furnace with a thickness of 2 to 2n, hot-rolled steel strips manufactured in a hot strip mill with a thickness of 1 to 20m, or hot-rolled steel strips with a thickness of 1
When measuring the temperature of a hot-rolled III plate manufactured by a plate mill in the range of 0 to 70 zm, the diameter of the detection coil 10 must be significantly reduced, resulting in deterioration of measurement accuracy and detection Due to the decrease in critical lift-off, etc., it could not be used for practical measurements. In addition, in order to detect the necessary frequency deviation Δr in the case of Takido Karitake, the excitation frequency must be variably controlled, and under conditions where the lift-off h fluctuates,
Due to the necessity of performing this fluctuation correction, a complicated mechanism is required in terms of both hardware and software, which not only makes ii[ expensive but also takes time. Therefore, it is not possible to detect a continuous cooling curve for measurements that cause rapid temperature changes, such as for example during hardening of steel. Also, on the runout table of a hot strip mill? 1! When the object to be measured is moving at high speed, such as when measuring temperature, the measurement position changes while calculating the frequency deviation Δf, so it is difficult to obtain the accurate temperature corresponding to each measurement position. This has caused problems such as the inability to detect it.

【発明の目的] 本発明は、前記従来の問題点を解消するべくなされたもので、被測定鋼材の板厚の制約を受けることなく、リフトオフの大きい状態においても、比較的簡単な装置構成により極めて迅速に測定を行うことができる鋼材の温度測定方法を提供することを目的とする。 【問題点を解決するための手段】[Purpose of the invention] The present invention has been made to solve the above-mentioned conventional problems, and allows measurements to be made extremely quickly with a relatively simple device configuration, even under conditions of large lift-off, without being limited by the thickness of the steel material to be measured. The purpose of the present invention is to provide a method for measuring the temperature of steel materials. [Means to solve the problem]

本発明は、電i&誘導による鋼材の温度測定に際して、
被測定材たる鋼材のいずれか一方の側に配置した、交流
励磁によって交番磁束を発生する励磁コイルと、該励磁
コイルと同一側で、且つ、励磁コイルからの距離が異な
る位置に配置した、前記励磁コイルによって相互誘導さ
れる、独立した211の誘導コイルとを用いて、前記励
磁コイルの励磁周波数を、an板厚tに応じて、次式%
式%(1) の関係で定まるiiI fc以上に設定して、前記励磁
コイルを励磁し、その時の各誘導コイルの誘起電圧の基
準状態からの変化量ΔE1及びΔE2を検出し、これか
ら次式 %式%(2) に示されるパラメータMを求め、該パラメータMの値か
ら鋼材の温度を求めるようにして、前記目的を達成した
ものである。 又、本発明の実施態様は、前記2個の誘導コイルを、前
記励磁コイルからの距離が互いに20m1以上異なる位
置に配置するようにして、特にリフトオフの変動による
影響を受は難くしたものである。
The present invention provides the following advantages when measuring the temperature of steel materials by electric induction and induction.
an excitation coil that generates an alternating magnetic flux through alternating current excitation, which is placed on either side of the steel material to be measured; Using 211 independent induction coils that are mutually induced by the excitation coil, the excitation frequency of the excitation coil is determined according to the plate thickness t by the following formula %
The excitation coil is excited by setting iiiI fc determined by the relationship of formula % (1) or more, and the changes ΔE1 and ΔE2 from the reference state of the induced voltage of each induction coil at that time are detected, and from this, the following formula % The above object is achieved by determining the parameter M shown in formula % (2) and determining the temperature of the steel material from the value of the parameter M. Further, in an embodiment of the present invention, the two induction coils are arranged at positions whose distances from the excitation coil differ from each other by 20 m or more, so that they are particularly less susceptible to lift-off fluctuations. .

【作用】[Effect]

本発明においては、第1図に示す如く、被測定体16の
いずれか一方の側(図では下側)に、励磁コイル60と
第1及び第2誘導コイル62.64からなり、前記励磁
コイル60と第1誘導コイル62との距11J!1と、
励磁コイル60と第2誘導コイル64との距離12が異
なるように配置された検出コイル58を配置する。この
ような検出コイル58の構成において、交流励faW装
置66によって前記励磁コイル60に所定周波数「の交
流電流を流すと、交番磁束Φ1及びΦ2によって前記第
1誘導コイル62及び第2Vg導コイル64に誘起電圧
が発生する。ここで、検出コイル58上に被測定体16
がない状態(以下、基準状態と称する)と、検出コイル
58上に被測定体16がある状態(以下、測定状態と称
する)での第11!導コイル62の誘起電圧の変化量を
ΔE+とじ、同じく第2誘導コイル64の誘起電圧の変
化量をΔE2とすると、検出コイル58の形状、配置、
断面積1巻数、励磁1t1、励磁周波数を一定とした時
、前記変化量ΔE1及びΔE2は、被測定体16の透磁
率μ及び導電率σ、リフトオフh及び被測定体16の板
厚(によって変化する。前記各因子のうち、被測定体1
6の透磁率μ及び導電率σは、温度に依存する因子であ
って、これによる変化量から温度を検出することができ
る。一方、リフトオフh及び板厚tは温度を検出する上
での外乱因子となるものである。 ここで、前記各因子による前記変化量ΔE1とΔE2の
変化の関係を示すと、第2図に示す如くとなる。なお、
第2図中の点0は基準状態における位置である。 まず、リフトオフ11が変化した場合には、例えば第2
図で点aの条件であるような測定状態の時に、透磁率μ
及び導電率σが一定(即ら温度が一定)でリフトオフj
1のみが小さくなると、点aは、曲線X上を点0から離
れる方向に移動し、リフトオフhが無限大になると点0
に収束する。変化量ΔE1及びΔE2は、リフトオフh
の小さい領域で大きく、点0に近づくに従って小さくな
る。 一方、被測定体16の温度が変化した場合には、例えば
点aの条件からリフトオフh及び板厚tが一定で温度の
みが低下した場合、点aは、破線で示す線上をa −*
b−*cの方向に移eする。 又、板厚【が変化した場合にも、前記の温度が変化した
場合と定性的には同様の挙動を示すが、その仕方の詳細
は、後述するように板厚tと明確な対応があり、板厚(
の小さい領域では、板厚tの違いによる変化量が大きく
、板厚【が増大するに従って変化量は飽和する傾向とな
る。そして、励磁周波数rを大きくしていくと変化が飽
和する板厚【は小さくなる。 本発明者等は、以上の知見をもとに、変化量ΔE1とΔ
E2の第2図上における変化の仕方は、リフトオフb 
、湿度、板厚(に対して、それぞれ独自の挙動を示し、
温度、リフトオフh、板厚tが同時に変動する条件下に
おいても、外乱因子となるリフトオフh及び板厚tによ
る変化分を分離することができれば、測定対象因子であ
る温度を独立に把握できるとの考えに立脚し、検討を重
ねた結果、以下のことを見出して本発明を案出したもの
である。 即ち、本発明者等の検討の結果、下記のことが判明した
。 (1)板厚を及び温度が一定の場合、前出(2)式に示
すパラメータMは、リフトオフhの変動に拘わらず一定
値をとる。 第3図に、第1図に示す構成の検出コイル58を用いて
、板厚が51の熱延鋼板(C−0,15%、〜1n−0
.60%、5i−0,15%)を被測定体16とし、所
定の温度(500℃、600℃、700℃)に保持した
条件下で、リフトオフ11を20〜130龍の範囲で変
動せしめて測定した時の、前出(2)式で定められるパ
ラメータMとリフトオフ11の関係を示す。第3図から
明らかな如く、パラメータMは、リフトオフhとは無関
係に、温度に応じた一定値を示している。従って、パラ
メータMを用いることによって、リフトオフhの変動に
よる外乱を除去することが可能である。 なお、前出(2)式で用いられている定数には、検出コ
イル58の形状、配置、断面積、巻数、励磁l!流、励
磁周波数によって定まる定数である。 (2)励磁周波数fを前出(1)式に示すil fc以
上とづることによって、パラメータMに及ぼす被測定体
16の板厚[による変化は飽和する。 第4図に、第1図に示す構成の検出コイル58を用いて
、励磁周波数f−50)fzの条件下で、板厚tの異な
る鋼板について、所定の温度(700℃)で測定した場
合の、パラメータMと被測定体16の板厚tの関係を示
す。第4図から明らかな如く、板厚tの増大と共にパラ
メータMは温度に応じた飽和f1Msを示す。この飽和
IBMgを示す板厚のIII (cは、励磁コイル60
の励磁周波数fによって異なり、励磁周波Wlfが高く
なるほど【Cは小さくなる。従って、tcの値が被測定
体16の板厚tに比べて小さくなるように励磁周波数「
を選択することによって、パラメータMは板厚に無関係
となり、湿度に対応する値を示すものとなる。これにつ
いて発明者等は、被測定体16の温度が室温〜720℃
の範囲で前記条件を満足するための励磁周波数「Cにつ
いて検討した結果、前出(1)式の関係を見出したもの
である。 次に、パラメータMと被測定体16の温度の関係につい
て検討づる。第5図に、板厚【が3.0■、5.On、
10.C)+mと異なる3種の鋼板の板厚の1/4の深
さの位置に熱電対を装着し、750℃に加熱した後、1
0〜b 度で冷却した際の、本発明法(励磁周波数r=50 H
y、 )により測定したパラメータMと熱電対温度の関
係を示づ。第5図から明らかな如く、いずれの鋼板にお
いても1両者の間には明確な対応があることが明らかで
あり、このような関係を予め求めておくことにより、被
測定材の温度を求めることができる。 【実施例1 以下図面を参照して、本発明が採用された温度測定装置
の実施例を詳細に説明する。 本実施例は、−′1出第1図に示プ如く、既に説明した
励磁コイル60及び誘導コイル62.64からなる検出
コイル58と、前記励磁コイル60に励磁周波数「の交
流を供給する交流励磁装置66と、前記誘導コイル62
.64に誘導された誘起電圧を増幅するための増幅器6
8.70と、該増幅器68.70によって増幅された誘
起電圧に対応する交流信号を直流信号に変換するための
検波器72.74と、該検波器72.74を介して入力
される各誘導コイル62.64の誘起電圧信号及び別途
設けられた板厚測定器から伝送されてきた(又は予め入
力された)被測定体16の板厚信号からパラメータMを
演算し、次いで該パラメータMから湿度を演算すると共
に、板厚信号から前出(1)式で規定される値「Cを演
算し、被測定体16の板厚【に応じた最適な励磁周波数
fを選定して、前記交流励磁装置66に入力する演算制
御lv&置76とから構成されている。 前記励磁コイル60と第2誘導コイル64の距離12と
、同じく励磁フィル60と第1誘導コイル62の距離1
1の差(i+ −122)は、少くとも2011以上と
することが望ましい。それは、差(A t −122>
が20n未満であると、リフトオフhの変動による変化
量Δε1及びΔE2の変化の仕方が近似し、リフトオフ
hの変動によってパラメータMが変化するようになるた
め、充分な温度測定精度が得られない場合があるからで
ある。 このような装置を用いることによって、測定した変化量
ΔE?及びΔE2からパラメータMを算出し、予め求め
たパラメータMと温度の関係を用いることによって、板
厚が異なる広い範囲の鋼板について、リフトオフが常時
変動する条件下においても測温が可能となる。 本発明者等が、本発明法の適用による有用性を確認りる
ために、厚板圧延機直後の加速冷却装置内での冷却中の
鋼板のIl温、ホットストリップミルのランアウトテー
ブル上の冷却装置内での鋼板の測温、及び連続焼鈍ライ
ンの冷却帯での鋼板の測温に本発明法を用いたところ、
いずれの場合においても、本発明法によって測定した鋼
板の温度脂層と機械的性買との間には、それぞれについ
て、別途行った実験室的な熱!!II歴シュミレート実
験結果との同様の良い対応があり、測温が充分な精度で
行われたことを確認できた。 【発明の効果] 以上説明した通り、本発明によれば、被測定体の板厚の
制約を受けることなり1/4a!が可能となる。 又、リフトオフの大きい状態においても11温が可能と
なり、被測定体の搬送性及びセンサの耐久性の観点から
これらについて障害を及ぼさないようにリフトオフを大
きく設定プることが可能となる。 更に、測定機構及び装置構成が簡便且つ安価であり、測
定が橘めて迅゛速に行える。従って、ホットストリップ
ミルライン及びプレートミルライン等の各種熱延工程に
おける冷却装置内での鋼板の温度、あるいは、連続焼鈍
及び焼入れ、焼戻し処理ライン等の熱処理工程における
炉中の鋼板の温度等、従来精密な測定が困難であった温
度範囲及び測定環境下での連続測温が可能となる。よっ
て、これらの測温データから鋼材の熱aWiをIIII
IIlすることが可能となり、製造中の鋼材の材質制御
及び製造後の材質予測を^精度で行うことが可能となる
。従って、■集的に極めて有用である等の優れた効果を
有する。
In the present invention, as shown in FIG. 1, an excitation coil 60 and first and second induction coils 62 and 64 are provided on one side (lower side in the figure) of the object to be measured 16, and the excitation coil The distance between 60 and the first induction coil 62 is 11J! 1 and
The detection coils 58 are arranged such that the distance 12 between the excitation coil 60 and the second induction coil 64 is different. In such a configuration of the detection coil 58, when an alternating current of a predetermined frequency is passed through the excitation coil 60 by the AC excitation faW device 66, the alternating magnetic fluxes Φ1 and Φ2 cause the first induction coil 62 and the second Vg conducting coil 64 to flow. An induced voltage is generated.Here, the object to be measured 16 is placed on the detection coil 58.
The eleventh! If the amount of change in the induced voltage of the induction coil 62 is ΔE+, and the amount of change in the induced voltage of the second induction coil 64 is ΔE2, then the shape and arrangement of the detection coil 58,
When the number of turns per cross-sectional area, the excitation frequency 1t1, and the excitation frequency are constant, the amounts of change ΔE1 and ΔE2 vary depending on the magnetic permeability μ and conductivity σ of the object to be measured 16, the lift-off h, and the plate thickness of the object to be measured 16. Among the above factors, the measured object 1
The magnetic permeability μ and conductivity σ of No. 6 are factors that depend on temperature, and the temperature can be detected from the amount of change caused by these factors. On the other hand, the lift-off h and the plate thickness t are disturbance factors in detecting the temperature. Here, the relationship between the changes in the amounts of change ΔE1 and ΔE2 due to each of the factors is shown in FIG. 2. In addition,
Point 0 in FIG. 2 is the position in the reference state. First, when the lift-off 11 changes, for example, the second
When the measurement condition is the condition of point a in the figure, the magnetic permeability μ
and lift-off when the conductivity σ is constant (i.e. the temperature is constant)
When only 1 becomes smaller, point a moves away from point 0 on curve X, and when lift-off h becomes infinite, point a moves away from point 0.
converges to. The amount of change ΔE1 and ΔE2 is the lift-off h
It is large in a small region of , and becomes smaller as it approaches point 0. On the other hand, when the temperature of the measured object 16 changes, for example, if the lift-off h and plate thickness t are constant and only the temperature decreases from the conditions of point a, point a will move along the line shown by the broken line a - *
Move in the direction b-*c. Also, when the plate thickness changes, the behavior is qualitatively similar to that when the temperature changes, but the details of this behavior have a clear correspondence with the plate thickness t, as will be explained later. , plate thickness (
In the region where t is small, the amount of change due to the difference in plate thickness t is large, and as the plate thickness t increases, the amount of change tends to be saturated. As the excitation frequency r increases, the plate thickness at which the change is saturated becomes smaller. Based on the above knowledge, the inventors determined that the amount of change ΔE1 and Δ
The way E2 changes on Figure 2 is lift-off b
, humidity, and plate thickness, each exhibiting its own unique behavior.
Even under conditions where temperature, lift-off h, and plate thickness t change simultaneously, if the change due to lift-off h and plate thickness t, which are disturbance factors, can be separated, it is possible to independently grasp the temperature, which is a factor to be measured. Based on this idea and as a result of repeated studies, we have discovered the following and devised the present invention. That is, as a result of the studies conducted by the present inventors, the following was found. (1) When the plate thickness and temperature are constant, the parameter M shown in equation (2) above takes a constant value regardless of fluctuations in lift-off h. In FIG. 3, a hot rolled steel plate (C-0, 15%, ~1n-0
.. 60%, 5i-0.15%) was used as the measured object 16, and the lift-off 11 was varied in the range of 20 to 130 degrees under the condition that the temperature was maintained at a predetermined temperature (500°C, 600°C, 700°C). The relationship between the parameter M determined by the above-mentioned equation (2) and the lift-off 11 when measured is shown. As is clear from FIG. 3, the parameter M has a constant value depending on the temperature, regardless of the lift-off h. Therefore, by using the parameter M, it is possible to remove disturbances due to variations in liftoff h. The constants used in equation (2) above include the shape, arrangement, cross-sectional area, number of turns, and excitation l! of the detection coil 58. It is a constant determined by the current and excitation frequency. (2) By setting the excitation frequency f to be equal to or higher than il fc shown in equation (1) above, the change due to the plate thickness of the object to be measured 16 on the parameter M is saturated. FIG. 4 shows a case where steel plates with different thicknesses t are measured at a predetermined temperature (700° C.) under the condition of excitation frequency f-50)fz using the detection coil 58 having the configuration shown in FIG. 1. The relationship between the parameter M and the plate thickness t of the object to be measured 16 is shown. As is clear from FIG. 4, as the plate thickness t increases, the parameter M shows a saturation f1Ms depending on the temperature. III (c is the excitation coil 60
It depends on the excitation frequency f, and the higher the excitation frequency Wlf, the smaller [C] becomes. Therefore, the excitation frequency "
By selecting , the parameter M becomes independent of the plate thickness and indicates a value corresponding to humidity. Regarding this, the inventors believe that the temperature of the object to be measured 16 is between room temperature and 720°C.
As a result of examining the excitation frequency "C" to satisfy the above conditions in the range of Figure 5 shows the board thickness [is 3.0cm, 5.On,
10. C) Attach a thermocouple to the depth of 1/4 of the thickness of three types of steel plates different from +m, and after heating to 750℃,
The method of the present invention (excitation frequency r = 50 H
The relationship between the parameter M and the thermocouple temperature measured by y, ) is shown. As is clear from Figure 5, it is clear that there is a clear correspondence between the two for any steel plate, and by determining such a relationship in advance, the temperature of the material to be measured can be determined. I can do it. Example 1 An example of a temperature measuring device to which the present invention is applied will be described in detail below with reference to the drawings. This embodiment, as shown in FIG. an excitation device 66 and the induction coil 62
.. Amplifier 6 for amplifying the induced voltage induced in 64
8.70, a detector 72.74 for converting an AC signal corresponding to the induced voltage amplified by the amplifier 68.70 into a DC signal, and each induction input via the detector 72.74. The parameter M is calculated from the induced voltage signal of the coils 62 and 64 and the plate thickness signal of the measured object 16 transmitted from a separately provided plate thickness measuring device (or inputted in advance), and then the humidity is calculated from the parameter M. At the same time, calculate the value "C" specified by the above formula (1) from the plate thickness signal, select the optimum excitation frequency f according to the plate thickness of the object to be measured 16, and perform the AC excitation. It is composed of an arithmetic control lv & position 76 that is input to the device 66. The distance 12 between the excitation coil 60 and the second induction coil 64, and the distance 1 between the excitation filter 60 and the first induction coil 62.
It is desirable that the difference (i+ -122) of 1 is at least 2011 or more. It is the difference (A t −122>
If is less than 20n, the changes in the amounts Δε1 and ΔE2 due to variations in lift-off h will be similar, and the parameter M will change due to variations in lift-off h, so sufficient temperature measurement accuracy may not be obtained. This is because there is. By using such a device, the amount of change ΔE? By calculating the parameter M from . In order to confirm the usefulness of applying the method of the present invention, the present inventors investigated the Il temperature of a steel plate during cooling in an accelerated cooling device immediately after a plate rolling mill, and the cooling temperature on a runout table of a hot strip mill. When the method of the present invention was used to measure the temperature of the steel plate in the equipment and the temperature of the steel plate in the cooling zone of the continuous annealing line,
In either case, there is a difference between the temperature fat layer of the steel plate measured by the method of the present invention and the mechanical resistance, which was separately conducted in a laboratory. ! There was a good correspondence with the results of the II history simulation experiment, and it was confirmed that the temperature measurement was performed with sufficient accuracy. [Effects of the Invention] As explained above, according to the present invention, the thickness of the object to be measured can be reduced to 1/4a! becomes possible. Further, even in a state where the lift-off is large, a temperature of 11 degrees is possible, and from the viewpoint of the transportability of the object to be measured and the durability of the sensor, it is possible to set the lift-off large so as not to cause any problems. Furthermore, the measuring mechanism and device configuration are simple and inexpensive, and measurements can be performed extremely quickly. Therefore, the temperature of the steel plate in the cooling equipment in various hot rolling processes such as hot strip mill lines and plate mill lines, or the temperature of the steel plate in the furnace in heat treatment processes such as continuous annealing, quenching, and tempering lines, etc. Continuous temperature measurement becomes possible in temperature ranges and measurement environments where accurate measurement was difficult. Therefore, from these temperature data, the heat aWi of the steel material can be determined by
This makes it possible to control the material quality of steel materials during manufacturing and predict material quality after manufacturing with high precision. Therefore, it has excellent effects such as being extremely useful collectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係る電[導による鋼材の温度測定方
法が採用された温度測定装置の実施例の構成を示す、一
部ブロック線図を含む断面図、第2図は、本発明の詳細
な説明するための、誘導フィルの誘起電圧の挙動を示す
縮図、第3図は、同じく、パラメータMの値とリフトオ
フの関係の例を示す線図、第4図は、同じく、パラメー
タMの値の板厚による変化の例を示す線図、第5図は、
同じく、パラメータMの値と被測定体の温度の関係の例
を示す線図、第6図は、従来の温°度測定方法の一例で
用いられている渦流式検出コイルの構成を示す断面図、
第7図は、前記従来例の測定原理を説明するための、2
次コイル誘起電圧の複素電圧平面上での基準点の挙動を
示す線図、第8図は、前記従来例を実施するための装置
の回路構成の例を示すブロック線図である。 16・・・被測定体、 11・・・リフトオフ、 f・・・励磁周波数、 58・・・検出コイル、 60・・・励磁コイル、 62.64・・・誘導コイル、 11、λ2・・・距離、 66・・・交流励磁装置、 Φ1、Φ2・・・交番磁束。 ΔE + 、ΔE2・・・誘起電圧の変化量、(・・・
板厚。
FIG. 1 is a cross-sectional view, including a partial block diagram, showing the configuration of an embodiment of a temperature measuring device in which the method for measuring temperature of steel materials by electrical conduction according to the present invention is adopted; FIG. 2 is a cross-sectional view including a partial block diagram; FIG. 3 is a diagram showing an example of the relationship between the value of the parameter M and lift-off, and FIG. 4 is a diagram showing the relationship between the value of the parameter M and the lift-off. Figure 5 is a diagram showing an example of changes in the value of due to plate thickness.
Similarly, a diagram showing an example of the relationship between the value of the parameter M and the temperature of the object to be measured, and FIG. 6 is a cross-sectional view showing the configuration of an eddy current detection coil used in an example of a conventional temperature measurement method. ,
FIG. 7 shows two diagrams for explaining the measurement principle of the conventional example.
FIG. 8, which is a diagram showing the behavior of the reference point on the complex voltage plane of the next coil induced voltage, is a block diagram showing an example of the circuit configuration of the device for implementing the conventional example. 16... Object to be measured, 11... Lift-off, f... Excitation frequency, 58... Detection coil, 60... Excitation coil, 62.64... Induction coil, 11, λ2... Distance, 66... AC excitation device, Φ1, Φ2... Alternating magnetic flux. ΔE + , ΔE2...Amount of change in induced voltage, (...
Plate thickness.

Claims (2)

【特許請求の範囲】[Claims] (1)被測定材たる鋼材のいずれか一方の側に配置した
、交流励磁によつて交番磁束を発生する励磁コイルと、
該励磁コイルと同一側で、且つ、励磁コイルからの距離
が異なる位置に配置した、前記励磁コイルによつて相互
誘導される、独立した2個の誘導コイルとを用いて、 前記励磁コイルの励磁周波数を、鋼材板厚tに応じて、
次式 fc=12.5/t^2 の関係で定まる値fc以上に設定して、前記励磁コイル
を励磁し、 その時の各誘導コイルの誘起電圧の基準状態からの変化
量ΔE_1及びΔE_2を検出し、これから次式 M=ΔE_1・K^−^Δ^(E_2)^/^Δ^(E
_1)(Kは定数)に示されるパラメータMを求め、 該パラメータMの値から鋼材の温度を求めるようにした
ことを特徴とする電磁誘導による鋼材の温度測定方法。
(1) An excitation coil that generates an alternating magnetic flux by AC excitation, which is placed on either side of the steel material to be measured;
Excitation of the excitation coil using two independent induction coils that are mutually induced by the excitation coil and are placed on the same side as the excitation coil and at different distances from the excitation coil. The frequency is determined according to the steel plate thickness t,
The excitation coil is excited by setting it to a value fc or more determined by the relationship of the following formula fc = 12.5/t^2, and the changes ΔE_1 and ΔE_2 from the reference state of the induced voltage of each induction coil at that time are detected. From this, the following formula M = ΔE_1・K^-^Δ^(E_2)^/^Δ^(E
_1) A method for measuring the temperature of a steel material by electromagnetic induction, characterized in that the parameter M shown in (K is a constant) is determined, and the temperature of the steel material is determined from the value of the parameter M.
(2)前記2個の誘導コイルを、前記励磁コイルからの
距離が互いに20mm以上異なる位置に配置するように
した特許請求の範囲第1項記載の電磁誘導による鋼材の
温度測定方法。
(2) The method for measuring temperature of steel material by electromagnetic induction according to claim 1, wherein the two induction coils are arranged at positions different from each other by 20 mm or more in distance from the excitation coil.
JP26892884A 1984-12-20 1984-12-20 Measuring method of temperature of steel material by electromagnetic induction Granted JPS61147126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26892884A JPS61147126A (en) 1984-12-20 1984-12-20 Measuring method of temperature of steel material by electromagnetic induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26892884A JPS61147126A (en) 1984-12-20 1984-12-20 Measuring method of temperature of steel material by electromagnetic induction

Publications (2)

Publication Number Publication Date
JPS61147126A true JPS61147126A (en) 1986-07-04
JPH049450B2 JPH049450B2 (en) 1992-02-20

Family

ID=17465224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26892884A Granted JPS61147126A (en) 1984-12-20 1984-12-20 Measuring method of temperature of steel material by electromagnetic induction

Country Status (1)

Country Link
JP (1) JPS61147126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257847A (en) * 2008-04-14 2009-11-05 Ulvac-Riko Inc Measurement method of voltage and temperature at a plurality of points

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693084B2 (en) * 2001-08-08 2011-06-01 財団法人電力中央研究所 Nondestructive method for estimating the temperature reached by a high-temperature member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257847A (en) * 2008-04-14 2009-11-05 Ulvac-Riko Inc Measurement method of voltage and temperature at a plurality of points

Also Published As

Publication number Publication date
JPH049450B2 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
US10144987B2 (en) Sensors
US4686471A (en) System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
US8174258B2 (en) Method and system for measurement of parameters of a flat material
JP7343575B2 (en) Device for in-line measurement of the proportion of austenite in steel
US5420518A (en) Sensor and method for the in situ monitoring and control of microstructure during rapid metal forming processes
KR900006692B1 (en) Method of controlling of hot rolled steel sheet and system therefor
JPS61147126A (en) Measuring method of temperature of steel material by electromagnetic induction
JPH0242402B2 (en)
JPH0989845A (en) Method and equipment for nondestructive inspection of hardening depth
JPS5847243A (en) Method of and apparatus for monitoring phase modification of steel
US20090071954A1 (en) Induction Tempering Method, Induction Tempering Apparatus, and Induction Tempered Product
RU2029313C1 (en) Device for non-destructive checking of specific losses in anisotropic electrical-sheet steel
SU1739214A2 (en) Method of contact-free measurement of temperature of current-conducting cylindrical articles
JPH03160361A (en) Transformation quantity measuring apparatus for steel material
KR900005481B1 (en) On-line inspection instrument for aknomal quantities and flatness of iron matters
JPH04236724A (en) Method for controlling temperature in continuous heat treatment line
JPH0369973B2 (en)
JPS6250407A (en) Soaking method for metallic plate
JPH0641936B2 (en) Online Prediction Method of Ferrite Grain Size of Steel
CN112313353A (en) Method and system for controlling the microstructure of a steel strip in a hot-working apparatus using electromagnetic sensors
JPH0862181A (en) Method and apparatus for measurement of transformation rate
JPH11166918A (en) Method and device for measuring rate of transformation
JPH04274812A (en) Cooling control method for hoop in hot rolling
Williams Eddy-Current Technique for Sub-Surface Temperature Measurement in a Cast Steel Strand

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees