JPS6250407A - Soaking method for metallic plate - Google Patents

Soaking method for metallic plate

Info

Publication number
JPS6250407A
JPS6250407A JP60191775A JP19177585A JPS6250407A JP S6250407 A JPS6250407 A JP S6250407A JP 60191775 A JP60191775 A JP 60191775A JP 19177585 A JP19177585 A JP 19177585A JP S6250407 A JPS6250407 A JP S6250407A
Authority
JP
Japan
Prior art keywords
metallic plate
heaters
metal plate
heating
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60191775A
Other languages
Japanese (ja)
Inventor
Ensuke Ishibashi
石橋 延介
Tatsuo Yoneyama
米山 達雄
Masahiko Morita
正彦 森田
Koichi Hashiguchi
橋口 耕一
Shinobu Okano
岡野 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60191775A priority Critical patent/JPS6250407A/en
Publication of JPS6250407A publication Critical patent/JPS6250407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To improve the soaking of a metallic plate by disposing plural pieces of linear heaters in parallel, placing the metallic plate below the heaters and oscillating the heaters at a specific amplitude and oscillation frequency orthogonally with the axis thereof and parallel with the plane of the metallic plate. CONSTITUTION:Plural pieces of the linear IR heaters 2 are housed in a unit 3 in parallel and the metallic plate 1 is placed below the same. A crystal grain size measuring instrument 4 by X-rays is attached to the opposite side. The entire part of the unit 3 is oscillated in an arrow direction 5 within the pane parallel with the plane of the metallic plate and the metallic plate 1 is heated by the heaters 2. The amplitude l(mm) and oscillation frequency f(Hz) of the oscillation are so determined as to satisfy the respective equations 0.25 d<=l<=d (d is spacing mm between the IR heaters), 0.20<=f<=300<=l. The heating of the metallic plate with the high soaking characteristic is thereby executed and the various changes arising in the metallic plate 1 are simultaneously measured during heating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属板を複数のヒータを用いて一方向加熱をす
る際、該と一層をある条件に従って振動させることによ
り、金属板の均熱を良化させる方法に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is capable of uniformly heating a metal plate by unidirectionally heating a metal plate using a plurality of heaters, by vibrating one layer according to certain conditions. It relates to a method for improving.

(従来の技術〕 近年、自動型製造部門や弱電気部門等を中心とした高度
な工業技術の進歩に伴い、鉄を用いるユーザーであるこ
れら製造業から、鉄子を中心とした材料製造業への品質
向丘要求が高まってきた0例えば金属材料部門で言えば
、より一層の高強度化や加工作の良化等が要求されてい
る。
(Conventional technology) In recent years, with the advancement of advanced industrial technology centered on the automatic mold manufacturing sector and the weak electrical sector, there has been a shift from these manufacturing industries that use iron to the material manufacturing industry centered on iron. For example, in the metal materials sector, there are demands for even higher strength and improved processing.

このような材質の向上を図るには、まず実験室実験によ
って様々な条件のシミュレーションが行われ、最適製造
条件が決定される。このことは金属についても同様であ
る。この実験室実験は非常に重要なものであり、実験室
実験の精度により製品の優劣が決定すると言える。
In order to improve such material quality, first, simulations of various conditions are performed through laboratory experiments, and optimal manufacturing conditions are determined. This also applies to metals. This laboratory experiment is very important, and it can be said that the quality of the product is determined by the accuracy of the laboratory experiment.

金属材料について言えば、実験室実験において温度条件
はあらゆる材質に対して決定的因子である。しかもサン
プルの均熱を良化すれば材質試験値のばらつきを少なく
し、有効なデータを採取することができることは周知の
事実である。
When it comes to metallic materials, temperature conditions are the determining factor for any material in laboratory experiments. Moreover, it is a well-known fact that by improving the uniform heating of the sample, it is possible to reduce variations in material test values and collect effective data.

最近は、鋼板製造ラインの1つである連続焼鈍ラインの
ように急加熱、急冷却を有する設備が常識になり、当然
のことながら、実験室においても急加熱、急冷却をシミ
ュレートできる加熱炉が一般化している。
Recently, equipment that can perform rapid heating and rapid cooling, such as continuous annealing lines, which are one of the steel plate production lines, has become commonplace, and it goes without saying that heating furnaces that can simulate rapid heating and rapid cooling can be used even in the laboratory. is becoming common.

このような実験装置を用いて、最近では、シミュレーシ
ョン終r後の材質を調査するだけでなく、シミュレーシ
ョンの最中にX線、磁力線等を用いて非破壊検査を行い
、材質に対応づける試みがなされている0例えば金属板
の内部歪量、結晶粒径の変化、集合組織の成長度等をシ
ミュレーション最中に測定することによって、これらの
材質影響因子がシミュレーション最中のどの時点で変化
し始め、どの時点で変化が終Yするか等の基礎情報を得
ることができ、同時に加熱時間の′Jv縮等の最適条件
の決定に有効な知識を得ることができる。
Recently, using such experimental equipment, efforts have been made not only to investigate the material properties after the simulation is completed, but also to perform non-destructive testing using X-rays, magnetic lines of force, etc. during the simulation to correlate the material properties. For example, by measuring the amount of internal strain in the metal plate, changes in crystal grain size, degree of growth of texture, etc. during the simulation, it is possible to determine at what point during the simulation these factors that affect material properties begin to change. , basic information such as when the change ends can be obtained, and at the same time, knowledge useful for determining optimal conditions such as 'Jv reduction of heating time can be obtained.

以−Lのことから、金属材料の加熱実験装置としては、
被加熱体の均熱が良好で、かつ急熱、急冷が可能であり
、しかもX線、磁力線等非破壊検査装置が取付は可ス七
であることが理想である。
From the above, as a heating experimental device for metal materials,
Ideally, the object to be heated should have good uniform heating, be capable of rapid heating and cooling, and be able to be fitted with non-destructive inspection equipment such as X-rays and lines of magnetic force.

急熱、急冷がi[能な実験装置としては、赤外線ヒータ
を多数有するいわゆる赤外線加熱装置や、金属板に高電
流を流し、通電加熱する装置等があげられる。しかしな
がらこれらの装置は、一般的にシリコニット炉や流動層
に比べ被加熱体の均熱が悪い0例えば赤外線加熱装置で
金属板を加熱した場合、金属板のヒータ直下部とヒータ
相互間部の温度差が大きくなる。
Examples of experimental equipment capable of rapid heating and cooling include so-called infrared heating devices that have a large number of infrared heaters, and devices that conduct electrical heating by passing a high current through a metal plate. However, these devices generally have poor uniform heating of the heated object compared to siliconite furnaces and fluidized beds. The difference becomes larger.

これを解消する方法として特開昭58−26482の如
く、金属板の両面より赤外線ヒータで加熱し、それらの
ヒータを互に半ピツチずらすことにより均熱を良化させ
る方法がある。この方法は、両面加熱が前提であり、前
記したX&9、磁力線副を応用した非破壊検査装置を設
こするスペースがない。
To solve this problem, there is a method as disclosed in Japanese Patent Application Laid-Open No. 58-26482, in which infrared heaters are used to heat both sides of a metal plate, and the heaters are shifted by half a pitch to improve uniform heating. This method is based on double-sided heating, and there is no space to install a nondestructive inspection device that uses the X&9 described above and the magnetic field line sub.

また、i11″FL加熱の場合には金属板中心部の均熱
は比較的良好であるが、金属板と電極の接合部が非常に
低温になる。さらにこの通電加熱方法では、電流を被加
熱体に流すため、磁力線を用いた測定装置、例えば電磁
誘導を用いた測定装置による測定はノイズが大きく、全
く使用できないという欠点があった・ 〔発明が解決しようとする問題点〕 未発1!Ilは金属板をその一方の面側からのみ加熱し
、加熱中に同時に金属板内に起こる諸変化を測定できる
ように構成した加熱炉において、金属板の均熱性の高い
加熱を行う方法を提供することをII的とする。
In addition, in the case of i11″FL heating, the uniform heating at the center of the metal plate is relatively good, but the temperature at the joint between the metal plate and the electrode becomes extremely low. Measurements using measuring devices that use magnetic lines of force to flow through the body, such as measuring devices that use electromagnetic induction, have the disadvantage that they are noisy and cannot be used at all. [Problems to be solved by the invention] Unreleased 1! Il provides a method for heating a metal plate with high uniformity in a heating furnace configured to heat the metal plate only from one side and simultaneously measure various changes occurring within the metal plate during heating. It is considered as II.

〔問題点を解決するためのf段〕[F-stage to solve problems]

本発明は以1−のような事情に鑑みてなされたもので、 ■ 金属板上方に赤外線ヒータを複数個モ行配置した金
属板加熱用実験装置を用いる。
The present invention has been made in view of the following circumstances. (1) An experimental apparatus for heating a metal plate is used in which a plurality of infrared heaters are arranged in a row above the metal plate.

■ 金属板を加熱する際該赤外線ヒータを赤外線ヒータ
の軸に対して直交する方向にかつ該金属板面にモ行する
面内で振動させる。
(2) When heating a metal plate, the infrared heater is vibrated in a direction perpendicular to the axis of the infrared heater and in a plane that runs along the surface of the metal plate.

Q)その振動の振4cu(mm)と振動数f(Hz)が
それぞれ下記の(D式、■式を満足するように振動させ
る。
Q) Vibrate so that the vibration amplitude 4cu (mm) and frequency f (Hz) satisfy the following (D formula, ■ formula).

0、25 d≦l≦d    ・・自・・(1)イ(1
し、d:赤外線ヒータ間隔(mm)0.20≦f≦30
0/立・・・・・・■〔作用〕 以f本発明を作用とともにより詳細に税引する。
0, 25 d≦l≦d...self...(1) i(1
and d: Infrared heater interval (mm) 0.20≦f≦30
0/Tachi...■ [Effect] Hereinafter, the present invention will be explained in more detail along with its effects.

第1図は本発明による実験装置の構成を示す1例である
。第1図において金属板1は赤外線ヒータ2により片面
加熱されるやまたこの赤外線ヒータは、ユニット3に納
っており、このユニット全体が、第1図中の矢印5の方
向に図の左右に振幅文(mm)振動数f□(z)で振動
できる機構となっている。また金属板lを壮さんで赤外
線ヒータ2と反対側にはX線による結晶粒度測定波′r
i4が取付けである。第1図において赤外線ヒータ2か
ら放射された赤外線は、赤外線ヒータユニット3の振動
条件がある範囲内にある場合に限り、金属板ILに一様
に照射され金属板lの灼熱が良化される。
FIG. 1 shows an example of the configuration of an experimental apparatus according to the present invention. In FIG. 1, a metal plate 1 is heated on one side by an infrared heater 2, and this infrared heater is housed in a unit 3, and this entire unit is moved left and right in the direction of arrow 5 in FIG. It has a mechanism that can vibrate at an amplitude (mm) and a frequency f□(z). In addition, the metal plate 1 is sandwiched between the infrared heater 2 and the crystal grain size measuring wave 'r' on the side opposite to the infrared heater 2.
i4 is the installation. In FIG. 1, the infrared rays emitted from the infrared heater 2 are uniformly irradiated onto the metal plate IL, and the scorching of the metal plate I is improved only when the vibration conditions of the infrared heater unit 3 are within a certain range. .

次に第1図に示した装置を用いて本発明者らが行った研
究を具体的に記す、まず本発明者らは、赤外線ヒータ2
の振@l (mm)と金属板1の均熱を調査した。ヒー
タユニット3が静止した状態で赤外線ヒータ2の直下と
、ヒータ相互間にあたる金属板面に熱電対を取付け、振
幅を徐々に大きくしながら温度差を比べた。その結果を
第2図に示す。
Next, we will specifically describe the research conducted by the present inventors using the apparatus shown in FIG.
The vibration @l (mm) and soaking of the metal plate 1 were investigated. With the heater unit 3 stationary, thermocouples were attached directly below the infrared heater 2 and on the metal plate surface between the heaters, and the temperature differences were compared while gradually increasing the amplitude. The results are shown in FIG.

第2図で縦軸は2つの熱電対による温度差であり、横軸
は振幅をヒータ間圧gld(mm)との比r = l 
/ dで図示しである。第2図より10℃以内の均熱を
得るためにはr≧0.25が必要であることが分る。5
℃以内の均熱を得るためにはr≧0.40が必要である
。またrが1を越えることは、ヒータ間隔d以1に振動
させることであり、有益な効果はない、この結果よりヒ
ータの振幅文を0式の如く定めた。
In Figure 2, the vertical axis is the temperature difference between the two thermocouples, and the horizontal axis is the ratio of the amplitude to the heater pressure gld (mm) r = l
/d is shown in the figure. From FIG. 2, it can be seen that r≧0.25 is required to obtain uniform heating within 10°C. 5
In order to obtain uniform heating within °C, r≧0.40 is required. Moreover, when r exceeds 1, it means that the heater interval d is vibrated by 1, and there is no beneficial effect. Based on this result, the amplitude statement of the heater was determined as shown in equation 0.

0、25 d≦文≦d    ・・・(1)さらに本発
明者らは赤外線ヒータ2の振動数fと金属板lの灼熱の
関係を調べた。金属板1上に熱電対を1対取付は経時変
化を調べた。その結果、赤外線ヒータに与、える振動が
非常に低周波の場合、第3図の如く熱電対温度が赤外線
ヒータの振動と同様の振動数で振動することが分った。
0, 25 d≦text≦d (1) Furthermore, the present inventors investigated the relationship between the frequency f of the infrared heater 2 and the scorching heat of the metal plate l. A pair of thermocouples was attached on the metal plate 1 to examine changes over time. As a result, it was found that when the vibration applied to the infrared heater has a very low frequency, the thermocouple temperature oscillates at the same frequency as the vibration of the infrared heater, as shown in FIG.

またこの熱電対温度の振幅も周波数が低い程大きい、こ
れは振動数が低いため振動中熱電対部分がヒータ直ドに
なれば高温になるが、ヒータ相互間になると1−分に温
度降丁する時間が与えられるからである。熱電対の最高
到達温度と最低温度の差が10℃以内に納まるためには
少なく共赤外線ヒータの振動数fを0.20 Hz以り
にする必要があることが分った。またこの振動数置とで
は、赤外線ヒータの振幅文の範囲を決定した時と同様に
2木の熱電対を金属板1に取付は調査したところ、10
℃以内の温度差であることが分った。
The lower the frequency, the larger the amplitude of this thermocouple temperature.This is because the vibration frequency is low, so if the thermocouple part is oscillating directly to the heater, it will be high temperature, but if it is between the heaters, the temperature will drop to 1 minute. This is because it gives you time to do so. It has been found that in order to keep the difference between the maximum and minimum temperature of the thermocouple within 10°C, it is necessary to set the frequency f of the common infrared heater to 0.20 Hz or more. Also, with this frequency position, when two wooden thermocouples were attached to the metal plate 1 in the same way as when determining the amplitude range of the infrared heater, it was found that 10
It was found that the temperature difference was within ℃.

しかしながらfは、あまり大きくなるとかえって均熱が
悪化することが分った0本発明者らの研究によれば、f
が大きい場合、ヒータ直下よりヒータ間の方が高温とな
ることが分った。この関係を第4図(a)に示した。ま
た第4図(b)に金属板の温度変化の振動数fの違いに
よる概略図を示す。
However, it has been found that if f becomes too large, the uniform heating will deteriorate.According to the research conducted by the present inventors, f
It was found that when the temperature is large, the temperature between the heaters becomes higher than that directly below the heaters. This relationship is shown in FIG. 4(a). Further, FIG. 4(b) shows a schematic diagram of the difference in the frequency f of the temperature change of the metal plate.

第4図(a)では、横軸は、振動数fと振幅文との比を
とっである。第4図(a)均熱度が10℃以内を満足す
るためには次の0式の関係が必要である。
In FIG. 4(a), the horizontal axis represents the ratio between the frequency f and the amplitude. In order to satisfy the temperature uniformity within 10° C. in FIG. 4(a), the following equation 0 is required.

fX文≦300     ・・・・・・■この現象は高
い振動数fで加熱を行った際、ヒータ振動の中心位置と
両端でヒータ移動速度に違いが生じるために起る。つま
り、振動の中心位置でのヒータの動きは速く、その直下
の金属板部分が加熱される時間は短い、しかし、振動の
両端に近づく程、ヒータ移動速度が遅くなり、その直下
は赤外線があたる時間が−長くなり結局第4図(b)の
破線のような温度差を生じるものである。この現象はヒ
ータの移動速度に関係しているのでもちろんヒータ移動
振幅見とも関係し、見が大きい程温度差は大きくなる。
fX sentence≦300... ■This phenomenon occurs because when heating is performed at a high frequency f, there is a difference in the heater movement speed between the center position and both ends of the heater vibration. In other words, the heater moves quickly at the center of vibration, and the time it takes to heat the metal plate directly below it is short. However, the closer you get to both ends of the vibration, the slower the heater moves, and the area directly below it is exposed to infrared rays. As the time becomes longer, a temperature difference as shown by the broken line in FIG. 4(b) eventually occurs. Since this phenomenon is related to the moving speed of the heater, it is of course also related to the heater moving amplitude, and the larger the amplitude, the larger the temperature difference.

以上のことから、赤外線ヒータ振動数fの範囲を次の2
式の如く定めた。
Based on the above, the range of the infrared heater frequency f is determined by the following two
It was established as a formula.

0.20≦f≦300/l・・・・・・0以上の条件を
満足することにより、被加熱体である金属板の灼熱を良
化させながら実験を行うことができるが、本発明の赤外
線ヒータの振動条件をそのまま、金属板の振動条件に変
え、赤外線ヒータ軸方向に屯直に金属板を振動させるこ
とにより均熱を良化させることも考えられる。しかしな
がら金属板を振動させる方法では、第1図で金属板1を
はさんで赤外線ヒータの反対側に置かれたX線や磁力線
による非破壊検査装置や結晶粒度測定装置4の測定精度
に大きなノイズが生じ実質的に測定は不可能である。
0.20≦f≦300/l... By satisfying the condition of 0 or more, it is possible to conduct experiments while improving the scorching heat of the metal plate that is the object to be heated. It is also possible to improve uniform heating by changing the vibration conditions of the infrared heater to the vibration conditions of the metal plate and vibrating the metal plate directly in the axial direction of the infrared heater. However, with the method of vibrating the metal plate, there is a large amount of noise in the measurement accuracy of the non-destructive inspection equipment or crystal grain size measuring device 4 using X-rays or magnetic field lines placed on the opposite side of the infrared heater across the metal plate 1 in Fig. 1. occurs, making measurement virtually impossible.

′ 〔実施例〕 次に本発明の実施例を具体的に説明する。' 〔Example〕 Next, embodiments of the present invention will be specifically described.

実施例として、第1図の赤外線ヒータ炉を用いて冷延鋼
板の焼鈍実験を行った。
As an example, an annealing experiment of a cold-rolled steel plate was conducted using the infrared heater furnace shown in FIG.

本実験の主旨はオーステナイト(以下γと称す)相分率
測定器による材質制御の基礎データを採取するものであ
る。
The purpose of this experiment was to collect basic data for material control using an austenite (hereinafter referred to as γ) phase fraction measuring device.

第1図中の4には磁力線を用いたγ相分率測定器を設置
した。実施例に用いた冷延鋼板の化学組成は。
At 4 in FIG. 1, a gamma phase fraction measuring device using magnetic lines of force was installed. What is the chemical composition of the cold-rolled steel sheet used in the examples?

C:0.075 屯41% Si:0.07   心沿% Mn:1.48   料量% P:0.90   毛t% S:0.005重着% A愛 : 0.040正量% である。また焼鈍ヒートサイクルを第5図に示した。C: 0.075 ton 41% Si: 0.07 Heart % Mn: 1.48 Fee% P: 0.90 Hair t% S: 0.005% overlap A love: 0.040 mass% It is. Further, the annealing heat cycle is shown in FIG.

木実験の目的は、F記の冷延鋼板から、引張強1[60
〜62kgf/mrn’を有するいわゆるフェライト・
マルテンサイト複合組織高張力鋼板を第1図中4のγ相
分率測定器によりγ相分率をコントロールしながら製造
できるか否かを見極めることである。すなわち実際に冷
延鋼板の連続焼鈍ラインで、L記のようなSi、Mn、
P等添加鋼を焼鈍した場合、鋼板りにテンパーカラーと
いわれる醜化膜が発生し、一般的に連続焼鈍ラインで行
われている放射側温はまったく無力となる。
The purpose of the wood experiment was to obtain a tensile strength of 1 [60
So-called ferrite with ~62kgf/mrn'
The objective is to determine whether or not a martensitic composite structure high-strength steel sheet can be manufactured while controlling the γ phase fraction using the γ phase fraction measuring device 4 in FIG. In other words, in a continuous annealing line for cold-rolled steel sheets, Si, Mn,
When steel containing P or the like is annealed, an ugly film called temper color occurs on the steel plate, and the radial side heating that is generally carried out in a continuous annealing line becomes completely useless.

それは、鋼板ヒのテンパーカラーのため正確な放射率が
′A11l定で澤ないためである。かかる状況は連続焼
鈍炉内を無酸化雰囲気あるいは還元性雰囲気にしても解
消できない。したがって従来は、このような複合組織高
張力鋼板の製造は製造ラインのオペレータの経験によっ
て行われており、製造された製品の材質のばらつきが大
きく信頼性は低かった。そこで、この放射測温に代る方
法として最近、磁力線を用いたγ相分率測定器を用いて
材質を制御する試みがなされている。つまり、複合組織
高張力鋼板を製造する場合、高温において、フェライト
、γ2相の状態から急冷し、フェライト・ベイナイトあ
るいはフェライト・マルテンサイト2相組織とするが、
急冷前γ相分率を測定することにより、急冷後のベイナ
イトを−あるいはマルテンサイト量を予測することがで
きる。
This is because the accurate emissivity is not constant because of the temper color of the steel plate. Such a situation cannot be resolved even if the inside of the continuous annealing furnace is made into a non-oxidizing atmosphere or a reducing atmosphere. Therefore, in the past, manufacturing of such composite structure high-strength steel sheets was carried out based on the experience of production line operators, and the quality of the manufactured products varied greatly and reliability was low. Therefore, as an alternative to this radiation temperature measurement, attempts have recently been made to control the material quality using a gamma phase fraction measuring device that uses magnetic lines of force. In other words, when manufacturing a high-strength steel sheet with a composite structure, it is rapidly cooled from a ferrite and γ2 phase state to a ferrite-bainite or ferrite-martensite two-phase structure at high temperatures.
By measuring the γ phase fraction before quenching, it is possible to predict the amount of bainite or martensite after quenching.

具体的には、L記成分組成の冷延鋼板を第5図の焼鈍ヒ
ートサイクルに従って焼鈍し、第5図中、A点における
γ相分率を測定し、その後の冷却により目標とする材質
(引張強度60〜62k g f / mm’)が得ら
れるか否かを見極める。
Specifically, a cold-rolled steel sheet having the composition L is annealed according to the annealing heat cycle shown in FIG. 5, the γ phase fraction at point A in FIG. 5 is measured, and the target material quality ( Determine whether a tensile strength of 60 to 62 kg f/mm') can be obtained.

ト記組成の冷延鋼板で引張強度60〜62kgf/mI
T+′を満足するためには焼鈍後マルテンサイト分率で
18〜22%必要であり、そのため、第5図中50℃/
Sの急冷前にγ相分率が21〜24%の間にする必要が
あることが分っている。
A cold rolled steel sheet with the above composition has a tensile strength of 60 to 62 kgf/mI.
In order to satisfy T+', the martensite fraction after annealing is required to be 18 to 22%, and therefore, the temperature at 50°C/
It has been found that the γ phase fraction needs to be between 21 and 24% before quenching the S.

第1図中4のγ相分率測定器を用いて、γ相分率がに記
範囲の21〜24%になった時、急冷を開始し、その後
引張試験により引張強度を測定する6 実験は、第1図の焼鈍炉を用いて本発明範囲の赤外線ヒ
ータの振動条件、具体的には前出の式(υ、■に対応す
る振動条件を満足するように焼鈍した場合と、従来法の
ようにまったくヒータ部を振動させない場合の2回行っ
た。そして焼鈍した冷延板より第6図に示した試験片の
切出要領に従い引張試験片を切出し引張強度を調査した
Using the gamma phase fraction measuring device 4 in Figure 1, when the gamma phase fraction reaches 21 to 24% of the range shown in Figure 1, start rapid cooling, and then measure the tensile strength by a tensile test.6 Experiment The following shows the case where the annealing furnace shown in FIG. The test was carried out twice without vibrating the heater part at all as shown in Figure 6.Then, tensile test pieces were cut out from the annealed cold-rolled sheet according to the test piece cutting procedure shown in Figure 6, and the tensile strength was investigated.

第6図中1は焼鈍された冷延鋼板、A−Fは引張試験片
であり、また破線6は、赤外線ヒータを振動させない場
合の赤外線ヒータ位置に対応する。第6図(b)は第6
図(a)の側面図である。
In FIG. 6, 1 is an annealed cold-rolled steel plate, A-F is a tensile test piece, and broken line 6 corresponds to the position of the infrared heater when the infrared heater is not vibrated. Figure 6(b) shows the sixth
It is a side view of figure (a).

調査した引張強度の結果を第7図に示す。第7図におい
て横軸は第6図の引張試験片記号A−Fに対応する。ま
た図中に白丸で表示したものは本発明による焼鈍方法に
よった材料であり、黒丸で表示したものは従来法による
焼鈍方法により処理した材料である。
The results of the tensile strength investigation are shown in FIG. In FIG. 7, the horizontal axis corresponds to tensile test piece symbols A-F in FIG. Moreover, the materials indicated by white circles in the figure are materials processed by the annealing method according to the present invention, and the materials indicated by black circles are materials processed by the conventional annealing method.

第7図より、本9.用法における測定では引張強度がす
べて60〜62kgf/mrn’の範囲に納まっている
のに対し、従来法では引張強度のばらつきが大きい、し
かも従来法では、赤外線ヒータ直丁部の試験片の引張強
度が高く、赤外線ヒータ相W間にある試験片の引張強度
が低い、これは赤外線ヒータ直下は高温となり、その分
だけγ相分率が高いため急冷後マルテンサイト分率が高
くなって引張強度が上昇したことによる。また赤外線ヒ
ータ相!r間はこの逆であり急冷後マルテンサ−(ト分
率が低く引張強度が下がる。
From Figure 7, book 9. In the conventional method, the tensile strength is all within the range of 60 to 62 kgf/mrn', whereas in the conventional method, the tensile strength varies widely. is high, and the tensile strength of the test piece between the infrared heater phases W is low. This is because the temperature directly below the infrared heater is high, and the γ phase fraction is correspondingly high, so after quenching, the martensite fraction increases and the tensile strength decreases. Due to the rise. Infrared heater phase again! The opposite is true for R, and after quenching, the martensor fraction is low and the tensile strength is low.

このような結果はγ相分率測定器が鋼板の広範囲な部分
のモ均情報を感知するため起る。したかってγ相分率測
定器により急冷前γ相分率は21〜24%であっても、
鋼板を部分的に観察するとγ相分率は−・様ではない。
This result occurs because the gamma phase fraction measuring device senses the modulus information in a wide range of the steel plate. Therefore, even if the γ phase fraction before quenching is 21 to 24% according to the γ phase fraction measuring device,
When a steel plate is partially observed, the γ phase fraction does not look like -.

〔発明の効果〕〔Effect of the invention〕

従来法では、金属板の均熱が悪いので、実際の製造ライ
ンを正確にシミュレートすることが不可ス彪であった。
In the conventional method, the uniform heating of the metal plate is poor, making it impossible to accurately simulate an actual manufacturing line.

これに対し、本発明によれば赤外線ヒータを用いて金属
板を片面加熱するに際し、金属板の均熱を良化させるこ
とが可能となり、引張強度のばらつきが少く、正確な測
定が可能である。
On the other hand, according to the present invention, when heating a metal plate on one side using an infrared heater, it is possible to improve the uniform heating of the metal plate, so that there is less variation in tensile strength and accurate measurement is possible. .

本発明によれば赤外線ヒータを用いて金属板を片面加熱
するに際し、金属板の均熱を良化させることが可1おと
なった。
According to the present invention, when heating a metal plate on one side using an infrared heater, it is possible to improve uniform heating of the metal plate.

【図面の簡単な説明】[Brief explanation of drawings]

0′51図は本発明方法の実施のための赤外線ヒータを
用いた金属板片面加熱装置の一例の要部断面図、第2図
は赤外線ヒータの振幅と均熱の関係を示すグラフ、第3
図、第4図は赤外線ヒータの振動数と灼熱の関係を示す
グラフ、第5図は実施例に用いた焼鈍ヒートサイクル図
、第6図は焼鈍後の引張試験片採取要領を示す板取図、
第7図は本発明方法と従来方法の試験片の引張試験成績
を示すグラフである。 l・・・金属板 2・・・赤外線ヒータ 3・・・ヒータユニット
Fig. 0'51 is a sectional view of a main part of an example of a metal plate single-sided heating device using an infrared heater for carrying out the method of the present invention, Fig. 2 is a graph showing the relationship between the amplitude of the infrared heater and uniform heating, and Fig. 3
Figure 4 is a graph showing the relationship between the frequency of the infrared heater and scorching heat, Figure 5 is an annealing heat cycle diagram used in the example, and Figure 6 is an Itadori diagram showing the procedure for collecting tensile test pieces after annealing.
FIG. 7 is a graph showing the tensile test results of test pieces obtained by the method of the present invention and the conventional method. l...Metal plate 2...Infrared heater 3...Heater unit

Claims (1)

【特許請求の範囲】 1 金属板を加熱するに当り直線状のヒータを複数個平
行配置し、その下方に金属板を置 き、該ヒータを、該ヒータの軸に直交する方向にかつ該
金属板面に平行する面内で振動させ、その振動の振幅l
(mm)と振動数 f(Hz)をそれぞれ(1)式、(2)式を満足するよ
うにしたことを特徴とする金属板の均熱方法。 0.25d≦l≦d・・・(1) 但し、d:赤外線ヒータ間隔(mm) 0.20≦f≦300/l・・・(2)
[Claims] 1. To heat a metal plate, a plurality of linear heaters are arranged in parallel, a metal plate is placed below the heaters, and the heaters are placed in a direction perpendicular to the axis of the heater and in a direction perpendicular to the axis of the metal plate. vibrate in a plane parallel to the plane, and the amplitude of the vibration l
A method for soaking a metal plate, characterized in that (mm) and frequency f (Hz) are set to satisfy equations (1) and (2), respectively. 0.25d≦l≦d...(1) However, d: Infrared heater interval (mm) 0.20≦f≦300/l...(2)
JP60191775A 1985-08-30 1985-08-30 Soaking method for metallic plate Pending JPS6250407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60191775A JPS6250407A (en) 1985-08-30 1985-08-30 Soaking method for metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60191775A JPS6250407A (en) 1985-08-30 1985-08-30 Soaking method for metallic plate

Publications (1)

Publication Number Publication Date
JPS6250407A true JPS6250407A (en) 1987-03-05

Family

ID=16280324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60191775A Pending JPS6250407A (en) 1985-08-30 1985-08-30 Soaking method for metallic plate

Country Status (1)

Country Link
JP (1) JPS6250407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005207A1 (en) * 2013-07-09 2015-01-15 日本碍子株式会社 Drying furnace
WO2018095825A1 (en) * 2016-11-22 2018-05-31 Voestalpine Stahl Gmbh Method for quickly heating steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005207A1 (en) * 2013-07-09 2015-01-15 日本碍子株式会社 Drying furnace
WO2018095825A1 (en) * 2016-11-22 2018-05-31 Voestalpine Stahl Gmbh Method for quickly heating steel sheet
WO2018095826A1 (en) * 2016-11-22 2018-05-31 Voestalpine Stahl Gmbh Method for rapid heating of steel plate profiles or steel tubes

Similar Documents

Publication Publication Date Title
Zener et al. Effect of strain rate upon plastic flow of steel
JPS6250407A (en) Soaking method for metallic plate
Liu et al. Eddy current assessment of the cold rolled deformation behavior of AISI 321 stainless steel
RU2760634C1 (en) Method for estimating the impact strength of products made of bainitically quenched construction steel
Behnken et al. Micro-residual stresses caused by deformation, heat, or their combination during friction welding
Behrens et al. Investigation of masking concepts for influencing the austenitization process during press hardening
Epp et al. Residual stress state characterization of machined components by X-ray diffraction and multiparameter micromagnetic methods
JPS5847243A (en) Method of and apparatus for monitoring phase modification of steel
Pernach et al. Experimental validation of the carbon diffusion model for transformation of ferritic-pearlitic microstructure into austenite during continuous annealing of dual phase steels
EP4109087A1 (en) Device for in-line monitoring the room temperature microstructure variations
Lara-Guevara et al. Photothermal, Structural, and Microstructural Characterization of SAE4320H Automotive Steel
JP3149225B2 (en) Non-destructive evaluation method of toughness using Barkhausen noise
KR100544718B1 (en) Prediction method of transformation temperature and microstructres of hot rolled plate
Chiriac et al. The Effects of Non-Isothermal Plastic Deformation on the Martensitic Transformation of 1.8 GPa Press Hardening Steel and Implications toward Production Paths
Szobota et al. Non-destructive Test for Control of the Surface Quality of Semi Product at the Automotive Industry
JPS59110737A (en) Method and apparatus for controlling heat treatment in continuous annealing
JPS61147126A (en) Measuring method of temperature of steel material by electromagnetic induction
JPS5847242A (en) Measurement for phase modification points of steel
Jenicek et al. The behaviour of low-alloy high-strength steel after different types of processing for dynamic load
RU2641616C1 (en) Device for welded joint inspection
KR20210152548A (en) Method of heat treatment of metal products
KR20210021991A (en) Method and system for controlling steel strip microstructure in heat treatment equipment using electromagnetic sensors
Huggins The formation of austenite in plain carbon steels at high heating rates
Rydzewski Steel Heat Treating Process Control—An Introduction
JPS59129717A (en) Direct hardening device for steel plate