JPS62174651A - Method and device for deciding hardness of magnetic body - Google Patents

Method and device for deciding hardness of magnetic body

Info

Publication number
JPS62174651A
JPS62174651A JP1650486A JP1650486A JPS62174651A JP S62174651 A JPS62174651 A JP S62174651A JP 1650486 A JP1650486 A JP 1650486A JP 1650486 A JP1650486 A JP 1650486A JP S62174651 A JPS62174651 A JP S62174651A
Authority
JP
Japan
Prior art keywords
magnetic
hardness
magnetic sensor
signal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1650486A
Other languages
Japanese (ja)
Inventor
Atsushi Horiuchi
敦司 堀内
Masaaki Terada
昌章 寺田
Fushirou Takemura
竹村 芙士郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP1650486A priority Critical patent/JPS62174651A/en
Publication of JPS62174651A publication Critical patent/JPS62174651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To decide the hardness of a magnetic body accurately without reference to variation in the temperature of test environment by arranging the 1st and the 2nd magnetic sensors nearby a reference magnetic body and the object magnetic body. CONSTITUTION:The 1st magnetic sensor 8 is arranged nearby the reference magnetic body 26 whose hardness is already know and the 2nd magnetic sensor 10 is arranged nearby the magnetic body 26 to be decided. Then, primary coils 8A and 10A of the magnetic sensors 8 and 10 are fed with electricity from an AC signal source to induce electromotive force at secondary coils 8B and 10B. At this time, the specific gain control mechanism of a variable gain amplifier 6 is operated so that the read value of a voltmeter 20 based upon the electromotive force of the secondary coil 8B of the magnetic sensor 8 is constant. Namely, variations in magnetic permeability of both magnetic bodies 24 and 26 with the temperature of the test environment are compensated by adjusting the primary currents to hold the secondary electromotive force constant, and consequently the difference in permeability that both magnetic bodies 24 and 25 have originally, i.e. difference in hardness is compared without reference to the environmental temperature to decide the hardness of the object magnetic body 26.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性体の硬度判別方法およびその装置に係り
、とくに非破壊試験の一種である渦流磁気方式にて鋼材
等の硬度を判別するための磁性体の硬度判別方法および
その装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for determining the hardness of a magnetic material, and particularly to a method for determining the hardness of steel materials, etc. using an eddy current magnetic method, which is a type of non-destructive testing. The present invention relates to a method for determining the hardness of a magnetic material and an apparatus therefor.

〔従来の技術〕[Conventional technology]

一般に、自動車等に用いられる構造材には、必要な強度
を得るために所定の表面処理等が施されており、この処
理の一つとして従来より浸炭焼入れが広く採用されてい
る。
In general, structural materials used in automobiles and the like are subjected to predetermined surface treatments to obtain the necessary strength, and carburizing and quenching has been widely used as one of these treatments.

そして、この浸炭焼入れが施された金属構造材に対する
非破壊検査としては、渦流磁気方式(渦電流法ともいう
)が多く用いられている。この渦流磁気方式にあっては
、例えば磁気的に給金された一次コイル及び二次コイル
を存する磁気センサを被測定磁性体としての構造材の近
傍に配設するとともに、−次コイルに所定周波数の交流
電流を流した場合に二次コイルに誘起される起電力を検
出する。そして、この検出値を、硬度が既知の基!l#
磁性体についてのデータと比較しながら、構造材の透磁
率と比例関係にある浸炭深さく即ち、硬度)を測定或い
は判定している。
Eddy current magnetic methods (also referred to as eddy current methods) are often used for non-destructive testing of carburized and hardened metal structural materials. In this eddy current magnetic method, a magnetic sensor including, for example, a magnetically fed primary coil and a secondary coil is arranged near a structural material as a magnetic body to be measured, and the secondary coil is set at a predetermined frequency. Detects the electromotive force induced in the secondary coil when an alternating current of Then, use this detected value as a basis of known hardness! l#
The carburization depth (hardness), which is proportional to the magnetic permeability of the structural material, is measured or determined by comparing it with data regarding magnetic materials.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来例にかかる手法を用いて試
験する場合にあっては、周囲の試験環境温度(即ち、磁
性体の温度)が、例えば朝と夕。
However, when testing using the above-described conventional method, the surrounding test environment temperature (i.e., the temperature of the magnetic material) may vary, for example, in the morning and evening.

冬と夏等の気温差にみられる如く大きく変化するため、
これによって被測定磁性体の透磁率、抵抗等の物理定数
が大きく変化してしまい、これがため磁気センサからの
検出値に基づく二次電圧(V2)が例えば第3図(ここ
で、パラメータlは浸炭深さを示す)に示す如く変動す
ることから、硬度測定に対する精度および再現性が著し
く低下するという不都合があった。
Because the temperature changes greatly, as seen in the temperature difference between winter and summer,
As a result, physical constants such as magnetic permeability and resistance of the magnetic material to be measured change greatly, and as a result, the secondary voltage (V2) based on the detected value from the magnetic sensor changes as shown in Figure 3 (here, the parameter l is Since the carburization depth varies as shown in (indicating the carburization depth), there was an inconvenience that the accuracy and reproducibility of hardness measurements were significantly reduced.

また、この場合において、環境の温度変化に伴う検出値
■2の変化が浸炭深さの程度に起因する検出値V2の変
化を上回ってしまう場合には、硬度の相対的な判別すら
不可能になり、これがため温度が時間的に著しく変化す
る試験環境では、例えば生産ラインにおける全数試験が
不可能になる等の事態を招来するという不都合があった
In addition, in this case, if the change in detected value V2 due to changes in environmental temperature exceeds the change in detected value V2 due to the degree of carburization, it becomes impossible to even determine the relative hardness. Therefore, in a test environment where the temperature changes significantly over time, there is an inconvenience that, for example, it becomes impossible to perform a 100% test on a production line.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来技術の有する不都合を改善し、と
くに試験環境の温度の変化に無関係に且つ精度よく磁性
体の硬度を判別することのできる磁性体の硬度判別方法
およびその装置を提供することを、その目的とする。
The present invention improves the disadvantages of the prior art, and particularly provides a method and apparatus for determining the hardness of a magnetic material, which can accurately determine the hardness of a magnetic material regardless of changes in the temperature of the test environment. is its purpose.

C問題点を解決するための手段〕 そこで、本発明では、交流信号の印加によって磁性体の
硬度に対応した電気信号を検出可能な第1及び第2の磁
気センサを具備し、この内、第1の磁気センサを硬度が
既知の基準磁性体に近接して配設するとともに、第2の
磁気センサを被判別磁性体に近接して配設せしめ、しか
る後、前記第2(7)磁気センサとから検出された電気
信号の値を前記第1のta気センサ出力と比較し、これ
によって前記基準磁性体に対する前証被判別磁性体の硬
度を相対的に判別する磁性体の硬度判別方法において、
前記第1の磁気センサによって検知される電気信号の値
を、環境温度が変化しても常に一定となるよう当該第1
の磁気センサに印加する交流信号の値を調整するととも
に、この調整された交流信号を前記第2の磁気センサに
印加する等の手法を採り、これによって前記目的を達成
しようとするものである。
Means for Solving Problem C] Therefore, the present invention is provided with first and second magnetic sensors capable of detecting an electric signal corresponding to the hardness of the magnetic material by applying an alternating current signal. A first magnetic sensor is disposed close to a reference magnetic body having a known hardness, a second magnetic sensor is disposed close to a magnetic body to be determined, and then the second (7) magnetic sensor In a method for determining the hardness of a magnetic material, the value of the electric signal detected from the first magnetic material is compared with the output of the first magnetic sensor, and thereby the hardness of the magnetic material to be determined relative to the reference magnetic material is determined. ,
The electric signal detected by the first magnetic sensor is controlled so that the value of the electric signal is always constant even if the environmental temperature changes.
This method attempts to achieve the above object by adjusting the value of the AC signal applied to the second magnetic sensor and applying the adjusted AC signal to the second magnetic sensor.

〔発明の実施例〕[Embodiments of the invention]

〔第1実施例〕 以下、本発明の第1実施例を第1図に基づいて説明する
[First Embodiment] Hereinafter, a first embodiment of the present invention will be described based on FIG. 1.

この第1図において、2は交流信号源を示す。In FIG. 1, 2 indicates an AC signal source.

この交流信号源2は、所定周波数(ここでは、例えば3
20(Hz))の交流信号を発生せしめる発振回路4と
、この発振回路4からの出力信号を増幅するとともに、
その利得を必要に応じて変えることのできる可変利得増
幅器6とから構成されている。ここで、上記発振回路4
は、交流信号として正弦波信号を歪率例えば0.01 
(%〕程度で出力可能になっている。そして、前記可変
利得増幅器6からの正弦波信号は、次段に並列に装備さ
れている第1の磁気センサ8と第2の磁気センサ10と
に出力されるようになっている。
This AC signal source 2 has a predetermined frequency (here, for example, 3
An oscillation circuit 4 that generates an alternating current signal (20 (Hz)), and amplifies the output signal from this oscillation circuit 4.
It is comprised of a variable gain amplifier 6 whose gain can be changed as necessary. Here, the oscillation circuit 4
is a sine wave signal as an AC signal with a distortion factor of 0.01, for example.
The sine wave signal from the variable gain amplifier 6 is transmitted to the first magnetic sensor 8 and the second magnetic sensor 10, which are installed in parallel at the next stage. It is now output.

上記第1.第2の磁気センサ8,10は各々1次、2次
コイル8A、8B又はIOA、IOBを有し、それらの
1次、2次コイル相互が磁気的に結合されている。この
ため、前記可変利得増幅器6からの出力によって各々の
一部コイル8A。
Above 1st. The second magnetic sensors 8 and 10 have primary and secondary coils 8A and 8B, or IOA and IOB, respectively, and the primary and secondary coils are magnetically coupled to each other. Therefore, each partial coil 8A is controlled by the output from the variable gain amplifier 6.

10Aに正弦波状の交流電流11が流れると、電磁誘導
作用によって対応する二次コイル8B。
When a sinusoidal alternating current 11 flows at 10A, the secondary coil 8B responds by electromagnetic induction.

10Bの各々の両端に二次起電力V2が誘起される。そ
して、第1.第2の磁気センサ8,10で誘起された各
々の起電力V2は次段に設けられた第1.第2の表示手
段12.14へ各別に出力される構成となっている。
A secondary electromotive force V2 is induced at both ends of each of 10B. And the first. Each electromotive force V2 induced by the second magnetic sensors 8 and 10 is applied to the first magnetic sensor provided at the next stage. Each signal is output to the second display means 12.14 separately.

この場合において、前記交流信号源2の交流信号の周波
数が低周波であるから、第1.第2の磁気センサ8,1
0を金属等の磁性体に近接して配設せしめると、磁性体
の内部まで渦電流が流れる。
In this case, since the frequency of the AC signal from the AC signal source 2 is low frequency, the first. Second magnetic sensor 8,1
0 is disposed close to a magnetic material such as metal, an eddy current flows to the inside of the magnetic material.

そして、この渦電流発生によって一部コイルのエネルギ
ーが一部吸収される形になるため、二次コイルへ誘起さ
れる起電力は空気中の場合に比べて大きくなる。つまり
、発生する渦電流は磁性体の種類、形状および導電率、
透磁率等の物理定数の大小によって変化し、このため、
例えば磁性体の形状が同じ場合には透磁率が異なれば二
次コイルに誘起される起電力も異なる。しかも、浸炭深
さ、即ち磁性体表面の硬度は上述の透磁率と比例関係に
あることが一般に知られている。
Since the energy of some of the coils is partially absorbed by this eddy current generation, the electromotive force induced in the secondary coil becomes larger than that in the air. In other words, the generated eddy current depends on the type, shape, and conductivity of the magnetic material.
It changes depending on the magnitude of physical constants such as magnetic permeability, and therefore,
For example, when the shape of the magnetic body is the same, if the magnetic permeability is different, the electromotive force induced in the secondary coil will be different. Moreover, it is generally known that the carburization depth, ie, the hardness of the surface of the magnetic material, is in a proportional relationship with the above-mentioned magnetic permeability.

一方、前記第1の表示手段12は、電圧増幅用の増幅器
16とこの増幅器16の出力を表示する電圧計20によ
って構成されている。また、前記第2の表示手段14も
同様にして、増幅器18及び電圧計22によって構成さ
れている。このため、前述のようにして得られた検出信
号としての二次起電力は、最終的には前記電圧計20.
22によって各別に表示されるようになっている。
On the other hand, the first display means 12 includes an amplifier 16 for voltage amplification and a voltmeter 20 that displays the output of the amplifier 16. Further, the second display means 14 is similarly constituted by an amplifier 18 and a voltmeter 22. Therefore, the secondary electromotive force as the detection signal obtained as described above is ultimately transmitted to the voltmeter 20.
22, each item is displayed separately.

次に、本第1実施例の作用効果について説明する。Next, the effects of the first embodiment will be explained.

いま、浸炭焼入れ処理が施された被判別磁性体としての
丸棒状の金属材(以下、「テストワーク」という)24
の硬度、即ち浸炭深さの程度を判別する場合について述
べる。
Now, a round bar-shaped metal material (hereinafter referred to as "test work") 24 as a magnetic material to be determined has been subjected to carburizing and quenching treatment.
The case of determining the hardness, that is, the degree of carburization depth, will be described below.

まず、第1の磁気センサ8を、浸炭深さが例えば0.9
4 (龍)  (即ち硬度が既知)であり、その形状、
材質等が前記金属材24と同一である基Y$磁性体(以
下、「マスターワーク」という)26にセットし、第2
の磁気センサ10をテストワーク2°4にセットする。
First, the first magnetic sensor 8 has a carburizing depth of, for example, 0.9.
4 (dragon) (i.e. hardness is known), its shape,
A base Y$ magnetic body (hereinafter referred to as "master work") 26 having the same material etc. as the metal material 24 is set, and a second
Set the magnetic sensor 10 at the test work 2°4.

この場合、このテストワーク24は、浸炭焼入れ処理後
、その温度が常温まで冷却されマスターワーク26の温
度(即ち、試験環境の温度)と同一になっているものと
する。
In this case, it is assumed that after the carburizing and quenching process, the test workpiece 24 is cooled to room temperature and is the same as the temperature of the master workpiece 26 (that is, the temperature of the test environment).

そこで、交流信号源2を駆動し、各第1.第2の磁気セ
ンサ8.10の一部コイル8A、IOAに通電せしめる
。これによって、前述の如く、各々の二次コイル8B、
IOBに起電力が誘起される。このとき、第1の磁気セ
ンサ8の二次コイル8Bの起電力に基づく電圧計20の
読取り値■2を一定値(例えば215(mv))になる
ようにオペレータがマニュアル操作で可変利得増幅器6
の所定の利得制御機構(例えば可変抵抗器)を操作する
。つまり、試験環境の温度変化による両方のワーク24
.26の透磁率変化を一次電流の大小によって補償し、
二次起電力を一定に保つ。そして、このときの第2の表
示手段14の電圧計22の読取り値■2′を前記一定値
■2と比較する。
Therefore, the AC signal source 2 is driven, and each first . Part of the coil 8A and IOA of the second magnetic sensor 8.10 are energized. As a result, as mentioned above, each secondary coil 8B,
An electromotive force is induced in the IOB. At this time, the operator manually operates the variable gain amplifier 6 so that the reading value 2 of the voltmeter 20 based on the electromotive force of the secondary coil 8B of the first magnetic sensor 8 becomes a constant value (for example, 215 (mv)).
A predetermined gain control mechanism (e.g., a variable resistor) is operated. In other words, both workpieces 24 due to temperature changes in the test environment.
.. 26 magnetic permeability changes are compensated for by the magnitude of the primary current,
Keep the secondary electromotive force constant. Then, the reading value (2) of the voltmeter 22 of the second display means 14 at this time is compared with the constant value (2).

すなわち、これは環境温度とは無関係に両方のワーク2
4.26が本来的に有するi3m率の違い(即ち、浸炭
深さ)による読取値Vt +  vz′を相互に比較し
ていることになる。従って、この手法を用いることによ
ってテストワーク24の浸炭深さがマスターワーク26
の浸炭深さく0.94〔酊〕)に対して、同じか否か、
又は異なっている場合には何%位違うのかを容易に判別
又は測定することができる。
In other words, this means that both workpieces 2
This means that the reading values Vt + vz' due to the difference in i3m ratio (i.e., carburization depth) inherent in 4.26 are compared with each other. Therefore, by using this method, the carburization depth of the test work 24 can be adjusted to the master work 26.
carburization depth of 0.94 [drunk]), is it the same or not?
Or, if they are different, the percentage difference can be easily determined or measured.

また、生産ラインにあっては、前記テストワーク24を
順次取り替えて同様にその硬度を判別することができる
。これにより、両方のワーク24゜26の温度を定める
環境温度が時間的に変化しても、その温度変化に殆ど無
関係に硬度の判別等を行うことができる。
Further, in a production line, the test workpieces 24 can be replaced one after another and their hardnesses can be similarly determined. Thereby, even if the environmental temperature that determines the temperature of both works 24 and 26 changes over time, the hardness can be determined almost independently of the temperature change.

〔第2実施例〕 次に、本発明の第2実施例を第2図に基づいて説明する
。ここで、前述の第1実施例と同一の構成要素に対して
は同一の付号を用いる。
[Second Embodiment] Next, a second embodiment of the present invention will be described based on FIG. 2. Here, the same reference numbers are used for the same components as in the first embodiment described above.

この第2実施例では、前述の第1実施例においてマニュ
アルで行った交流信号源2に対するフィードバック操作
を自動的に行おうとするものである。
This second embodiment attempts to automatically perform the feedback operation for the AC signal source 2, which was manually performed in the first embodiment.

第2図において、第1の表示手段12内の増幅 、器1
6の出力は差動増幅器30の比較入力端にも至るよう構
成されている。この差動増幅器30のもう一方の基準入
力端には、基準電圧発生器32によって出力された基準
電圧V2  (ここでは例えば215 (mv) )が
印加されるようになっている。
In FIG. 2, the amplifier in the first display means 12, the device 1
The output of the differential amplifier 30 is also connected to the comparison input terminal of the differential amplifier 30. The other reference input terminal of the differential amplifier 30 is applied with a reference voltage V2 (here, for example, 215 (mv)) outputted by a reference voltage generator 32.

また、当該差動増幅器30の出力端からのフィードバッ
ク信号は交流信号源2内の可変利得増幅器34の利得制
御端に印加される構成になっている。
Further, the feedback signal from the output end of the differential amplifier 30 is applied to the gain control end of the variable gain amplifier 34 in the AC signal source 2.

このため、本装置の駆動時には、基準電圧v2と増幅器
16の出力■2′とが逐一比較され、その差に基づく制
御用のフィードバック信号によって可変利得増幅器34
の利得が自動的に制御され、その出力が調整されるよう
になっている。
Therefore, when driving this device, the reference voltage v2 and the output 2' of the amplifier 16 are compared point by point, and a control feedback signal based on the difference is used to control the variable gain amplifier 34.
Its gain is automatically controlled to adjust its output.

ここで、上述した差動増幅器30.基準電圧発生器32
によって交流信号源2の利得を制御する印加信号制御手
段36が構成されている。
Here, the above-mentioned differential amplifier 30. Reference voltage generator 32
An applied signal control means 36 for controlling the gain of the AC signal source 2 is configured by the following.

その他の構成及び機能は、前述した第1実施例と同一に
なっており、テストワーク24に対する硬度の判別等も
同様にして行われる。
The other configurations and functions are the same as those of the first embodiment described above, and the determination of the hardness of the test workpiece 24 is performed in the same manner.

このように、本第2実施例によると、その作用効果は前
述した第1実施例の場合と同等のものが得られるほか、
各第1.第2の磁気センサ8゜10の一次電流の制御を
自動的に行わせるとしていることから、硬度の判別操作
が著しく簡略化され、作業能率の一層の向上を図ること
ができる。
As described above, according to the second embodiment, the same effects as those of the first embodiment described above can be obtained, and
Each 1st. Since the primary current of the second magnetic sensor 8-10 is automatically controlled, the hardness determination operation is significantly simplified, and work efficiency can be further improved.

なお、前記各実施例においては、テストワーク24とし
て丸棒状の金属材の場合について述べたが、本発明は必
ずしもこれに限定されず、他の形状の磁性体であっても
同様に適用可能なものである。また、基準電圧■2は、
基準となる磁性体の既知の浸炭深さに合わせて適宜設定
してよい。
In addition, in each of the above embodiments, the test work 24 is a round bar-shaped metal material, but the present invention is not necessarily limited to this, and can be similarly applied to magnetic materials of other shapes. It is something. In addition, the reference voltage ■2 is
It may be set as appropriate according to the known carburization depth of the reference magnetic material.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のように構成され機能するので、環境温
度、即ち磁性体の温度にほぼ無関係に当該磁性体の硬度
を基準値に比較し判別することができ、これによって周
囲の環境温度が刻々変化するような生産ラインであって
も、従来例と異なり、その全数に対して容易に被破壊的
方法でその硬度を判別することができ、従って著しい品
質管理の向上を図ることができるという優れた磁性体の
硬度判別方法およびその装置を提供することができる。
Since the present invention is configured and functions as described above, it is possible to compare the hardness of the magnetic material with a reference value and determine it almost independently of the environmental temperature, that is, the temperature of the magnetic material. Even on a production line where changes occur from moment to moment, unlike conventional methods, it is possible to easily determine the hardness of all products using a non-destructive method, thereby significantly improving quality control. An excellent method and device for determining the hardness of a magnetic material can be provided.

また、特許請求の範囲第3項記載の装置においては、基
準値が予め定めた値に自動的に調整されるため、判別の
ための操作を著しく簡略化させることができ、これによ
って硬度判別を能率よく且つ精度よく行い得るという効
果が得られる。
Furthermore, in the device according to claim 3, since the reference value is automatically adjusted to a predetermined value, the operation for discrimination can be significantly simplified, thereby making it possible to perform hardness discrimination. The effect is that the process can be carried out efficiently and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例にかかるブロック図、第2
図は本発明の第2実施例にかかるブロック図、第3図は
磁気センサの二次起電力に基づく二次電圧と環境温度と
の関係例を示す線図である。 2・・・・・・交流信号源、8・・・・・・第1の磁気
センサ、10・・・・・・第2の磁気センサ、12・・
・・・・第1の表示手段、14・・・・・・第2の表示
手段、24・・・・・・被判別磁性体(テストワーク)
、26・・・・・・基準磁性体(マスターワーク)、3
6・・・・・・印加信号制御手段。
FIG. 1 is a block diagram according to the first embodiment of the present invention, and FIG.
The figure is a block diagram according to the second embodiment of the present invention, and FIG. 3 is a diagram showing an example of the relationship between the secondary voltage based on the secondary electromotive force of the magnetic sensor and the environmental temperature. 2... AC signal source, 8... First magnetic sensor, 10... Second magnetic sensor, 12...
...First display means, 14...Second display means, 24...Magnetic material to be determined (test work)
, 26...Reference magnetic body (master work), 3
6... Applied signal control means.

Claims (3)

【特許請求の範囲】[Claims] (1)、交流信号の印加によって磁性体の硬度に対応し
た電気信号を検出可能な第1及び第2の磁気センサを具
備し、 この内、第1の磁気センサを硬度が既知の基準磁性体に
近接して配設するとともに、第2の磁気センサを被判別
磁性体に近接して配設せしめ、しかる後、前記第2の磁
気センサとから検出された電気信号の値を前記第1の磁
気センサ出力と比較し、これによって前記基準磁性体に
対する前記被判別磁性体の硬度を相対的に判別する磁性
体の硬度判別方法において、 前記第1の磁気センサによって検知される電気信号の値
を、環境温度が変化しても常に一定となるよう当該第1
の磁気センサに印加する交流信号の値を調整するととも
に、この調整された交流信号を前記第2の磁気センサに
印加することを特徴とした磁性体の硬度判別方法。
(1) Equipped with first and second magnetic sensors capable of detecting an electric signal corresponding to the hardness of the magnetic material by applying an alternating current signal; and a second magnetic sensor is arranged close to the magnetic substance to be determined, and then the value of the electric signal detected from the second magnetic sensor is transferred to the first magnetic substance. In a method for determining the hardness of a magnetic body, the hardness of the magnetic body to be determined is determined relative to the reference magnetic body by comparing the hardness with a magnetic sensor output, the value of the electric signal detected by the first magnetic sensor being , so that the first temperature remains constant even if the environmental temperature changes.
A method for determining the hardness of a magnetic material, comprising adjusting the value of an alternating current signal applied to the second magnetic sensor, and applying the adjusted alternating current signal to the second magnetic sensor.
(2)、所定周波数の交流信号を出力するとともに必要
に応じてその出力値を調整可能に構成された交流信号源
を備え、 硬度が既知の基準磁性体に近接して配設され且つ前記交
流信号源からの交流信号の印加により当該基準磁性体の
硬度を検出し所定レベルの電気信号を出力する第1の磁
気センサと、この第1の磁気センサからのセンサ出力を
表示する第1の表示手段とを設けるとともに、 被判別磁性体に近接して配設され且つ前記第1の磁気セ
ンサに印加される交流信号と同一の信号を印加すること
により当該被判別磁性体の硬度を検出しこれに対応した
所定レベルの電気信号を出力する第2の磁気センサと、
この第2の磁気センサからのセンサ出力を表示する第2
の表示手段とを併設したことを特徴とする磁性体の硬度
判別装置。
(2) An AC signal source configured to output an AC signal of a predetermined frequency and to be able to adjust its output value as necessary; A first magnetic sensor that detects the hardness of the reference magnetic body by applying an alternating current signal from a signal source and outputs an electrical signal at a predetermined level, and a first display that displays the sensor output from the first magnetic sensor. and a means for detecting the hardness of the magnetic substance to be determined by applying the same signal as the alternating current signal that is disposed close to the magnetic substance to be determined and applied to the first magnetic sensor. a second magnetic sensor that outputs an electrical signal of a predetermined level corresponding to the
A second magnetic sensor displaying the sensor output from this second magnetic sensor.
An apparatus for determining the hardness of a magnetic material, characterized in that it is also equipped with a display means.
(3)、所定周波数の交流信号を出力するとともに必要
に応じてその出力値を調整可能に構成された交流信号源
を備え、 硬度が既知の基準磁性体に近接して配設され且つ前記交
流信号源からの交流信号の印加により当該基準磁性体の
硬度を検出しこれに対応した所定レベルの電気信号を出
力する第1の磁気センサと、この第1の磁気センサから
のセンサ出力を表示する第1の表示手段とを設けるとと
もに、 被判別磁性体に近接して配設され且つ前記第1の磁気セ
ンサに印加される交流信号と同一の信号を印加すること
により当該被判別磁性体の硬度を検出しこれに対応した
所定レベルの電気信号を出力する第2の磁気センサと、
この第2の磁気センサからのセンサ出力を表示する第2
の表示手段とを併設し、 前記交流信号源をフィードバック制御し前記第1の磁気
センサの検出値を環境温度に対して無関係に一定レベル
に自動調整する印加信号制御手段を具備したことを特徴
とする磁性体の硬度判別装置。
(3) An alternating current signal source configured to output an alternating current signal of a predetermined frequency and whose output value can be adjusted as necessary; A first magnetic sensor that detects the hardness of the reference magnetic body by applying an alternating current signal from a signal source and outputs an electric signal of a predetermined level corresponding to the hardness, and a sensor output from the first magnetic sensor is displayed. the hardness of the magnetic material to be determined by applying the same signal as the AC signal that is disposed close to the magnetic material to be determined and applied to the first magnetic sensor. a second magnetic sensor that detects and outputs an electric signal at a predetermined level corresponding to the detected electric signal;
A second magnetic sensor displaying the sensor output from this second magnetic sensor.
display means, and applied signal control means for feedback-controlling the alternating current signal source and automatically adjusting the detected value of the first magnetic sensor to a constant level regardless of environmental temperature. Hardness determination device for magnetic materials.
JP1650486A 1986-01-28 1986-01-28 Method and device for deciding hardness of magnetic body Pending JPS62174651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1650486A JPS62174651A (en) 1986-01-28 1986-01-28 Method and device for deciding hardness of magnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1650486A JPS62174651A (en) 1986-01-28 1986-01-28 Method and device for deciding hardness of magnetic body

Publications (1)

Publication Number Publication Date
JPS62174651A true JPS62174651A (en) 1987-07-31

Family

ID=11918104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1650486A Pending JPS62174651A (en) 1986-01-28 1986-01-28 Method and device for deciding hardness of magnetic body

Country Status (1)

Country Link
JP (1) JPS62174651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445384B1 (en) * 2002-07-30 2004-08-25 한국표준과학연구원 Method and device for measuring tension using auto compensative type EM sensor
JP2008224495A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
JP2008224494A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
JP2009109358A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method for measuring hardening pattern

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445384B1 (en) * 2002-07-30 2004-08-25 한국표준과학연구원 Method and device for measuring tension using auto compensative type EM sensor
JP2008224495A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
JP2008224494A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Ind Ltd Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
WO2008126554A1 (en) * 2007-03-14 2008-10-23 Sumitomo Metal Industries, Ltd. Eddy current inspection method, steel pipe inspected by the eddy current inspection method, and eddy current inspection device for carrying out the eddy current inspection method
WO2008126553A1 (en) * 2007-03-14 2008-10-23 Sumitomo Metal Industries, Ltd. Eddy current inspection method, steel pipe inspected by the eddy current inspection method, and eddy current inspection device for carrying out the eddy current inspection method
US8269488B2 (en) 2007-03-14 2012-09-18 Sumitomo Metal Industries, Ltd. Eddy current testing method, steel pipe or tube tested by the eddy current testing method, and eddy current testing apparatus for carrying out the eddy current testing method
JP2009109358A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Method for measuring hardening pattern

Similar Documents

Publication Publication Date Title
US10144987B2 (en) Sensors
JP2007127600A (en) Electromagnetic induction type inspection device and method therefor
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
JPH0466863A (en) Residual stress measuring method by steel working
JPS62174651A (en) Method and device for deciding hardness of magnetic body
JPH07128295A (en) Method for measuring crystal grain size of steel plate
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JP3948594B2 (en) Method for measuring Si concentration in steel
JPH05281063A (en) Measuring device for tension of steel material
JPH06213872A (en) Method for measuring crystal grain diameter of steel plate
JP4192333B2 (en) Method for measuring transformation layer thickness of steel
JPH01269049A (en) Method of inspecting deterioration of metallic material
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JP2841578B2 (en) Calibration method and calibration device for iron loss value measurement data
JPH05280921A (en) Section measuring device of steel material
JP2663767B2 (en) Transformation rate measuring method and apparatus
JPS6228604A (en) Noncontact type profile measuring instrument
JP2001272378A (en) Material characteristics measurement method, transformation state measurement method, material characteristics measurement device, and transformation state measurement device for magnetic material
JPS6021445A (en) Eddy current detecting apparatus
SU1596279A1 (en) Apparatus for noncontact measuring of specific resistance of articles from nonmagnetic materials
JPH09257598A (en) Stress measuring method utilizing magnetic distortion effect and device thereof
SU445902A1 (en) The method of electromagnetic quality control of heat treatment of parts of ferromagnetic materials
JPS587331Y2 (en) Eddy current flaw detection equipment
JPH0836038A (en) Method for measuring magnetic permeability
JPS5853186Y2 (en) Welding current control device