JPH0857255A - Fluorocarbon decomposing apparatus - Google Patents

Fluorocarbon decomposing apparatus

Info

Publication number
JPH0857255A
JPH0857255A JP6198170A JP19817094A JPH0857255A JP H0857255 A JPH0857255 A JP H0857255A JP 6198170 A JP6198170 A JP 6198170A JP 19817094 A JP19817094 A JP 19817094A JP H0857255 A JPH0857255 A JP H0857255A
Authority
JP
Japan
Prior art keywords
catalyst
fluorocarbon
catalyst layer
decomposition
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6198170A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawagoe
博 川越
Shuichi Sugano
周一 菅野
Akira Kato
加藤  明
Shin Tamada
玉田  慎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6198170A priority Critical patent/JPH0857255A/en
Publication of JPH0857255A publication Critical patent/JPH0857255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To provide a fluorocarbon decomposing system capable of treating fluorocarbon without lowering the decomposition sctivity of fluorocarbon when a large amt. of highly conc. fluorocarbon is treated by providing a first catalyst bed decomposing fluorocarbon and absorbing at least a part of hydrogen fluoride and/or hydrogen chloride generaled accordingly to the decomposition fluorocarbon in a front stage while providing a second catalyst bed decomposing residual fluorocarbon in a rear stage. CONSTITUTION: Fluorocarbon-containing exhaust gas 1 is mixed with oxygen 2 to be introduced into a first catalyst bed 3 packed with a calcia catalyst at reaction temp. of 400 deg.C. The hydrolytic decomposition reaction of fluorocarbon is advanced on the catalyst to form CO2 , HF, HCl and water. Next, the exhaust gas is introduced into a salt recovery process 4 packed with an aq. NaOH soln. to form Na and sodium chloride A. Further, the exhaust gas is introduced into a CaF2 recovery process 5 packed with Ca(OH)2 to recover CaF2 and sodium chloride, and the formed gas becomes a mixture of unreacted gas and air. This gas is mixed with oxygen 2 to be introduced into a second catalyst bed 6 pocked with a TiO2 -W catalyst at reaction temp. of 400 deg.C and the hydrolytic decomposition reaction of hydrocarbon advanced on the catalyst to decompose fluorocarbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフロンの分解システムに
関する。
FIELD OF THE INVENTION The present invention relates to a fluorocarbon decomposition system.

【0002】[0002]

【従来の技術】フロンは大気中に排出された場合には一
部オゾン層に達し、これが、太陽紫外線の作用で分解し
て生成する活性な塩素原子がオゾン層を破壊するため、
地球環境汚染の要因として問題にされている。そのた
め、フロンの代替品の開発と並行して使用済みフロンを
分解する技術の開発が望まれている。従来知られている
フロンの分解処理方法の一つとして、特開平4−313344
号公報にはフロン系物質を含むガスを100℃以上の温
度で触媒に接触させることが記載されている。しかし、
このような触媒を用いる方法で、高濃度フロンを大量処
理する場合、分解生成物の高濃度フッ化水素,塩化水素
ガスのために触媒が変質して触媒活性が低下するという
問題があった。
BACKGROUND ART Freon reaches a part of the ozone layer when it is discharged into the atmosphere, and active chlorine atoms generated by decomposition due to the action of solar ultraviolet rays destroy the ozone layer.
It has become a problem as a cause of global environmental pollution. Therefore, it is desired to develop a technology for decomposing used CFCs in parallel with the development of CFC substitutes. As one of the conventionally known methods for decomposing chlorofluorocarbon, JP-A-4-313344
The publication discloses that a gas containing a CFC-based substance is brought into contact with a catalyst at a temperature of 100 ° C. or higher. But,
When a large amount of high-concentration chlorofluorocarbon is treated by the method using such a catalyst, there is a problem that the catalyst is deteriorated due to the high-concentration hydrogen fluoride and hydrogen chloride gas of the decomposition product and the catalytic activity is lowered.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、高濃
度フロンを大量処理する場合でも生成ガスによる触媒劣
化が少なく、フロン分解活性を低下させることなく処理
できるフロンの分解システムを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a CFC decomposition system which can treat a high concentration CFC in a large amount without causing deterioration of the catalyst due to the generated gas and without degrading the CFC decomposition activity. It is in.

【0004】[0004]

【課題を解決するための手段】本発明は、フロンを含む
廃ガスを温度300〜600℃の温度範囲で通常の分解
工程において、前段でフロンを分解すると共に生成ガス
のフッ化水素及び又は塩化水素の少なくとも一部を吸収
する第一触媒層と後段に残留フロンを分解する第二触媒
層の二種類の触媒を組み合わせたことにより、高濃度フ
ロンを大量処理する場合でも触媒活性を低下させること
なく処理できる。即ち、本発明はフロン含有ガスと空気
及び水蒸気を含有するガスを第一触媒層に300〜50
0℃の温度範囲で、接触させることにより、一例を挙げ
ると次式に示す反応が進行する。
According to the present invention, a waste gas containing CFCs is decomposed at a temperature in the range of 300 to 600 ° C. in a normal decomposition step so that CFCs are decomposed in the preceding stage and hydrogen fluoride and / or chlorinated product gas is generated. By combining two types of catalysts, a first catalyst layer that absorbs at least a part of hydrogen and a second catalyst layer that decomposes residual CFCs in the subsequent stage, it is possible to reduce the catalytic activity even when high-concentration CFCs are processed in large quantities. It can be processed without. That is, in the present invention, a CFC-containing gas and a gas containing air and steam are added to the first catalyst layer in an amount of 300 to 50.
By bringing them into contact with each other in the temperature range of 0 ° C., the reaction represented by the following formula proceeds, for example.

【0005】[0005]

【化1】 C2Cl33+3H2O=CO2+CO+3HCl+3HF …(化1) 第一触媒層より生成したフッ化水素,塩化水素の一部あ
るいは大部分は同触媒層に吸収される。例えば、CaO
を触媒に用いると処理ガス中のフロンが一部分解される
と共に、次式の反応によりフッ化水素,塩化水素が触媒
に吸収される。
## STR1 ## C 2 Cl 3 F 3 + 3H 2 O = CO 2 + CO + 3HCl + 3HF ... ( Formula 1) hydrogen fluoride generated from the first catalyst layer, a part or most of the hydrogen chloride is absorbed into the catalyst layer. For example, CaO
When is used as a catalyst, CFCs in the processing gas are partially decomposed, and hydrogen fluoride and hydrogen chloride are absorbed by the catalyst by the reaction of the following equation.

【0006】[0006]

【化2】 2HCl+2HF+2CaO=CaF2+CaCl2+2H2O …(化2) このため、後段の第二触媒層に流れるフロン濃度は低下
し、その結果第二段触媒の負担は軽減され、分解効率が
上がると共に、活性低下も起きにくくなる。即ち、第二
触媒層では第一触媒層に比べ稀薄なフロンを処理するた
め、精度の高い分解が可能となり、容易に90%以上の
分解率が得られる。
Embedded image 2HCl + 2HF + 2CaO = CaF 2 + CaCl 2 + 2H 2 O (Chemical formula 2) Therefore, the concentration of CFCs flowing to the second catalyst layer in the subsequent stage is reduced, and as a result, the burden on the second stage catalyst is reduced and the decomposition efficiency is reduced. As the temperature rises, it becomes less likely that activity will decrease. That is, since the second catalyst layer treats less chlorofluorocarbon than the first catalyst layer, it can be decomposed with high accuracy, and a decomposition rate of 90% or more can be easily obtained.

【0007】また、分解工程の第一触媒層及び第二触媒
層からの生成ガス中のフッ化水素及び塩化水素はアルカ
リで中和、無害化する。例えば、塩化水素は食塩として
回収され、また、フッ化水素はホタル石として回収され
る。
Further, hydrogen fluoride and hydrogen chloride in the gas produced from the first catalyst layer and the second catalyst layer in the decomposition step are neutralized and rendered harmless with alkali. For example, hydrogen chloride is recovered as common salt, and hydrogen fluoride is recovered as fluorspar.

【0008】本発明の分解工程の第一触媒層にはフロン
分解能とフッ化水素及び塩化水素の吸収能を持つ触媒を
用いる。フッ化水素や塩化水素の吸収によりフロン分解
活性及び吸収性能が顕著に低下した場合には新規触媒と
交換して使用される。
For the first catalyst layer in the decomposition step of the present invention, a catalyst having a CFC decomposing ability and an ability to absorb hydrogen fluoride and hydrogen chloride is used. When the CFC decomposition activity and absorption performance are significantly reduced by the absorption of hydrogen fluoride or hydrogen chloride, the catalyst is replaced with a new catalyst.

【0009】一方、本発明の分解工程の第二触媒層には
高濃度のフロン処理では分解性能や耐久性能等に問題は
あるが、ある程度低濃度であれば高分解率でフロンを処
理できる触媒を用いる。このようにそれぞれ特徴のある
二種類の触媒を組み合わせることにより効率良く高濃度
のフロン含有ガスを処理できる。
On the other hand, the second catalyst layer in the decomposition step of the present invention has a problem in decomposition performance and durability performance in high-concentration CFC treatment, but a catalyst capable of treating CFC with a high decomposition rate at a relatively low concentration. To use. In this way, by combining two types of catalysts, each of which has its own characteristics, it is possible to efficiently process a high-concentration fluorocarbon-containing gas.

【0010】本発明における第一触媒層で処理するフロ
ン濃度は1〜10%の範囲が好ましく、第二触媒層では
5%以下の濃度が好ましい。
The CFC concentration in the first catalyst layer in the present invention is preferably in the range of 1 to 10%, and the concentration in the second catalyst layer is preferably 5% or less.

【0011】本発明では分解工程の第一触媒層及び第二
触媒層を同一反応器内に設置して使用しても良いし、別
の反応器に充填して使用しても良い。
In the present invention, the first catalyst layer and the second catalyst layer used in the decomposition step may be installed and used in the same reactor, or may be used by filling them in another reactor.

【0012】本発明のフロンを含有するガスはフロン回
収設備より排出されるガス,フロン使用設備より排出さ
れるガスなど特に限定されない。
The CFC-containing gas of the present invention is not particularly limited, such as a gas discharged from a CFC recovery facility and a gas discharged from a CFC-using facility.

【0013】本発明のもう一つの特徴は分解工程の第一
触媒層及び第二触媒層に使用される触媒にある。第一触
媒層に使用される触媒として反応温度300〜600℃
の温度条件において、カルシア,シリカ,アルミナ,ジ
ルコニア,マグネシア,バリアの中から選ばれた少なく
とも一種の酸化物を主成分として含有する触媒が使用さ
れる。第二触媒層に使用される触媒として、反応温度3
00〜600℃の温度条件において、第一成分としてチ
タニア、第二成分としてタングステン,モリブデン,
銅,銀,ニオブ,コバルト,ニッケル,マンガン,白
金、金,パラジウムの酸化物または金属の中から選ばれ
た少なくとも一種を主成分として含有する触媒が使用さ
れる。第二触媒層の組成は第一成分のチタニアに対し、
第二成分が1〜50重量%の範囲が好ましい。もちろん
これらの触媒は他のセラミックス、あるいは金属のハニ
カム等の担体に担持あるいは、コ−ティングして使用し
ても良いし、成型のため他のセラミックス成分を多量に
混合して使用することも可能である。
Another feature of the present invention is the catalyst used in the first catalyst layer and the second catalyst layer in the decomposition step. Reaction temperature 300 to 600 ° C. as a catalyst used in the first catalyst layer
Under the above temperature condition, a catalyst containing at least one oxide selected from calcia, silica, alumina, zirconia, magnesia, and a barrier as a main component is used. As the catalyst used in the second catalyst layer, the reaction temperature is 3
Under the temperature condition of 00 to 600 ° C., the first component is titania, the second component is tungsten, molybdenum,
A catalyst containing as a main component at least one selected from oxides or metals of copper, silver, niobium, cobalt, nickel, manganese, platinum, gold, palladium is used. The composition of the second catalyst layer is the same as the titania of the first component,
The range of 1 to 50% by weight of the second component is preferable. Of course, these catalysts may be used by being carried or coated on a carrier such as other ceramics or a metal honeycomb, or a large amount of other ceramics components may be mixed and used for molding. Is.

【0014】本発明に用いる分解工程の第一触媒層及び
第二触媒層に使用される触媒の形状は粒状,ハニカム
状,板状,三次元網目構造等特に限定されない。
The shape of the catalyst used in the first catalyst layer and the second catalyst layer in the decomposition step used in the present invention is not particularly limited, such as a granular shape, a honeycomb shape, a plate shape, and a three-dimensional mesh structure.

【0015】本発明に用いる分解工程の第一触媒層及び
第二触媒層の触媒の成分は硝酸塩,塩化物,炭酸塩、有
機化合物,水酸化物等の熱分解或いは水溶液の中和など
によって、酸化物を製造して用いられる。
The components of the catalyst of the first catalyst layer and the second catalyst layer of the decomposition step used in the present invention are obtained by thermal decomposition of nitrates, chlorides, carbonates, organic compounds, hydroxides, etc., or neutralization of aqueous solutions. Used for producing an oxide.

【0016】本発明の分解工程の第一触媒層及び第二触
媒層の触媒の調製には、通常使用される含侵法,混練
法,沈殿法,沈着法,CVD法等いずれの場合も使用出
来る。本発明の分解工程において第一触媒層及び第二触
媒層に添加されるフロン分解用の酸化剤は、水蒸気,過
酸化水素,オゾン,空気,酸素等いずれか一種以上を用
いることができる。
For the preparation of the catalysts for the first catalyst layer and the second catalyst layer in the decomposition step of the present invention, any of the commonly used impregnation method, kneading method, precipitation method, deposition method, CVD method and the like can be used. I can. As the oxidizing agent for decomposing CFCs added to the first catalyst layer and the second catalyst layer in the decomposition step of the present invention, any one or more of steam, hydrogen peroxide, ozone, air, oxygen and the like can be used.

【0017】本発明の分解工程の第一触媒層及び第二触
媒層の触媒に対する処理ガスの供給速度は触媒の単位体
積当り500〜100,000/hであることが好まし
い。本発明では、第一触媒層から生成したフッ化水素,
塩化水素,炭酸ガス,水はアルカリ溶液に吸収される。
アルカリ溶液では反応温度100℃以下の条件下におい
て水酸化ナトリウム,水酸化カリウム,炭酸ナトリウ
ム,炭酸カリウム,水酸化カルシウム,炭酸カルシウ
ム,酸化カルシウム、アンモニア等から選ばれた一種以
上の混合物からなる吸収液または吸収剤に吸収中和され
る。
The feed rate of the processing gas to the catalyst in the first catalyst layer and the second catalyst layer in the decomposition step of the present invention is preferably 500 to 100,000 / h per unit volume of the catalyst. In the present invention, hydrogen fluoride generated from the first catalyst layer,
Hydrogen chloride, carbon dioxide, and water are absorbed by the alkaline solution.
In an alkaline solution, an absorbing solution consisting of one or more mixtures selected from sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, calcium carbonate, calcium oxide, ammonia, etc. under a reaction temperature of 100 ° C or less. Alternatively, it is absorbed and neutralized by the absorbent.

【0018】本発明のアルカリ吸収は固体吸収及び液体
吸収のどちらでも良い。
The alkali absorption of the present invention may be either solid absorption or liquid absorption.

【0019】[0019]

【作用】本発明によれば、フロン含有ガスを分解工程の
第一触媒層と第二触媒層の一連の組合せにより、フロン
の除去を確実に行い、長時間高い除去性能を得ることが
出来る。本発明のシステムにより環境浄化に有効であ
る。
According to the present invention, the Freon-containing gas can be reliably removed by a series of combinations of the first catalyst layer and the second catalyst layer in the decomposition step of the Freon-containing gas, and a high removal performance can be obtained for a long time. The system of the present invention is effective for environmental purification.

【0020】[0020]

【実施例】以下、実施例を挙げて本発明の内容をより具
体的に説明する。
EXAMPLES Hereinafter, the contents of the present invention will be described more specifically with reference to examples.

【0021】(実施例1)図1は本発明の一実施例を示
すブロック図である。フロン含有廃ガス1は水蒸気,過
酸化水素,オゾン,空気,酸素2と混合されて、反応温
度400℃で分解工程の第一触媒層3に導入される。第
一触媒層3ではカルシア触媒が充填されており、触媒上
で廃ガス中のフロンの加水分解反応が進行して、炭酸ガ
ス,フッ化水素,塩化水素,水を生成する。ついで、生
成ガスは食塩回収工程4に導入される。食塩回収工程4
では水酸化ナトリウム溶液が充填されており、フッ化ナ
トリウムと食塩が生成する。さらに、食塩回収塔4から
の生成ガスはフッ化カルシウム回収工程5に導入され
る。フッ化カルシウム回収工程5では水酸化カルシウム
が充填されており、フッ化カルシウム(ほたる石)と食
塩が回収される。炭酸ガスは炭酸水素ナトリウムとして
回収される。フッ化カルシウム回収工程5からの生成ガ
スは未反応のフロン及び空気となる。未反応フロン及び
空気は水蒸気,過酸化水素,オゾン,空気,酸素2と混
合されて、反応温度400℃で第二触媒層6に導入され
る。第二触媒層6ではチタニア−タングステン触媒が充
填されており、触媒上でフロンの加水分解反応が進行し
てほぼ、完全にフロンは除去される。分解生成物の炭酸
ガス,塩化水素及びフッ化水素は循環ライン7により食
塩回収工程4,フッ化カルシウム回収工程5に再循環し
吸収除去され、清浄ガス8として排出される。
(Embodiment 1) FIG. 1 is a block diagram showing an embodiment of the present invention. The chlorofluorocarbon-containing waste gas 1 is mixed with water vapor, hydrogen peroxide, ozone, air and oxygen 2 and introduced into the first catalyst layer 3 of the decomposition step at a reaction temperature of 400 ° C. The first catalyst layer 3 is filled with a calcia catalyst, and the hydrolysis reaction of CFCs in the waste gas proceeds on the catalyst to generate carbon dioxide, hydrogen fluoride, hydrogen chloride, and water. Next, the produced gas is introduced into the salt recovery step 4. Salt recovery process 4
Is filled with sodium hydroxide solution, and sodium fluoride and sodium chloride are produced. Further, the generated gas from the salt recovery tower 4 is introduced into the calcium fluoride recovery step 5. In the calcium fluoride recovery step 5, calcium hydroxide is filled, and calcium fluoride (fluorite) and salt are recovered. Carbon dioxide is recovered as sodium hydrogen carbonate. The produced gas from the calcium fluoride recovery step 5 becomes unreacted CFC and air. Unreacted CFC and air are mixed with water vapor, hydrogen peroxide, ozone, air and oxygen 2 and introduced into the second catalyst layer 6 at a reaction temperature of 400 ° C. The second catalyst layer 6 is filled with a titania-tungsten catalyst, and the hydrofluoric reaction of freon proceeds on the catalyst to almost completely remove freon. The carbon dioxide gas, hydrogen chloride and hydrogen fluoride of the decomposition products are recirculated to the salt recovery step 4 and the calcium fluoride recovery step 5 through the circulation line 7, absorbed and removed, and discharged as a clean gas 8.

【0022】(実施例2)図2は本発明の実施例を示す
装置のブロック図であるが、第一触媒層3と第二触媒層
5を同一反応器内に充填した以外は実施例1と同じであ
る。
(Embodiment 2) FIG. 2 is a block diagram of an apparatus showing an embodiment of the present invention. Embodiment 1 except that the first catalyst layer 3 and the second catalyst layer 5 are packed in the same reactor. Is the same as.

【0023】(実施例3)実施例1において、分解工程
の第一触媒層(A〜F)及び第二触媒層(G〜Q)に使用
される触媒として以下の触媒を得た。
(Example 3) In Example 1, the following catalyst was obtained as a catalyst used in the first catalyst layer (A to F) and the second catalyst layer (G to Q) in the decomposition step.

【0024】実施例触媒A: CaO B: SiO2 C: Al23 D: ZrO2 E: MgO F: BaO G: TiO2−WO3 H: TiO2−MoO3 I: TiO2−Nb25 J: TiO2−CoO K: TiO2−NiO L: TiO2−MnO2 M: TiO2−CuO N: TiO2−Ag2O O: TiO2−Pt P: TiO2−Pd Q: TiO2−Au これらの触媒において、W,Mo,Nb,Co,Ni,
Mn,Cuの担持量はチタニア担体に対して酸化物とし
て30重量%であり、Ag,Pt,Pd,Auの担持量
はチタニア担体に対して金属として5重量%である。
Example Catalyst A: CaO B: SiO2 C: Al2O3 D: ZrO2 E: MgO F: BaO G: TiO2-WO3  H: TiO2-MoO3 I: TiO2-Nb2OFive J: TiO2-CoOK: TiO2-NiOL: TiO2-MnO2 M: TiO2-CuO N: TiO2-Ag2OO: TiO2-Pt P: TiO2-Pd Q: TiO2-Au In these catalysts, W, Mo, Nb, Co, Ni,
The supported amount of Mn and Cu is an oxide with respect to the titania carrier.
30% by weight, and the amount of Ag, Pt, Pd, Au supported
Is 5% by weight as a metal with respect to the titania carrier.

【0025】(比較例1)チタニアとジルコニアの複合
酸化物担体に酸化クロム5wt%を担持した触媒を比較
例触媒Rとした。
Comparative Example 1 A catalyst in which 5 wt% of chromium oxide was supported on a composite oxide carrier of titania and zirconia was designated as Comparative Example Catalyst R.

【0026】(実施例4)第一層触媒A〜Fの中から一
種と第二層触媒G〜Qの中から一種を選び組み合わせた
触媒群と比較例触媒Rについて、フロン濃度:2%(残
空気),水蒸気:10%,反応温度:400℃,空間速
度:20,000/hの条件で分解反応を行い、各種触媒の性
能評価を行った。なお、フロンの分解率は以下の式に従
って求めた。
(Example 4) Concentration of Freon: 2% (for a catalyst group and a comparative catalyst R in which one of the first layer catalysts A to F and one of the second layer catalysts G to Q are selected and combined) Residual air), water vapor: 10%, reaction temperature: 400 ° C., space velocity: 20,000 / h, a decomposition reaction was performed to evaluate the performance of various catalysts. The decomposition rate of CFC was determined according to the following formula.

【0027】フロン分解率(%)=(1−入口フロン濃
度/出口フロン濃度)×100
CFC decomposition rate (%) = (1-inlet CFC concentration / outlet CFC concentration) × 100

【0028】[0028]

【表1】 [Table 1]

【0029】表1にその結果を示す。第一層触媒と第二
層触媒を組み合わせた触媒は比較例触媒Rに比べてフロ
ンの分解活性が高いことが確認された。
The results are shown in Table 1. It was confirmed that the catalyst in which the first layer catalyst and the second layer catalyst were combined had a higher chlorofluorocarbon decomposition activity than the comparative catalyst R.

【0030】(実施例5)実施例触媒AとGを組み合わ
せて、10時間の耐久試験を行った。反応条件は実施例
4と同じである。図3にその結果を示す。図からも明ら
かなように第一層触媒と第二層触媒を組み合わせた触媒
は比較例触媒Rに比べて、耐久性の良いことが分かっ
た。
Example 5 Example Catalysts A and G were combined and a 10-hour durability test was conducted. The reaction conditions are the same as in Example 4. The results are shown in FIG. As is clear from the figure, the catalyst in which the first layer catalyst and the second layer catalyst are combined has better durability than the comparative catalyst R.

【0031】[0031]

【発明の効果】本発明によれば、フロンが高分解率で除
去され、分解生成物の被毒による触媒の耐久性の低下が
少なく、フロン含有廃ガスが浄化される。
EFFECTS OF THE INVENTION According to the present invention, CFCs are removed at a high decomposition rate, the durability of the catalyst is less deteriorated due to poisoning of decomposition products, and CFC-containing waste gas is purified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す装置のブロック図。FIG. 1 is a block diagram of an apparatus showing the present invention.

【図2】本発明を示す装置のブロック図。FIG. 2 is a block diagram of an apparatus showing the present invention.

【図3】本発明の実施例触媒のフロン除去の特性図。FIG. 3 is a characteristic diagram of CFC removal of the catalyst of the example of the present invention.

【符号の説明】[Explanation of symbols]

1…フロン含有廃ガス、2…水蒸気,過酸化水素,オゾ
ン,空気,酸素、3…第一触媒層、4…食塩回収工程、
5…フッ化カルシウム回収工程、6…第二触媒層、7…
循環ライン、8…清浄ガス。
1 ... Freon-containing waste gas, 2 ... Steam, hydrogen peroxide, ozone, air, oxygen, 3 ... First catalyst layer, 4 ... Salt recovery step,
5 ... Calcium fluoride recovery step, 6 ... Second catalyst layer, 7 ...
Circulation line, 8 ... Clean gas.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 134 C (72)発明者 玉田 慎 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01D 53/34 134 C (72) Inventor Shin Tamada 3-1-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Stock company Hitachi Ltd.Hitachi factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】フロンを分解除去する工程において、前段
に少なくともフロンの一部を分解すると共に分解生成ガ
スのフッ化水素および/または塩化水素の少なくとも一
部を吸収する作用を持つ第一触媒層と後段に残留フロン
を分解する第二触媒層の二種類の触媒を組み合わせたこ
とを特徴とするフロン分解システム。
1. A first catalyst layer having a function of decomposing at least a part of freon and absorbing at least part of hydrogen fluoride and / or hydrogen chloride of a decomposition product gas in a preceding stage in a step of decomposing and removing freon. A CFC decomposition system characterized by combining two types of catalyst, a second catalyst layer that decomposes residual CFCs in the subsequent stage.
【請求項2】請求項1において、前記第一触媒層の後段
にアルカリ吸収層を設け前記第一触媒層での分解で発生
したフッ化水素および/または塩化水素を除去した後、
前記第二触媒層でさらにフロンを分解するフロン分解シ
ステム。
2. The method according to claim 1, wherein after the first catalyst layer is provided with an alkali absorption layer to remove hydrogen fluoride and / or hydrogen chloride generated by decomposition in the first catalyst layer,
A Freon decomposition system that further decomposes Freon in the second catalyst layer.
【請求項3】請求項1において、前記第二触媒層の後段
に更にアルカリ吸収層を設け、フロン分解後の生成ガス
中のフッ化水素および/または塩化水素を除去するフロ
ン分解システム。
3. The freon decomposition system according to claim 1, further comprising an alkali absorption layer after the second catalyst layer to remove hydrogen fluoride and / or hydrogen chloride in the produced gas after freon decomposition.
【請求項4】請求項1において、前記第一触媒層に使用
される触媒が、カルシア,シリカ,アルミナ,ジルコニ
ア,マグネシア,バリアの酸化物から選ばれた少なくと
も一種を主成分として含有するフロン分解システム。
4. The CFC decomposition according to claim 1, wherein the catalyst used in the first catalyst layer contains at least one selected from oxides of calcia, silica, alumina, zirconia, magnesia and barrier as a main component. system.
【請求項5】請求項1において、前記第二触媒層に使用
される触媒が、第一成分としてチタニア、第二成分とし
てタングステン,モリブデン,銅,銀,ニオブ,コバル
ト,ニッケル,マンガン,白金、金,パラジウムの酸化物
及び金属の中から選ばれた少なくとも一種を含有するフ
ロン分解システム。
5. The catalyst used in the second catalyst layer according to claim 1, wherein the first component is titania, the second component is tungsten, molybdenum, copper, silver, niobium, cobalt, nickel, manganese, platinum, A CFC decomposition system containing at least one selected from gold, palladium oxides and metals.
JP6198170A 1994-08-23 1994-08-23 Fluorocarbon decomposing apparatus Pending JPH0857255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6198170A JPH0857255A (en) 1994-08-23 1994-08-23 Fluorocarbon decomposing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6198170A JPH0857255A (en) 1994-08-23 1994-08-23 Fluorocarbon decomposing apparatus

Publications (1)

Publication Number Publication Date
JPH0857255A true JPH0857255A (en) 1996-03-05

Family

ID=16386640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6198170A Pending JPH0857255A (en) 1994-08-23 1994-08-23 Fluorocarbon decomposing apparatus

Country Status (1)

Country Link
JP (1) JPH0857255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074821A1 (en) 1999-06-09 2000-12-14 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
JP2002370014A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment system
JP2003071291A (en) * 2001-08-31 2003-03-11 Mitsui Eng & Shipbuild Co Ltd Waste gas treatment catalyst
SG97883A1 (en) * 1999-04-28 2003-08-20 Showa Denko Kk Reactive agent and process for decomposing fluorine compounds and use thereof
US7261868B2 (en) 2001-09-13 2007-08-28 Hitachi, Ltd. Process and apparatus for the decomposition of fluorine compounds

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG97883A1 (en) * 1999-04-28 2003-08-20 Showa Denko Kk Reactive agent and process for decomposing fluorine compounds and use thereof
WO2000074821A1 (en) 1999-06-09 2000-12-14 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
EP1205234A1 (en) * 1999-06-09 2002-05-15 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
EP1205234A4 (en) * 1999-06-09 2003-04-16 Hitachi Ltd Method and apparatus for disposing of fluorine-containing compound by decomposition
US7294315B1 (en) 1999-06-09 2007-11-13 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
JP2002370014A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment system
JP2003071291A (en) * 2001-08-31 2003-03-11 Mitsui Eng & Shipbuild Co Ltd Waste gas treatment catalyst
US7261868B2 (en) 2001-09-13 2007-08-28 Hitachi, Ltd. Process and apparatus for the decomposition of fluorine compounds

Similar Documents

Publication Publication Date Title
KR20020013407A (en) Removal of nitrogen oxides from gas streams
JPH0775720A (en) Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin
JPH0616818B2 (en) Exhaust gas purification method and device
JPH07318036A (en) Waste gas purifying method
AU2002226536B2 (en) Decomposition of fluorine containing compounds
JPH03106419A (en) Treatment process for gas containing fluorocarbon and catalyst for decomposing fluorocarbon
AU2002226536A1 (en) Decomposition of fluorine containing compounds
JPH0857255A (en) Fluorocarbon decomposing apparatus
JPH09234337A (en) Purification of harmful gas
JP2976041B2 (en) How to remove organic halides
JPH0947661A (en) Process and catalyst for purifying exhaust gas
EP0516850B1 (en) Method of removing organic halides
KR920007856B1 (en) Method of removing gassy acidic halogen compound
JP2002361044A (en) Method for treating waste gas and liquid chemicals
JP3260825B2 (en) How to purify harmful gases
JPH0910553A (en) Treatment of discharged gas containing volatile organic halide
JP2003089696A (en) Method for removing dioxin by catalyst ion-plasma reaction and device for removing the same
JPH0483515A (en) Method for decomposing fluorocarbon type cooling medium
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JP3494379B2 (en) Method for treating wastewater containing organic halogen compounds
JPH08963A (en) Cleaing equipment for organohalogen compound-polluted material
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JP4399938B2 (en) Monochlorodifluoromethane treatment method
JP2003183183A (en) Method for decomposition treatment of halogen- containing organic compound
JP2004344729A (en) Apparatus and method for dry treatment of hf-containing gas