JP4399938B2 - Monochlorodifluoromethane treatment method - Google Patents

Monochlorodifluoromethane treatment method Download PDF

Info

Publication number
JP4399938B2
JP4399938B2 JP2000003290A JP2000003290A JP4399938B2 JP 4399938 B2 JP4399938 B2 JP 4399938B2 JP 2000003290 A JP2000003290 A JP 2000003290A JP 2000003290 A JP2000003290 A JP 2000003290A JP 4399938 B2 JP4399938 B2 JP 4399938B2
Authority
JP
Japan
Prior art keywords
monochlorodifluoromethane
reaction
ammonia
refrigerant
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000003290A
Other languages
Japanese (ja)
Other versions
JP2001190707A (en
Inventor
浩直 沼本
成広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000003290A priority Critical patent/JP4399938B2/en
Publication of JP2001190707A publication Critical patent/JP2001190707A/en
Application granted granted Critical
Publication of JP4399938B2 publication Critical patent/JP4399938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モノクロロジフルオロメタン(HCFC−22)を充填した空気調和機の廃棄物から、フロンを回収して適切に処理する方法および再資源化方法に関する。
【0002】
【従来の技術】
フロンによるオゾン層破壊は地球環境の問題として注目され、その対応策が早急に必要とされている。フロンは化学的に非常に安定であり、毒性、可燃性、爆発性もなく、かつ熱の吸収・放出に優れた性能を持つことから、これまでに発泡剤、冷媒、洗浄剤等に大量に使用されてきたが、大気中に放出されると成層圏のオゾン層まで上昇し、フロンが分解する際に連続反応的にオゾンを消費することがわかった。実際、オゾンホール等、オゾン層中のオゾンの減少が確認されている。オゾン層は地球表面への有害紫外線の流入を防止しているが、オゾンの減少によって有害紫外線が大量に流入すると、皮膚ガン等人体への影響、さらには生態系への影響がでてくる。このため現在世界は大気中へのフロン放出の禁止、フロン使用の廃止・削減方向へ向かっている。
【0003】
すでにオゾン層破壊係数の高い特定フロンの生産は禁止されており、今後フロンの量が増加することはないが、これまでに使用されてきた大量のフロン処理が必要である。フロンは断熱剤として用いられている発泡樹脂中の気泡にふくまれており、これらは大部分が埋立地に廃棄されている。またフロンは自動車のエアコン、家庭用エアコンの冷媒用として用いられているが、廃車・廃棄時に回収がやっと義務付けられようとしている。
【0004】
これら不要となったフロンを分解する方法として、プラズマ法、触媒法等の方法が提案されている。たとえば、特開平2−131116号公報にはプラズマ放電による分解の技術が開示されている。また、特公平6−59388号公報には触媒法による分解の技術が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらはフロンと水とを反応させて適切に分解して無害化する方法である。本発明の目的はフロンをアンモニアと反応させて廃フロンを有効に再資源化するための処理方法である。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は、モノクロロジフルオロメタンとアンモニアとを、反応させるモノクロロジフルオロメタンとアンモニアとのモル比が2:1で、反応温度が100〜300℃で、加圧雰囲気下で反応させ、塩化アンモニウムとテトラフルオロエチレンを主体とした物質を得るモノクロロジフルオロメタンの処理方法である。
【0007】
上記構成によって、モノクロロジフルオロメタンとアンモニアは気体状態で安全に塩化アンモニウムとテトラフルオロエチレンを主体とした物質となり、テトラフルオロエチレンを主体とした物質は再資源化のために有効な物質となる。またこの反応では塩化アンモニウムが固体であるため、中から高圧雰囲気にすることで分解反応を促進できる。
【0008】
【発明の実施の形態】
上記の課題を解決するための請求項1記載の発明は、モノクロロジフルオロメタンとアンモニアとを、反応させるモノクロロジフルオロメタンとアンモニアとのモル比が2:1で、反応温度が100〜300℃で、加圧雰囲気下で反応させ、塩化アンモニウムとテトラフルオロエチレンを主体とした物質を得るモノクロロジフルオロメタンの処理方法である。
【0009】
請求項2記載の発明は、テトラフルオロエチレンの重合促進として触媒を仕込んで、モノクロロジフルオロメタンとアンモニアとを、反応温度が100〜300℃で、加圧雰囲気下で反応させ、塩化アンモニウムとフッ素ポリマーを主体とした物質を得るモノクロロジフルオロメタンの処理方法である。
【0010】
請求項3記載の発明は、紫外線を使用してモノクロロジフルオロメタンとアンモニアを反応させるモノクロロジフルオロメタンの処理方法である。
【0011】
請求項4記載の発明は、反応時の水分率が50ppm以下であるモノクロロジフルオロメタンの処理方法である。
【0012】
【実施例】
以下、本発明を具体的な実施例に基づいて説明するが、本発明はこれに限定されるものではない。
【0013】
(実施例1)
図1に反応装置の概略図を示し、化1に反応機構を示した。廃棄された空気調和機の室外機から冷媒(モノクロロジフルオロメタン)を回収した。その後コンタミとなる冷凍機油を分離膜にて分別し、ペレット状のゼオライトを液冷媒中に24時間以上浸漬させて冷媒中に含まれる水分を30ppm程度に低減させた。その後内容積10リットルのステンレス製耐圧容器11(内面を耐食処理)を反応塔容器として、まず脱気し、順次モノクロロジフルオロメタンとアンモニアをモル比2:1で仕込み、合わせて冷媒分解用触媒層12として白金網触媒をシートブロック化して3層に配置した。ヒータ13にて温度を初期100℃に、内部圧力は15kg/cm2設定して徐々に分解反応が開始したら、ヒータ温度を上昇させて塩化アンモニウム合成に伴う圧力低下を抑制した。
【0014】
【化1】

Figure 0004399938
【0015】
(実施例2)
廃棄された空気調和機の室外機から冷媒(モノクロロジフルオロメタン)を回収した。その後コンタミとなる冷凍機油を分離膜にて分別し、ペレット状のゼオライトを液冷媒中に24時間以上浸漬させて冷媒中に含まれる水分を30ppm程度に低減させた。その後内容積10リットルのステンレス製耐圧容器(内面を耐食処理)を反応塔容器として、まず脱気し、順次モノクロロジフルオロメタンとアンモニアをモル比2:1で仕込んだ。ヒータにて温度を初期100℃に、内部圧力は15kg/cm2設定して、冷媒分解促進として反応塔外部からキセノンランプにて石英ガラスを介して紫外線(250nm)を投入して徐々に分解反応が開始したら、温度を上昇させて塩化アンモニウム合成に伴う圧力低下を抑制した。
【0016】
(実施例3)
図2に反応塔の概略図を示した。廃棄された空気調和機の室外機から冷媒(モノクロロジフルオロメタン)を回収した。その後コンタミとなる冷凍機油を分離膜にて分別し、ペレット状のゼオライトを液冷媒中に24時間以上浸漬させて冷媒中に含まれる水分を30ppm程度に低減させた。その後内容積10リットルのステンレス製耐圧容器21(内面を耐食処理)を反応塔容器として、まず脱気し、順次モノクロロジフルオロメタンとアンモニアをモル比2:1で仕込み、合わせて冷媒分解用触媒層22として二酸化チタン触媒をシートブロック化して3層に配置した。ヒータ23にて温度を初期100℃に、内部圧力は15kg/cm2設定して、冷媒分解促進として反応塔外部からキセノンランプ24にて石英ガラス25を介して紫外線(250nm)を投入して徐々に分解反応が開始したら、ヒータ温度を上昇させて塩化アンモニウム合成に伴う圧力低下を抑制した。
【0017】
(実施例4)
図3に反応塔の概略図を示し、化2に反応機構を示した。廃棄された空気調和機の室外機から冷媒(モノクロロジフルオロメタン)を回収した後、その後コンタミとなる冷凍機油を分離膜にて分別し、ペレット状のゼオライトを液冷媒中に24時間以上浸漬させて冷媒中に含まれる水分を30ppm程度に低減させた。その後内容積10リットルのステンレス製耐圧容器31(内面を耐食処理)を反応塔容器として、まず脱気し、順次モノクロロジフルオロメタンとアンモニアをモル比2:1で仕込み、合わせて冷媒分解触媒層32として白金網触媒をシートブロック化して3層に配置した。さらにテトラフルオロエチレンの重合促進とした触媒ペレット33も仕込んだ。ヒータ34にて温度を初期100℃に、内部圧力は15kg/cm2設定して徐々に分解反応が開始したら、ヒータ温度を上昇させて塩化アンモニウム、フッ素ポリマー合成に伴う圧力低下を抑制した。
【0018】
【化2】
Figure 0004399938
【0019】
(実施例5)
廃棄された空気調和機の室外機から冷媒(モノクロロジフルオロメタン)を回収した後、その後コンタミとなる冷凍機油を分離膜にて分別し、ペレット状のゼオライトを液冷媒中に24時間以上浸漬させて冷媒中に含まれる水分を30ppm程度に低減させた。その後内容積10リットルのステンレス製耐圧容器(内面を耐食処理)を反応塔容器として、まず脱気し、順次モノクロロジフルオロメタンとアンモニアをモル比2:1で仕込み、さらにテトラフルオロエチレンの重合促進として触媒を仕込んだ。ヒータにて温度を初期100℃に、内部圧力は15kg/cm2設定して、冷媒分解促進として反応塔外部からキセノンランプにて石英ガラスを介して紫外線(250nm)を投入して徐々に分解反応が開始したら、ヒータ温度を上昇させて塩化アンモニウム、フッ素ポリマーの合成に伴う圧力低下を抑制した。
【0020】
本発明で使用できる分解、重合促進触媒は、高シルカ比のゼオライト、ペロブスカイト、チグラーナッタ系触媒、貴金属系触媒、二酸化チタン等が利用できる。これらの触媒はペレット状のものを容器内に収納して配置したり、セラミックスからなるハニカムまたはコルゲート構造体の表面層に被覆して使用すれば効果的であった。また貴金属の場合には単独または合金の金属線を網状にブロック化することも有効であった。
【0021】
実施例2では冷媒分解促進として紫外線(250nm)を使用したが、本発明で使用できるのはキセノンランプ等エネルギーの高い短波長光が効果的であった。またこの時紫外線を二酸化チタンに照射して光触媒作用を併用することも可能であった。
【0022】
実施例では初期反応温度を100℃に設定したが、モノクロロジフルオロメタンの臨界温度が96.2℃であるのでそれ以上の温度であれば気体状態で扱うことができる。また塩化アンモニウムの熱分解温度が337.8℃であるので固体状態で塩化アンモニウムを効率的に得るためには300℃以下が好ましい。したがって、本発明の意図する気相反応系からの固体反応物収量の考えからすると適用の範囲は100〜300℃となる。また気相中でモノクロロジフルオロメタンとアンモニアを反応させるための最適点はモル比2:1であった。
【0023】
実施例では廃冷媒に対してゼオライトを使用して脱水操作を行って30ppm程度に低減させたが、冷媒中に水があると副反応物が生成するので分解反応の事前にゼオライト等を液冷媒中に浸漬させておくことによって簡単に脱水させることができた。ゼオライトとしてはA型のものが冷媒に付随する反応物生成が少なかった。また、事前に脱水する好ましい状態としては反応後の収率を考慮して水分50ppm以下であった。
【0024】
本実施例ではすべて回分式の反応容器で行ったが、反応速度をある程度速くできる系であれば流通方式で反応生成物を回収しながら進行させることもできる。
【0025】
【発明の効果】
上記実施例から明らかなように、請求項1記載の発明によれば、モノクロロジフルオロメタンとアンモニアは気体状態で安全に塩化アンモニウムとテトラフルオロエチレンを主体とした物質となり、テトラフルオロエチレンを主体とした物質は再資源化のために有効な物質となる。またこの反応では塩化アンモニウムが固体であるため、中から高圧雰囲気にすることで分解反応を促進できた。
請求項2記載の発明によれば、廃モノクロロジフルオロメタンから再資源化として有効な低分子量のフッ素ポリマーを入手することができた。
【0026】
請求項3記載の発明によれば、トリガーとなる活性化エネルギーを低下させることでモノクロロジフルオロメタンとアンモニアの反応を促進することができた。
【0027】
請求項4記載の発明によれば、トリガーとなる活性化エネルギーを低下させることでモノクロロジフルオロメタンとアンモニアの反応を促進することができた。
【0028】
請求項5記載の発明によれば、冷媒中の水分をほぼ除去することで水が関与する副反応を抑制でき、冷媒の再資源化収率が向上した。
【図面の簡単な説明】
【図1】 本発明の実施例1において示す反応装置の概略図
【図2】 本発明の実施例3において示す反応装置の概略図
【図3】 本発明の実施例4において示す反応装置の概略図
【符号の説明】
12 触媒層
13 ヒータ
24 キセノンランプ
25 石英ガラス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering and appropriately treating chlorofluorocarbons from waste of an air conditioner filled with monochlorodifluoromethane (HCFC-22) and a method for recycling.
[0002]
[Prior art]
Ozone depletion due to chlorofluorocarbons is attracting attention as a global environmental problem, and countermeasures are urgently needed. Fluorocarbons are chemically very stable, have no toxicity, flammability, explosive properties, and excellent performance in absorbing and releasing heat. Although it has been used, it has been found that when released into the atmosphere, it rises to the stratospheric ozone layer and consumes ozone in a continuous reaction as CFCs decompose. In fact, ozone in the ozone layer, such as the ozone hole, has been confirmed to decrease. The ozone layer prevents the inflow of harmful ultraviolet rays to the earth's surface, but if harmful ultraviolet rays flow in large quantities due to the decrease in ozone, it will affect the human body, such as skin cancer, and even the ecosystem. For this reason, the world is now moving toward the ban on the release of CFCs into the atmosphere and the abolition and reduction of CFC use.
[0003]
Production of specific chlorofluorocarbons with a high ozone depletion coefficient has already been banned, and the amount of chlorofluorocarbons will not increase in the future, but a large amount of chlorofluorocarbon treatment that has been used so far is necessary. Freon is contained in bubbles in the foamed resin used as a heat insulating agent, and most of these are discarded in landfills. Fluorocarbons are also used for refrigerants in automobile air conditioners and household air conditioners, but recovery is finally required at the time of scrapping and disposal.
[0004]
As a method for decomposing these unnecessary chlorofluorocarbons, methods such as a plasma method and a catalyst method have been proposed. For example, JP-A-2-131116 discloses a decomposition technique using plasma discharge. Japanese Patent Publication No. 6-59388 discloses a decomposition technique using a catalytic method.
[0005]
[Problems to be solved by the invention]
However, these are methods in which chlorofluorocarbon and water are reacted and appropriately decomposed to make them harmless. An object of the present invention is a treatment method for effectively recycling waste CFCs by reacting CFCs with ammonia.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a molar ratio of monochlorodifluoromethane to ammonia for reacting monochlorodifluoromethane and ammonia is 2: 1, reaction temperature is 100 to 300 ° C., and under a pressurized atmosphere. This is a method for treating monochlorodifluoromethane by reacting to obtain a substance mainly composed of ammonium chloride and tetrafluoroethylene.
[0007]
With the above configuration, monochlorodifluoromethane and ammonia are safely substances mainly composed of ammonium chloride and tetrafluoroethylene in a gas state, and substances mainly composed of tetrafluoroethylene are effective substances for recycling. In this reaction, since ammonium chloride is solid, the decomposition reaction can be promoted by setting the atmosphere to a high pressure atmosphere.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 for solving the above-mentioned problem is that the molar ratio of monochlorodifluoromethane to ammonia for reacting monochlorodifluoromethane and ammonia is 2: 1 and the reaction temperature is 100 to 300 ° C. This is a monochlorodifluoromethane treatment method in which a substance mainly composed of ammonium chloride and tetrafluoroethylene is obtained by reacting in a pressurized atmosphere.
[0009]
According to the invention of claim 2 , a catalyst is charged to promote the polymerization of tetrafluoroethylene, and monochlorodifluoromethane and ammonia are reacted in a pressurized atmosphere at a reaction temperature of 100 to 300 ° C. to obtain ammonium chloride and a fluoropolymer. This is a monochlorodifluoromethane processing method to obtain a substance mainly composed of
[0010]
Invention of Claim 3 is the processing method of monochlorodifluoromethane which makes monochlorodifluoromethane and ammonia react using an ultraviolet-ray.
[0011]
Invention of Claim 4 is a processing method of monochlorodifluoromethane whose moisture content at the time of reaction is 50 ppm or less.
[0012]
【Example】
Hereinafter, the present invention will be described based on specific examples, but the present invention is not limited thereto.
[0013]
Example 1
FIG. 1 shows a schematic diagram of a reaction apparatus, and Chemical Reaction 1 shows a reaction mechanism. Refrigerant (monochlorodifluoromethane) was recovered from the outdoor unit of the discarded air conditioner. After that, the refrigeration oil that becomes a contaminant was separated by a separation membrane, and the pellet-shaped zeolite was immersed in the liquid refrigerant for 24 hours or more to reduce the water content in the refrigerant to about 30 ppm. Thereafter, a stainless steel pressure resistant container 11 (internal corrosion resistance) having an internal volume of 10 liters is used as a reaction tower container, and then deaerated first, and then monochlorodifluoromethane and ammonia are sequentially charged at a molar ratio of 2: 1 and combined to form a catalyst layer for refrigerant decomposition No. 12, a platinum mesh catalyst was formed into a sheet block and arranged in three layers. When the temperature was initially set to 100 ° C. with the heater 13 and the internal pressure was set to 15 kg / cm 2 and the decomposition reaction started gradually, the heater temperature was raised to suppress the pressure drop associated with ammonium chloride synthesis.
[0014]
[Chemical 1]
Figure 0004399938
[0015]
(Example 2)
Refrigerant (monochlorodifluoromethane) was recovered from the outdoor unit of the discarded air conditioner. After that, the refrigeration oil that becomes a contaminant was separated by a separation membrane, and the pellet-shaped zeolite was immersed in the liquid refrigerant for 24 hours or more to reduce the water content in the refrigerant to about 30 ppm. Thereafter, a stainless steel pressure resistant container (inner surface was corrosion-resistant) having an internal volume of 10 liters was used as a reaction tower container, and degassed first, and then monochlorodifluoromethane and ammonia were sequentially charged at a molar ratio of 2: 1. The initial temperature is set to 100 ° C. with a heater, the internal pressure is set to 15 kg / cm 2, and ultraviolet light (250 nm) is introduced from the outside of the reaction tower through quartz glass with a xenon lamp to accelerate the decomposition of the refrigerant. Once started, the temperature was raised to suppress the pressure drop associated with ammonium chloride synthesis.
[0016]
(Example 3)
FIG. 2 shows a schematic diagram of the reaction tower. Refrigerant (monochlorodifluoromethane) was recovered from the outdoor unit of the discarded air conditioner. After that, the refrigeration oil that becomes a contaminant was separated by a separation membrane, and the pellet-shaped zeolite was immersed in the liquid refrigerant for 24 hours or more to reduce the water content in the refrigerant to about 30 ppm. Thereafter, a stainless steel pressure resistant vessel 21 (internal corrosion resistance) having an internal volume of 10 liters is used as a reaction tower vessel, and then first degassed, and then monochlorodifluoromethane and ammonia are sequentially charged at a molar ratio of 2: 1 and combined to form a catalyst layer for refrigerant decomposition The titanium dioxide catalyst was made into a sheet block as 22 and arranged in three layers. The heater 23 is set to an initial temperature of 100 ° C., the internal pressure is set to 15 kg / cm 2, and ultraviolet rays (250 nm) are gradually introduced from the outside of the reaction tower through the quartz glass 25 through the xenon lamp 24 to accelerate the decomposition of the refrigerant. When the decomposition reaction started, the heater temperature was raised to suppress the pressure drop associated with ammonium chloride synthesis.
[0017]
Example 4
FIG. 3 shows a schematic diagram of the reaction tower, and chemical reaction is shown in Chemical Formula 2. After recovering the refrigerant (monochlorodifluoromethane) from the outdoor unit of the discarded air conditioner, the refrigeration oil that becomes a contaminant is then separated by a separation membrane, and the pelleted zeolite is immersed in the liquid refrigerant for 24 hours or more. The moisture contained in the refrigerant was reduced to about 30 ppm. Thereafter, a stainless steel pressure resistant vessel 31 (inner surface is corrosion-resistant) having an internal volume of 10 liters is used as a reaction tower vessel. First, deaeration is performed, and then monochlorodifluoromethane and ammonia are sequentially charged at a molar ratio of 2: 1. The platinum net catalyst was made into a sheet block and arranged in three layers. Further, catalyst pellets 33 for promoting the polymerization of tetrafluoroethylene were also charged. When the temperature was initially set to 100 ° C. with the heater 34 and the internal pressure was set to 15 kg / cm 2 and the decomposition reaction started gradually, the heater temperature was raised to suppress the pressure drop associated with ammonium chloride and fluoropolymer synthesis.
[0018]
[Chemical formula 2]
Figure 0004399938
[0019]
(Example 5)
After recovering the refrigerant (monochlorodifluoromethane) from the outdoor unit of the discarded air conditioner, the refrigeration oil that becomes a contaminant is then separated by a separation membrane, and the pelleted zeolite is immersed in the liquid refrigerant for 24 hours or more. The moisture contained in the refrigerant was reduced to about 30 ppm. Then, a stainless steel pressure vessel (with an internal corrosion resistance) with an internal volume of 10 liters was used as a reaction tower vessel, and then degassed first, and then monochlorodifluoromethane and ammonia were sequentially added at a molar ratio of 2: 1 to further promote the polymerization of tetrafluoroethylene. The catalyst was charged. The initial temperature is set to 100 ° C. with a heater, the internal pressure is set to 15 kg / cm 2, and ultraviolet light (250 nm) is introduced from the outside of the reaction tower through quartz glass with a xenon lamp to accelerate the decomposition of the refrigerant. Once started, the heater temperature was raised to suppress the pressure drop associated with the synthesis of ammonium chloride and fluoropolymer.
[0020]
As the decomposition and polymerization promoting catalyst that can be used in the present invention, high silica ratio zeolite, perovskite, Ziegler-Natta catalyst, noble metal catalyst, titanium dioxide and the like can be used. These catalysts are effective if they are placed in a container in the form of pellets or are used by being coated on the surface layer of a honeycomb or corrugated structure made of ceramics. In the case of a noble metal, it is also effective to block a single or alloy metal wire in a network.
[0021]
In Example 2, ultraviolet rays (250 nm) were used to accelerate the decomposition of the refrigerant. However, high-energy short-wavelength light such as a xenon lamp was effective for use in the present invention. At this time, it was also possible to use the photocatalytic action by irradiating titanium dioxide with ultraviolet rays.
[0022]
In the examples, the initial reaction temperature was set to 100 ° C., but since the critical temperature of monochlorodifluoromethane is 96.2 ° C., it can be handled in a gaseous state at a temperature higher than that. Further, since the thermal decomposition temperature of ammonium chloride is 337.8 ° C., it is preferably 300 ° C. or lower in order to efficiently obtain ammonium chloride in a solid state. Therefore, considering the solid reactant yield from the gas phase reaction system intended by the present invention, the range of application is 100 to 300 ° C. The optimum point for reacting monochlorodifluoromethane and ammonia in the gas phase was a molar ratio of 2: 1.
[0023]
In the examples, the waste refrigerant was dehydrated using zeolite to reduce it to about 30 ppm. However, if water is present in the refrigerant, a side reaction product is generated. It was able to be easily dehydrated by being immersed in the inside. As for zeolite, the A-type zeolite produced less reactants accompanying the refrigerant. In addition, a preferable state of dehydration in advance was 50 ppm or less in consideration of the yield after the reaction.
[0024]
In this example, the reaction was performed in a batch-type reaction vessel. However, if the reaction rate can be increased to some extent, the reaction product can be advanced while being collected by a flow method.
[0025]
【The invention's effect】
As is clear from the above examples, according to the invention described in claim 1, monochlorodifluoromethane and ammonia become a substance mainly composed of ammonium chloride and tetrafluoroethylene in a gaseous state, and mainly composed of tetrafluoroethylene. The substance becomes an effective substance for recycling. In this reaction, since ammonium chloride is a solid, the decomposition reaction can be promoted by setting the atmosphere to a high pressure atmosphere.
According to the second aspect of the present invention, a low molecular weight fluoropolymer effective for recycling can be obtained from waste monochlorodifluoromethane.
[0026]
According to the invention described in claim 3, the reaction of monochlorodifluoromethane and ammonia can be promoted by lowering the activation energy as a trigger.
[0027]
According to the fourth aspect of the invention, the reaction of monochlorodifluoromethane and ammonia can be promoted by reducing the activation energy serving as a trigger.
[0028]
According to the fifth aspect of the invention, the side reaction involving water can be suppressed by substantially removing the water in the refrigerant, and the recycling rate of the refrigerant has been improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a reactor shown in Example 1 of the present invention. FIG. 2 is a schematic diagram of a reactor shown in Example 3 of the present invention. FIG. 3 is a schematic diagram of a reactor shown in Example 4 of the present invention. Figure [Explanation of symbols]
12 Catalyst layer 13 Heater 24 Xenon lamp 25 Quartz glass

Claims (4)

モノクロロジフルオロメタンとアンモニアとを、反応させるモノクロロジフルオロメタンとアンモニアとのモル比が2:1で、反応温度が100〜300℃で、加圧雰囲気下で反応させ、塩化アンモニウムとテトラフルオロエチレンを主体とした物質を得ることを特徴とするモノクロロジフルオロメタンの処理方法。  Monochlorodifluoromethane and ammonia are reacted at a molar ratio of monochlorodifluoromethane and ammonia of 2: 1, at a reaction temperature of 100 to 300 ° C. under a pressurized atmosphere, and mainly composed of ammonium chloride and tetrafluoroethylene. A method for treating monochlorodifluoromethane, characterized in that the obtained substance is obtained. テトラフルオロエチレンの重合促進として触媒を仕込んで、モノクロロジフルオロメタンとアンモニアとを、反応温度が100〜300℃で、加圧雰囲気下で反応させ、塩化アンモニウムとフッ素ポリマーを主体とした物質を得ることを特徴とするモノクロロジフルオロメタンの処理方法。 To prepare a substance mainly composed of ammonium chloride and fluoropolymer by charging a catalyst to promote the polymerization of tetrafluoroethylene and reacting monochlorodifluoromethane and ammonia in a pressurized atmosphere at a reaction temperature of 100 to 300 ° C. Monochlorodifluoromethane treatment method characterized by the above. 紫外線を使用してモノクロロジフルオロメタンとアンモニアを反応させることを特徴とする請求項1,2記載のモノクロロジフルオロメタンの処理方法。  The method for treating monochlorodifluoromethane according to claim 1 or 2, wherein monochlorodifluoromethane and ammonia are reacted using ultraviolet rays. 反応時の水分率が50ppm以下であることを特徴とする請求項1,2,3記載のモノクロロジフルオロメタンの処理方法。  The method for treating monochlorodifluoromethane according to claim 1, 2 or 3, wherein the water content during the reaction is 50 ppm or less.
JP2000003290A 2000-01-12 2000-01-12 Monochlorodifluoromethane treatment method Expired - Fee Related JP4399938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003290A JP4399938B2 (en) 2000-01-12 2000-01-12 Monochlorodifluoromethane treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003290A JP4399938B2 (en) 2000-01-12 2000-01-12 Monochlorodifluoromethane treatment method

Publications (2)

Publication Number Publication Date
JP2001190707A JP2001190707A (en) 2001-07-17
JP4399938B2 true JP4399938B2 (en) 2010-01-20

Family

ID=18532263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003290A Expired - Fee Related JP4399938B2 (en) 2000-01-12 2000-01-12 Monochlorodifluoromethane treatment method

Country Status (1)

Country Link
JP (1) JP4399938B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667724B2 (en) * 2003-04-11 2011-04-13 三井造船株式会社 Photochemical reaction method, liquid processing method, and liquid processing apparatus
CN109092051A (en) * 2018-08-10 2018-12-28 夏小林 A kind of deodorizing device and its deodorizing methods of garbage disposal
KR102153172B1 (en) 2018-08-30 2020-09-07 주식회사 포스코 Aluminium-Zinc alloy plated steel sheet having excellent hot workabilities and corrosion resistance, and method for the same

Also Published As

Publication number Publication date
JP2001190707A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
EP1732669B1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
EP0793995A1 (en) A method for treating gas containing organohalogen compounds, and catalyst for decomposing the organohalogen compounds
JP4399938B2 (en) Monochlorodifluoromethane treatment method
JPH0342015A (en) Decomposition treatment of fluorocarbon
WO2001076725A1 (en) Method for treating exhaust gas containing fluorine-containing compound
US5979054A (en) Method of forming a sidewall for a reactor for oxidizing volatile or semi-volatile organic compounds
JPH06104183B2 (en) Catalytic decomposition method of chlorofluoroalkane
JP3368820B2 (en) Method for treating fluorine compound-containing gas and catalyst
CN106770889A (en) A kind of catalyst screening device and method for hydrolyzing freon
JP3216868B2 (en) Decomposition method of halide gas
JPH08238418A (en) Decomposition treatment method for organic halogen compound
JP3376789B2 (en) Method for treating organic halogen compounds with a catalyst
JP3228459B2 (en) Decomposition method of halide gas
JPH0857255A (en) Fluorocarbon decomposing apparatus
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP2008194063A (en) Method of degrading highly-concentrated organic chlorine compound
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JPH08141367A (en) Catalytic cracking method for aliphatic halide
JP3650588B2 (en) Perfluoro compound recycling method
JP2000153130A (en) Method and apparatus for exhaust gas purification
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP3725889B2 (en) Method and apparatus for promoting reaction of chemical substance using ultrasonic wave, and method for producing fluororesin using ultrasonic wave
JP2001162139A (en) Method for catalytic decomposition of global warming gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees