JPH08238418A - Decomposition treatment method for organic halogen compound - Google Patents

Decomposition treatment method for organic halogen compound

Info

Publication number
JPH08238418A
JPH08238418A JP7045233A JP4523395A JPH08238418A JP H08238418 A JPH08238418 A JP H08238418A JP 7045233 A JP7045233 A JP 7045233A JP 4523395 A JP4523395 A JP 4523395A JP H08238418 A JPH08238418 A JP H08238418A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
gas
organic halogen
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7045233A
Other languages
Japanese (ja)
Inventor
Toshiaki Arato
利昭 荒戸
Shuichi Sugano
周一 菅野
Shin Tamada
玉田  慎
Kazuyoshi Irie
一芳 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7045233A priority Critical patent/JPH08238418A/en
Publication of JPH08238418A publication Critical patent/JPH08238418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To efficiently decompose carbon monooxide generated in the decomposition of chlorofluorocarbon by a method in which a gas containing organic halogen compounds is contacted with water or an organic halogen compound decomposition catalyst in the presence of ozone at a specified temperature, and after the generated gas being absorbed and removed by contacting the gas with an aqueous alkaline solution, the gas flow is contacted with a carbon monooxide decomposition catalyst. CONSTITUTION: In the decomposition treatment of an organic compound containing a halogen of fluorine, chlorine, or bromine (thereafter called chlorofluorocarbon), a chlorofluorocarbon supply system 6, an air supply system 5, and a water supply system 9 are connected with a reaction tube 2 filled with a chlorofluorocarbon decomposition catalyst 1, and the catalyst 1 is heated at 200-500 deg.C in an electric furnace 4. In this way, chlorofluorocarbon is decomposed into CO, CO2 , HF, and HCl, and the exhaust gas 13 is introduced into a NaOH aqueous solution 8 in an alkaline absorption tank 12 to be neutralized and precipitated. The exhaust gas which passed through the tank 12 is discharged 14 after CO being oxidized during passage through a carbon monooxide oxidation catalyst layer 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フロンガス,トリクロ
ロエチレン,臭化メチル等のフッ素,塩素,臭素のハロ
ゲンを含有する有機化合物を効率良く分解するフロンの
分解処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing chlorofluorocarbon, which efficiently decomposes organic compounds containing halogens such as fluorine, chlorine and bromine such as chlorofluorocarbon gas, trichloroethylene and methyl bromide.

【0002】[0002]

【従来の技術】フロンによるオゾン層破壊は地球規模の
問題として注目され、その対応策が早急に必要とされて
いる。フロンは化学的に非常に安定であり、毒性,可燃
性,爆発性もなく、かつ熱の吸収・放出に優れた性能を
持つことから、これまでに発泡剤,冷媒,洗浄剤等に大
量に使用されてきたが、大気中に放出されると成層圏の
オゾン層まで上昇し、フロンが分解する際に連鎖反応的
にオゾンを消費することが分かった。実際、オゾンホー
ル等、オゾン層中のオゾンの減少が確認されている。オ
ゾン層は、地球表面への有害紫外線の流入を防止してい
るが、オゾンの減少によって有害紫外線が大量に流入す
ると、皮膚ガン等人体への影響、さらには生態系への影
響がでてくる。このため、現在、世界は、大気中へのフ
ロン放出の禁止、フロンの使用の廃止の方向へ向かって
いる。
2. Description of the Related Art Depletion of the ozone layer by CFCs has attracted attention as a global problem, and countermeasures against it are urgently needed. Freon is chemically very stable, has no toxicity, flammability, and explosiveness, and has excellent heat absorption / release properties, so it has been used in large amounts in blowing agents, refrigerants, cleaning agents, etc. It has been used, but it was found that when it is released into the atmosphere, it rises to the ozone layer in the stratosphere and consumes ozone in a chain reaction when the CFCs decompose. In fact, it has been confirmed that ozone is reduced in the ozone layer such as the ozone hole. The ozone layer prevents the inflow of harmful ultraviolet rays to the earth's surface, but if a large amount of harmful ultraviolet rays inflow due to the decrease of ozone, it will have an effect on the human body such as skin cancer and also on the ecosystem. . For this reason, the world is currently heading towards a ban on the release of CFCs into the atmosphere and the abolition of the use of CFCs.

【0003】フロンを含有する廃棄物の一つである発泡
ウレタンは、大部分が埋立て地に廃棄されている。この
発泡ウレタンは、製造時に発泡剤として大量のフロンガ
スを使用しており、フロンは発泡ウレタン中の気泡中に
含まれている。例えば、冷蔵庫の断熱材として使用され
ている発泡ウレタンの約15%、建材用ウレタンフォー
ムの約40%はフロンガスである。また、フロンは自動
車のエアコンの冷媒としても用いられているが、廃車時
にはほとんど回収されず、大気中に放出されているのが
現状である。
Urethane foam, which is one of the wastes containing CFCs, is mostly disposed of in landfills. This urethane foam uses a large amount of CFC gas as a foaming agent at the time of manufacturing, and CFC is contained in the bubbles in the urethane foam. For example, about 15% of urethane foam used as a heat insulating material for refrigerators and about 40% of urethane foam for building materials are CFCs. Although CFCs are also used as refrigerants for automobile air conditioners, they are rarely recovered when they are scrapped and are released into the atmosphere.

【0004】これらの廃棄物に含有されるフロンは、回
収・分解処理せずに、埋立て処理あるいは焼却処理にま
わされると、その一部は大気に放出され、オゾン層破壊
の原因となる。
If the fluorocarbons contained in these wastes are sent to landfill or incineration without being recovered and decomposed, some of them will be released into the atmosphere, causing ozone layer depletion.

【0005】フロンの分解処理法として従来より報告さ
れているのは、主として高温での燃焼法である。しかし
ながら、この方法では大量の燃料を使用するためエネル
ギー効率が低く、また燃焼に伴って生成するハロゲンに
よる炉壁損傷の問題も残されている。さらに最近ではプ
ラズマによる分解処理法(特開平4−279179 号公報)、
紫外線による分解法も報告されている。これらは多量の
電力を必要とし、特に処理ガス中の有機ハロゲン化合物
の含有量が低い場合にはエネルギーの損失が少なくな
い。これらに対して、触媒を使用する触媒分解法(特公
平6−59388号公報,特開平3−42015 号公報,特開平4−
501380公報)は触媒の性能が充分高ければ、効率的には
優れた方法であるといえる。
[0005] The method that has been hitherto reported as a method for decomposing CFCs is mainly a combustion method at high temperature. However, since this method uses a large amount of fuel, the energy efficiency is low, and the problem of damage to the furnace wall due to halogen produced by combustion remains. More recently, plasma decomposition method (Japanese Patent Laid-Open No. 4-279179),
A decomposition method using ultraviolet rays has also been reported. These require a large amount of electric power, and energy loss is not small especially when the content of the organic halogen compound in the processing gas is low. On the other hand, a catalytic decomposition method using a catalyst (Japanese Patent Publication No. 6-59388, Japanese Patent Laid-Open No. 3-42015, Japanese Patent Laid-Open No. 4-2015)
If the performance of the catalyst is sufficiently high, it can be said that 501380) is an efficient method.

【0006】従来、有機ハロゲン化合物の分解触媒とし
ては、例えば、特公平6−59388号公報に記載されている
例としてはTiO2−WO3触媒がある。この触媒はTi
2の0.1 〜20wt%のWを含有するものであり、
CCl4 の処理に375℃で分解率99%を1500時
間保持している。また、大分大学の滝田等はZrO2
Cr23触媒を用いて500℃で有機ハロゲン化合物の
分解を行っており、その結果CCl4 は100%分解す
るが、Fを含むフロン12では100時間連続分解の結
果、分解率が60%まで低下したことを開示している
〔H6年度触媒研究発表会予稿集P.514−51
5〕。すなわち、有機ハロゲン化合物中で触媒の活性を
低下させる原因成分はClだけではなく、むしろFの影
響の方が大きく、フロン等F含有有機ハロゲン化合物の
分解にはさらに高温が必要とともに耐HF性の大きな触
媒が必要である。
Conventionally, as a decomposition catalyst of an organic halogen compound, for example, there is a TiO 2 —WO 3 catalyst as an example described in JP-B-6-59388. This catalyst is Ti
It contains 0.1 to 20 wt% W of O 2 .
The decomposition rate of 99% is maintained for 1,500 hours at 375 ° C. for the treatment with CCl 4 . Further, Hitoshi Takita of Oita is ZrO 2 -
An organic halogen compound is decomposed at 500 ° C. using a Cr 2 O 3 catalyst. As a result, CCl 4 is decomposed 100%, but with CFC 4 containing F, the decomposition rate is 60% as a result of continuous decomposition for 100 hours. It is disclosed that it has decreased to [[H6 fiscal year catalyst research presentation proceedings P. 514-51
5]. That is, Cl is not the only causative component that lowers the activity of the catalyst in the organohalogen compound, but rather F has a greater effect, and further higher temperature is required for decomposition of the F-containing organohalogen compound such as Freon, and HF resistance is high. A large catalyst is needed.

【0007】以上のような有機化合物の分解法及び分解
システムに開示されている例の中で分解後の排気ガス成
分、特に一酸化炭素の無害化について言及した例は認め
られない。
Among the examples disclosed in the above decomposition method and decomposition system for organic compounds, no mention is made of the detoxification of exhaust gas components after decomposition, particularly carbon monoxide.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術では必然的に発生する有害な一酸化炭素成
分をフロン分解工程に続く一連の工程の中で連続的に分
解し、効率良くフロンを分解処理すると同時に分解生成
ガスを無害化する方法を提供することにある。
The object of the present invention is to efficiently decompose harmful carbon monoxide components, which are inevitably generated in the above-mentioned prior art, in a series of steps following the freon decomposition step, thereby improving efficiency. An object of the present invention is to provide a method for decomposing chlorofluorocarbon well and detoxifying the decomposition product gas.

【0009】[0009]

【課題を解決するための手段】本発明においては、フロ
ン分解工程として触媒による接触分解工程を用いること
を特徴としている。さらに、本発明のもう一つの特徴
は、フロン分解工程に続いてフロン分解熱もしくはそれ
以下の熱量で一酸化炭素を酸化分解する工程を含むこと
を特徴としている。さらに本発明のもう一つの特徴はフ
ロン分解工程と一酸化炭素分解工程と、さらにフロン分
解生成ガス中に含まれる腐食性の高いガス成分を中和吸
収して無害化する工程とを直列あるいは並列に設けるこ
とである。まず、フロン分解工程で使用する触媒として
本発明者等が検討した結果、活性の第1成分として酸化
チタン,第2成分としてタングステンを含有し、チタン
とタングステンの割合が原子百分率で表して、チタンが
20%以上91%以下、タングステンが80%以下9%
以上の範囲にある場合に、優れた分解活性を示すととも
に高い耐HF性のあることを見出した。この触媒はチタ
ンとタングステンが酸化物混合物あるいは複合酸化物の
形で存在している。
The present invention is characterized in that a catalytic cracking step using a catalyst is used as a fluorocarbon cracking step. Further, another feature of the present invention is characterized in that it comprises a step of oxidatively decomposing carbon monoxide with a heat amount of fluorocarbon decomposition or a heat amount less than that, following the fluorocarbon decomposition step. Another feature of the present invention is that a CFC decomposition step, a carbon monoxide decomposition step, and a step of neutralizing and absorbing a corrosive gas component contained in the CFC decomposition product gas to detoxify them in series or in parallel. Is to be installed. First, as a result of the investigations by the present inventors as a catalyst used in the Freon decomposition step, titanium oxide was contained as the active first component and tungsten was contained as the second component, and the ratio of titanium to tungsten was expressed as an atomic percentage. 20% to 91%, tungsten 80% to 9%
It has been found that when it is in the above range, it exhibits excellent decomposition activity and high HF resistance. In this catalyst, titanium and tungsten are present in the form of oxide mixture or complex oxide.

【0010】第3成分としては硫黄化合物,リン化合物
のうち少なくとも一種以上を添加したもの、硫黄化合物
をS換算で1〜10重量%、リン化合物をP換算で1〜
10重量%添加すると有効であることを見出した。
As the third component, at least one of sulfur compound and phosphorus compound is added, the sulfur compound is 1 to 10% by weight in terms of S, and the phosphorus compound is 1 to 10 in terms of P.
It has been found that adding 10% by weight is effective.

【0011】さらにこれらの触媒の第4成分として金,
白金,パラジウム,ロジウム,ルテニウムの中から選ば
れた少なくとも一種以上の成分を添加すると、さらに低
温での分解活性が向上することに気がついた。上記貴金
属の担持量は、重量で0.01〜5重量%の範囲にあると効
果が大きい。0.01 重量%以下では添加効果が十分で
はなく、5重量%以上では貴金属粒子の粒成長が起こり
やすく、活性が逆に低下する。
Further, as the fourth component of these catalysts, gold,
We have found that the addition of at least one component selected from platinum, palladium, rhodium and ruthenium further improves the decomposition activity at low temperatures. When the amount of the above-mentioned noble metal carried is in the range of 0.01 to 5% by weight, the effect is great. If the amount is less than 0.01% by weight, the effect of addition is not sufficient, and if the amount is more than 5% by weight, noble metal particles are likely to grow and the activity is decreased.

【0012】さらには酸化チタンに、第2成分として
銀,銅,クロム,モリブデンの中から選ばれた少なくと
も一種以上を含有する触媒が高い有機ハロゲン化合物分
解活性を示すことを見出した。このチタンと各金属は、
混合物あるいは複合酸化物状態で存在しており、チタン
と各金属の割合が原子百分率で表わして、チタンが20
%以上97%以下であり、金属が80%以下3%以上の
範囲にある場合に特に優れた分解活性を示すことを見出
した。
Further, it has been found that a catalyst containing titanium oxide as the second component and at least one selected from silver, copper, chromium and molybdenum exhibits a high organohalogen compound decomposing activity. This titanium and each metal,
It exists as a mixture or complex oxide, and the ratio of titanium to each metal is expressed in atomic percentage.
It was found that when the content of the metal is 80% or more and 97% or less and the metal content is 80% or less and 3% or more, particularly excellent decomposition activity is exhibited.

【0013】また、本発明の有機ハロゲン化合物の分解
処理方法は、室温で液体の有機ハロゲン化合物を処理す
る場合、触媒反応塔へ液体のまま送り、同時に反応物で
あるH2O も液体で送り、触媒層上部でガス化させて触
媒層を通過させることを特徴とする。触媒層上部でガス
化させる方法としてはアルミナ繊維,シリカ繊維,ガラ
ス繊維等の充填物により滞留時間を増加してガス化する
ことが望ましい。
Further, according to the method for decomposing an organohalogen compound of the present invention, when treating an organohalogen compound which is liquid at room temperature, the organohalogen compound is sent to the catalytic reaction tower as a liquid, and at the same time, the reactant H 2 O is also sent as a liquid. The catalyst is characterized in that it is gasified at the upper part of the catalyst layer and passed through the catalyst layer. As a method of gasifying at the upper part of the catalyst layer, it is desirable to increase the residence time with a filler such as alumina fiber, silica fiber, glass fiber or the like for gasification.

【0014】分解生成ガス中の、腐食性が高く人体にも
有害なフッ化水素、そして強酸性である塩化水素等は、
水酸化ナトリウム,水酸化カルシウム等のアルカリ水溶
液中を通し、中和無害化することが望ましい。
Hydrogen fluoride, which is highly corrosive and harmful to the human body, and hydrogen chloride, which is strongly acidic, in the decomposition product gas,
It is desirable to pass through an aqueous alkaline solution such as sodium hydroxide or calcium hydroxide to neutralize and render harmless.

【0015】また、本発明の有機ハロゲン化合物の分解
処理方法は、有機ハロゲン化合物分解触媒が充填された
触媒反応塔と一体の反応塔の外周部に一酸化炭素酸化反
応触媒を充填した空間を有し、有機ハロゲン化合物分解
触媒層を通過した分解ガスを上記一酸化炭素反応触媒層
を通過させ、生成ガス中の一酸化炭素を完全に無害な二
酸化炭素に変換しておくことが望ましい。
Further, the method of decomposing an organic halogen compound according to the present invention has a space in which a carbon monoxide oxidation reaction catalyst is filled in the outer peripheral portion of a reaction tower which is integrated with a catalyst reaction tower filled with an organohalogen compound decomposition catalyst. However, it is desirable that the decomposition gas that has passed through the organic halogen compound decomposition catalyst layer is passed through the carbon monoxide reaction catalyst layer to completely convert the carbon monoxide in the generated gas into harmless carbon dioxide.

【0016】さらには本発明の有機ハロゲン化合物の分
解処理方法は、一酸化炭素酸化反応触媒層が有機ハロゲ
ン化合物分解層と前記酸性成分中和無害化層を経た後に
設置されている方法によっても有効である。
Further, the method for decomposing an organic halogen compound of the present invention is also effective by a method in which the carbon monoxide oxidation reaction catalyst layer is installed after passing through the organic halogen compound decomposing layer and the acidic component neutralizing and detoxifying layer. Is.

【0017】触媒の温度を上げる方法として、当然、電
気炉等の加熱器を使用しても良く、他の高熱源との熱交
換により有機ハロゲン化合物含有ガスの温度を触媒の働
く温度まで上げても良い。また、回収された有機ハロゲ
ン化合物含有ガスに、水素,水蒸気,オゾンの少なくと
も一種以上を含むガスを加えることもできる。この方法
は建材用ウレタンフォーム,自動車の解体有機ハロゲン
化合物回収処理にも適用できる。
As a method of raising the temperature of the catalyst, of course, a heater such as an electric furnace may be used, and the temperature of the organohalogen compound-containing gas is raised to the temperature at which the catalyst works by heat exchange with another high heat source. Is also good. Further, a gas containing at least one of hydrogen, water vapor, and ozone can be added to the recovered organohalogen compound-containing gas. This method can also be applied to urethane foam for building materials and automobile dismantling organic halogen compound recovery processing.

【0018】本発明においては、分解生成ガスの処理工
程を通過したガスを、その中のフロン濃度に応じて、回
収フロンの分解工程へリサイクルしても良い。また、フ
ロン処理対象物からフロンを回収する工程で得られるフ
ロン含有ガスを、回収フロンの分解工程に送る際、空
気,窒素,水素,酸素,ヘリウム等のガスで希釈しても
良い。さらに、別の方法で回収されたフロンを、回収フ
ロンの分解工程に加えても良い。
In the present invention, the gas that has passed through the process of treating the decomposition product gas may be recycled to the process of decomposing the recovered CFCs depending on the concentration of CFCs in the gas. In addition, the freon-containing gas obtained in the step of recovering freon from the freon processing object may be diluted with a gas such as air, nitrogen, hydrogen, oxygen, or helium when it is sent to the step of decomposing the recovered freon. Further, CFCs recovered by another method may be added to the step of decomposing the recovered CFCs.

【0019】本発明における有機ハロゲン化合物分解触
媒を調製するためのチタン原料としては、酸化チタン,
加熱により酸化チタンを生成する各種チタン酸,硫酸チ
タン、塩化チタン,有機チタン化合物等を使用しうる。
これらのチタン原料を水やアンモニア水,アルカリ溶液
等で水酸化物の沈澱を生成し、最終的な焼成により酸化
物を形成するのも好ましい方法である。フロン分解触媒
原料として用いられる硫黄化合物,リン化合物として
は、硫酸,硫酸アンモニウム,チオ硫酸アンモニウム,
チオ硫酸ナトリウム,チオ硫酸カリウム,ピロ硫酸ナト
リウム,ピロ硫酸カリウム,オルトリン酸,メタリン
酸,亜リン酸,リン酸アンモニウム,リン酸二水素アン
モニウム等が挙げられる。タングステン原料としては、
酸化タングステン,タングステン酸,パラタングステン
酸アンモニウム等が好適である。本発明において、フロ
ン分解触媒原料として用いられる貴金属源としては、塩
化白金酸ジニトロアミン白金,塩化パラジウム,硝酸パ
ラジウム,硝酸ロジウム,硫酸ロジウム,硝酸ルテニウ
ム,塩化ルテニウム等が好ましい。また、銀原料として
は硝酸銀,塩化銀,銅原料としては硝酸銅,硫酸銅,塩
化銅,クロム原料としては硝酸クロム,硫酸クロム,塩
化クロム等が好ましい。モリブデン原料としてはモリブ
デン酸,リンモリブデン酸,モリブデン酸アンモニウム
等が好ましい。
As the titanium raw material for preparing the organohalogen compound decomposition catalyst in the present invention, titanium oxide,
Various titanic acids that generate titanium oxide by heating, titanium sulfate, titanium chloride, organic titanium compounds, and the like can be used.
It is also a preferred method to form a hydroxide by precipitating a hydroxide of these titanium raw materials with water, aqueous ammonia, an alkaline solution or the like, and finally firing. Sulfur compounds and phosphorus compounds used as CFC decomposition catalyst raw materials include sulfuric acid, ammonium sulfate, ammonium thiosulfate,
Examples thereof include sodium thiosulfate, potassium thiosulfate, sodium pyrosulfate, potassium pyrosulfate, orthophosphoric acid, metaphosphoric acid, phosphorous acid, ammonium phosphate, ammonium dihydrogenphosphate and the like. As a tungsten raw material,
Tungsten oxide, tungstic acid, ammonium paratungstate, etc. are suitable. In the present invention, the noble metal source used as the raw material for the CFC decomposition catalyst is preferably dinitroamine platinum chloroplatinate, palladium chloride, palladium nitrate, rhodium nitrate, rhodium sulfate, ruthenium nitrate, ruthenium chloride, or the like. The silver raw material is preferably silver nitrate or silver chloride, the copper raw material is preferably copper nitrate, copper sulfate or copper chloride, and the chromium raw material is preferably chromium nitrate, chromium sulfate or chromium chloride. As the molybdenum raw material, molybdic acid, phosphomolybdic acid, ammonium molybdate, etc. are preferable.

【0020】フロン分解触媒の製造法は、触媒の製造に
通常使用されている沈澱法,含浸法,混練法等のどれも
が利用できる。またフロン分解触媒は押出し成型,打錠
成形,転動造粒等いずれの方法によっても作製すること
が可能である。この場合強度上昇や比表面積増加などの
目的で他のセラミックスや有機物成分を混合することも
有効である。同じ目的でアルミナやシリカ等の粒状担体
に触媒成分を含浸等の方法で担持して使用することも有
効である。また、セラミックスや金属製のハニカムや板
にコーティングして使用することも有効である。
As the method for producing the fluorocarbon decomposition catalyst, any of the precipitation method, the impregnation method, the kneading method and the like which are commonly used for producing the catalyst can be used. The CFC decomposition catalyst can be produced by any of extrusion molding, tablet molding, rolling granulation and the like. In this case, it is also effective to mix other ceramics or organic components for the purpose of increasing strength or increasing specific surface area. For the same purpose, it is also effective to support the catalyst component on a granular carrier such as alumina or silica by using a method such as impregnation. Further, it is also effective to coat it on a honeycomb or plate made of ceramics or metal.

【0021】一酸化炭素酸化触媒にはアルミナやシリカ
等の粒状担体に触媒成分を含浸等の方法で担持して使用
することも有効である。この場合の触媒成分は白金,ロ
ジウム,パラジウム,ルテニウム等の白金族金属元素で
あり、塩化白金酸ジニトロアミン白金,塩化パラジウ
ム,硝酸パラジウム,硝酸ロジウム,硫酸ロジウム,硝
酸ルテニウム,塩化ルテニウム等を原材料とすることが
望ましい。
For the carbon monoxide oxidation catalyst, it is also effective to support the catalyst component on a granular carrier such as alumina or silica by using a method such as impregnation. In this case, the catalyst component is a platinum group metal element such as platinum, rhodium, palladium, ruthenium, etc., and platinum diplatinate chloroplatinate, palladium chloride, palladium nitrate, rhodium nitrate, rhodium sulfate, ruthenium nitrate, ruthenium chloride, etc. are used as raw materials. It is desirable to do.

【0022】本発明の対象となる有機ハロゲン化合物は
各種のフロン,トリクロロエチレン,臭化メチル等の有
機化合物中にフッ素,塩素,臭素を含有する化合物であ
る。フロン113と臭化メチルを例に取るとそれぞれ次
のような反応が代表的なものである。
The organic halogen compound which is the object of the present invention is a compound containing fluorine, chlorine and bromine in various organic compounds such as CFCs, trichloroethylene and methyl bromide. Taking Freon 113 and methyl bromide as examples, the following reactions are typical.

【0023】[0023]

【化1】 CCl2F−CClF2+3H2O→CO+CO2+3HCl+3HF…(1)Embedded image CCl 2 F—CClF 2 + 3H 2 O → CO + CO 2 + 3HCl + 3HF ... (1)

【0024】[0024]

【化2】 CH3Br+3/2O2→CO+HBr+H2O …(2) エタン系の有機ハロゲン化合物の分解反応を実施するに
は、処理するガス中に水蒸気を有機ハロゲン化合物に対
し、モル数で3倍以上存在するように調整しておく。こ
のような雰囲気で反応を実施することによって分解効率
向上が期待される。また分解生成物が後処理の容易な形
態のハロゲン化水素で得られるという長所もある。水蒸
気量が有機ハロゲン化合物の3倍量に満たない場合には
効果は十分ではない。
## STR00002 ## CH 3 Br + 3 / 2O 2 → CO + HBr + H 2 O (2) In order to carry out the decomposition reaction of the ethane-based organic halogen compound, water vapor is added to the organic halogen compound in a molar ratio of 3 in the gas to be treated. Adjust so that there are more than twice as many. It is expected that the decomposition efficiency will be improved by carrying out the reaction in such an atmosphere. In addition, the decomposition product can be obtained with a hydrogen halide in a form that can be easily post-treated. The effect is not sufficient when the amount of water vapor is less than three times the amount of the organic halogen compound.

【0025】また、触媒と反応させる温度は300℃以
上,600℃以下が好ましい。処理ガスの空間速度は2,
000〜100,000/時、5,000〜50,000/時 に設定されるこ
とが最も望ましい。
The temperature for reacting with the catalyst is preferably 300 ° C. or higher and 600 ° C. or lower. The space velocity of the processing gas is 2,
The most desirable setting is 0000 to 100,000 / hour and 5,000 to 50,000 / hour.

【0026】本発明で実施しうる反応容器の形状は、基
本的には通常の固定層,移動層,流動層型のいずれもが
使用可能である。
The shape of the reaction vessel which can be used in the present invention is basically any of a fixed bed type, a moving bed type and a fluidized bed type.

【0027】[0027]

【作用】本発明で使用する有機ハロゲン化合物触媒は、
低温での活性が高く、また、耐HF性に優れるため高耐
久性を示し、従来の触媒の様に分解に高温を必要とせ
ず、有機ハロゲン化合物の分解に必要なエネルギを大幅
に減少させることができる。
The organic halogen compound catalyst used in the present invention is
It has high activity at low temperature and high durability due to excellent HF resistance. It does not require high temperature for decomposition unlike conventional catalysts and greatly reduces energy required for decomposition of organic halogen compounds. You can

【0028】有機ハロゲン化合物を分解処理する場合、
HF,HCl等のガス成分が発生する。これら成分は高
腐食性であり、装置材料の腐食が問題である。フロン分
解触媒層を通過した分解ガスと装置との接触面積を極力
低減することが望ましい。分解生成ガス中の一酸化炭素
を触媒によって分解する層は、有機ハロゲン化合物分解
生成ガスをアルカリ吸収液を通過した後に設置しておく
方法と、有機ハロゲン化合物分解反応熱を利用する方法
との二方法がある。
When decomposing an organic halogen compound,
Gas components such as HF and HCl are generated. These components are highly corrosive, and corrosion of equipment materials is a problem. It is desirable to reduce the contact area between the cracked gas that has passed through the fluorocarbon cracking catalyst layer and the apparatus as much as possible. The layer for decomposing carbon monoxide in the decomposition product gas by a catalyst has two methods: a method of setting the decomposition product gas of the organic halogen compound after passing through the alkali absorbing liquid and a method of utilizing the heat of decomposition reaction of the organic halogen compound. There is a way.

【0029】[0029]

【実施例】以下、実施例にて本発明をさらに詳細に説明
するが、本発明はこれらの実施例にのみ限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0030】(実施例1)メタチタン酸スラリー(酸化
チタンとして20重量%含有)250gとパラタングス
テン酸アンモニウム18.2g を擂かい機により十分に
混合する。得られたスラリを150℃で約20h乾燥
後,400℃で焼成する。得られた粉末を金型に入れ5
00kgf/cm2で圧縮成型する。圧縮するときの圧力とし
ては300〜3000kgf/cm2が好ましい。この成型品
を500℃で2時間空気中で焼成する。こうして得られ
た触媒は金属成分の原子比でTi:W=9:1の組成を
有する。この触媒を粉砕,篩い分けし、1〜2mmの粒径
のもの2mlを以下の実験に供した。
Example 1 250 g of metatitanic acid slurry (containing 20% by weight of titanium oxide) and 18.2 g of ammonium paratungstate are thoroughly mixed by a kneading machine. The obtained slurry is dried at 150 ° C for about 20 hours and then calcined at 400 ° C. Put the resulting powder in a mold 5
It is compression molded at 00 kgf / cm 2 . The pressure for compression is preferably 300 to 3000 kgf / cm 2 . The molded product is fired in air at 500 ° C. for 2 hours. The catalyst thus obtained has a composition of Ti: W = 9: 1 in terms of atomic ratio of metal components. This catalyst was crushed and sieved, and 2 ml having a particle size of 1 to 2 mm was used in the following experiment.

【0031】本実施例の装置の概念図を図1に示す。フ
ロン分解触媒1を充填した反応管2にはフロン113を
連続的に供給するフロン供給系6と空気を連続的に供給
可能な空気供給系5と水を連続的に供給できる水供給系
9が接続されている。反応管2中のフロン分解触媒は電
気炉4によって430℃に加熱されている。フロンは反
応管内で触媒によって分解され、CO,CO2 ,HF及
びHClになり、排ガス13として反応管外にでる。上
記排ガスは次にアルカリ吸収槽12でNaOH水溶液8
中に導入せられ、中和されてNaCO3 ,NaF及びN
aClとなり、アルカリ溶液中に沈澱する。アルカリ吸
収槽を通過したアルカリ吸収排ガス10は次に一酸化炭
素酸化触媒層7中を通過し、COを酸化し排気14され
る。
FIG. 1 shows a conceptual diagram of the apparatus of this embodiment. The reaction tube 2 filled with the Freon decomposition catalyst 1 has a Freon supply system 6 for continuously supplying Freon 113, an air supply system 5 for continuously supplying air, and a water supply system 9 for continuously supplying water. It is connected. The CFC decomposition catalyst in the reaction tube 2 is heated to 430 ° C. by the electric furnace 4. Freon is decomposed by a catalyst in the reaction tube to become CO, CO 2 , HF and HCl, and is discharged as exhaust gas 13 outside the reaction tube. Next, the exhaust gas is fed to the alkali absorption tank 12 and the NaOH aqueous solution 8
Introduced into and neutralized into NaCO 3 , NaF and N
It becomes aCl and precipitates in an alkaline solution. The alkali-absorbed exhaust gas 10 that has passed through the alkali absorption tank then passes through the carbon monoxide oxidation catalyst layer 7, oxidizes CO, and is exhausted 14.

【0032】反応管は内径20mmのハステロイ製で内部
に外径5mmの同じ材質の熱電対保護管3を有している。
反応管を電気炉4で加熱し、熱電対で温度を測定する。
水蒸気量の調整は、所定量の純水をポンプで反応管上部
に供給し、蒸発させることで行った。供給した処理ガス
は下記の組成を有する。
The reaction tube is made of Hastelloy having an inner diameter of 20 mm and has a thermocouple protection tube 3 of the same material having an outer diameter of 5 mm inside.
The reaction tube is heated in the electric furnace 4, and the temperature is measured with a thermocouple.
The amount of water vapor was adjusted by supplying a predetermined amount of pure water to the upper part of the reaction tube with a pump and evaporating it. The supplied processing gas has the following composition.

【0033】供給した処理ガスの組成 有機ハロゲン化合物 3% (フロン113,トリクロロエチレン,臭化メチルのい
ずれか) 水蒸気 0〜15% 酸素 10〜20% 窒素 残部 上記組成のガスを空間速度10,000毎時で反応管内に流し
た。反応温度を順次変えて有機ハロゲン化合物の分解率
を測定した。分解率は次の式でもとめた。
Composition of supplied processing gas Organic halogen compound 3% (Freon 113, trichloroethylene, methyl bromide) Steam 0-15% Oxygen 10-20% Nitrogen balance Gas of the above composition reacted at space velocity 10,000 hourly It was poured into the pipe. The decomposition temperature of the organohalogen compound was measured by sequentially changing the reaction temperature. The decomposition rate was also determined by the following formula.

【0034】[0034]

【数1】 [Equation 1]

【0035】TiO2−WO3触媒によるフロン113ガ
ス反応の結果を図2に示す。
The results of the Freon 113 gas reaction with the TiO 2 —WO 3 catalyst are shown in FIG.

【0036】CO酸化反応触媒にはパラジウム担持酸化
スズを使用した。パラジウム担持酸化スズからなるCO
酸化反応触媒は反応管の外周に設置した電気炉によって
50〜80℃に一定温度に加熱して使用した。
Palladium-supported tin oxide was used as the CO oxidation reaction catalyst. CO consisting of palladium-supported tin oxide
The oxidation reaction catalyst was used after being heated to a constant temperature of 50 to 80 ° C. by an electric furnace installed on the outer periphery of the reaction tube.

【0037】その結果、CO酸化反応触媒を通過しなか
った排ガス中のCO濃度2.5% に対して、本実施例の
パラジウム担持酸化スズ触媒を通過した後の排ガス中の
CO濃度は3ppm にまで低下した。CO酸化反応触媒は
本実施例のパラジウム担持酸化スズ以外にも白金−酸化
アルミニウム−鉄系,銅−亜鉛−酸化アルミニウム系あ
るいは酸化銅系でも効果があることが確かめられた。し
かし銅−亜鉛−酸化アルミニウム系では反応温度を15
0〜200℃とすることが有効であった。
As a result, the CO concentration in the exhaust gas that did not pass through the CO oxidation reaction catalyst was 2.5%, whereas the CO concentration in the exhaust gas after passing through the palladium-supported tin oxide catalyst of this example was 3 ppm. Fell to. It was confirmed that, in addition to the palladium-supported tin oxide of this example, the CO oxidation reaction catalyst is also effective with platinum-aluminum oxide-iron system, copper-zinc-aluminum oxide system or copper oxide system. However, in the copper-zinc-aluminum oxide system, the reaction temperature is 15
It was effective to set the temperature to 0 to 200 ° C.

【0038】(実施例2)本実施例では、実施例1のT
iO2−WO3触媒において、TiとWの割合を変化させ
た触媒を調製した。調製した触媒及び性能試験結果を表
1に示す。フロン濃度6%,SV5000/時間,触媒
層温度430℃,フロン113,H2O 供給量=分解必
要理論量の1.7 倍の条件での結果である。
(Embodiment 2) In this embodiment, T of Embodiment 1 is used.
A catalyst was prepared by changing the ratio of Ti and W in the iO 2 -WO 3 catalyst. Table 1 shows the prepared catalysts and the performance test results. CFC concentration 6%, SV 5000 / hour, catalyst layer temperature 430 ° C., CFC 113, H 2 O supply amount = 1.7 times the theoretical amount required for decomposition.

【0039】[0039]

【表1】 [Table 1]

【0040】(実施例3)図3は図1の基本フローシー
トに対する他の実施例を示すものである。図1との違い
は一酸化炭素酸化触媒層がフロン分解触媒と同一の反応
管内に有り、フロン分解反応の予熱を利用して酸化触媒
反応によって一酸化炭素を酸化する。この際の一酸化炭
素酸化触媒には実施例1と同一のパラジウム担持酸化ス
ズを使用した。同触媒は熱電対15によって50〜80
℃になるように冷却制御した。その結果、CO酸化反応
触媒を通過しなかった排ガス中のCO濃度1.7% に対
して、本実施例のパラジウム担持酸化スズ触媒を通過し
た後の排ガス中のCO濃度は1.5ppmにまで低下した。
(Third Embodiment) FIG. 3 shows another embodiment of the basic flow sheet shown in FIG. The difference from FIG. 1 is that the carbon monoxide oxidation catalyst layer is in the same reaction tube as the CFC decomposition catalyst, and preheating of the CFC decomposition reaction is utilized to oxidize carbon monoxide by the oxidation catalytic reaction. At this time, the same palladium-supported tin oxide as in Example 1 was used as the carbon monoxide oxidation catalyst. The catalyst has a thermocouple 15 of 50-80.
Cooling was controlled so that the temperature became 0 ° C. As a result, the CO concentration in the exhaust gas that did not pass through the CO oxidation reaction catalyst was 1.7%, whereas the CO concentration in the exhaust gas after passing through the palladium-supported tin oxide catalyst of this example was up to 1.5 ppm. Fell.

【0041】[0041]

【発明の効果】本発明によれば、フロン分解時に発生す
る一酸化炭素を、フロン分解工程に続く一連の工程の中
で効率よく分解することができる。
According to the present invention, carbon monoxide generated during the CFC decomposition can be efficiently decomposed in a series of steps following the CFC decomposition step.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すフロン分解装置の概略
図。
FIG. 1 is a schematic view of a CFC decomposition apparatus showing an embodiment of the present invention.

【図2】フロン分解率の経時変化を示すグラフ。FIG. 2 is a graph showing changes over time in the CFC decomposition rate.

【図3】本発明の他の実施例を示すフロン分解装置の概
略図。
FIG. 3 is a schematic view of a CFC decomposition apparatus showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…フロン分解触媒、2…反応管、3…熱電対保護管、
4…電気炉、5…空気供給系、6…フロン供給系、7…
一酸化炭素酸化触媒層、8…NaOH水溶液、9…水供
給系、10…アルカリ吸収排ガス、11…触媒温度調整
熱電対、12…アルカリ吸収槽、13…排ガス。
1 ... Freon decomposition catalyst, 2 ... Reaction tube, 3 ... Thermocouple protection tube,
4 ... Electric furnace, 5 ... Air supply system, 6 ... Freon supply system, 7 ...
Carbon monoxide oxidation catalyst layer, 8 ... NaOH aqueous solution, 9 ... Water supply system, 10 ... Alkaline absorption exhaust gas, 11 ... Catalyst temperature adjusting thermocouple, 12 ... Alkaline absorption tank, 13 ... Exhaust gas.

フロントページの続き (72)発明者 入江 一芳 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Front Page Continuation (72) Inventor Kazuyoshi Irie 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd., Hitachi Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】有機ハロゲン化合物を含有するガスを、水
あるいはオゾンの存在する約200〜500℃の温度環
境で有機ハロゲン化合物分解触媒と接触させる工程と、
前記触媒に接触させて発生したガス種をアルカリ水溶液
と接触させて吸収除去する工程と、前記アルカリ水溶液
を通過したガス流を酸素,オゾンあるいは水素の存在す
る雰囲気中で一酸化炭素分解触媒に接触させる工程とを
有することを特徴とする有機ハロゲン含有ガスの分解処
理方法。
1. A step of contacting a gas containing an organic halogen compound with an organic halogen compound decomposition catalyst in a temperature environment of about 200 to 500 ° C. in the presence of water or ozone,
A step of contacting the catalyst with a gas species generated by contacting with an alkali aqueous solution to remove the gas species; and contacting a gas stream passing through the alkali aqueous solution with a carbon monoxide decomposition catalyst in an atmosphere containing oxygen, ozone or hydrogen. A method for decomposing an organic halogen-containing gas, comprising:
【請求項2】請求項1において、前記有機ハロゲン化合
物分解触媒がチタニアを主成分とし、さらに酸化タング
ステン,酸化モリブデン,酸化ジルコニウム,酸化バナ
ジウム,酸化ニオビウム,酸化クロム,酸化マンガン,
酸化コバルト,酸化ニッケルのうち少なくとも1種類の
成分を触媒全体重量の約10〜約40重量%及び硫酸根
を同じく約3〜10重量%含有することを特徴とする有
機ハロゲン含有ガスの分解処理方法。
2. The organic halogen compound decomposition catalyst according to claim 1, wherein titania is the main component, and further tungsten oxide, molybdenum oxide, zirconium oxide, vanadium oxide, niobium oxide, chromium oxide, manganese oxide,
A method for decomposing an organic halogen-containing gas, characterized in that it contains at least one component of cobalt oxide and nickel oxide in an amount of about 10 to about 40% by weight and a sulfate group of about 3 to 10% by weight based on the total weight of the catalyst. .
【請求項3】請求項1において、前記有機ハロゲン化合
物分解触媒がチタニアを主成分とし、さらに酸化銀ある
いは酸化銅を触媒全体重量の約10〜約40重量%及び
硫酸根を同じく約3〜10重量%含有することを特徴と
する有機ハロゲン化合物の分解処理方法。
3. The organohalogen compound decomposition catalyst according to claim 1, wherein titania is the main component, and silver oxide or copper oxide is used in an amount of about 10 to about 40% by weight of the total weight of the catalyst and a sulfate group is also used in an amount of about 3 to 10%. A method for decomposing an organohalogen compound, characterized in that the content of the organic halogen compound is in a weight percentage.
【請求項4】請求項1において、前記有機ハロゲン化合
物分解触媒がチタニアを主成分とし、さらに酸化タング
ステン,酸化モリブデン,酸化ジルコニウム,酸化バナ
ジウム,酸化ニオビウム,酸化クロム,酸化マンガン,
酸化コバルト,酸化ニッケル,酸化銀,酸化銅のうち少
なくとも1種類の成分を触媒全体重量の約10〜約40
重量%含有し、さらに貴金属系元素を触媒全体重量に対
して約10〜約40重量%含有し、さらに硫酸根を同じ
く約3〜10重量%含有することを特徴とする有機ハロ
ゲン化合物の分解処理方法。
4. The catalyst according to claim 1, wherein the catalyst for decomposing organic halogen compounds contains titania as a main component, and tungsten oxide, molybdenum oxide, zirconium oxide, vanadium oxide, niobium oxide, chromium oxide, manganese oxide,
At least one component selected from cobalt oxide, nickel oxide, silver oxide, and copper oxide is used in an amount of about 10 to about 40 based on the total weight of the catalyst.
%, Further containing noble metal-based elements in an amount of about 10 to about 40% by weight based on the total weight of the catalyst, and further containing a sulfate group in an amount of about 3 to 10% by weight. Method.
JP7045233A 1995-03-06 1995-03-06 Decomposition treatment method for organic halogen compound Pending JPH08238418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7045233A JPH08238418A (en) 1995-03-06 1995-03-06 Decomposition treatment method for organic halogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7045233A JPH08238418A (en) 1995-03-06 1995-03-06 Decomposition treatment method for organic halogen compound

Publications (1)

Publication Number Publication Date
JPH08238418A true JPH08238418A (en) 1996-09-17

Family

ID=12713552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7045233A Pending JPH08238418A (en) 1995-03-06 1995-03-06 Decomposition treatment method for organic halogen compound

Country Status (1)

Country Link
JP (1) JPH08238418A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074821A1 (en) 1999-06-09 2000-12-14 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
JP2002336689A (en) * 2001-05-21 2002-11-26 Daikin Ind Ltd Plasma reactor and air cleaner
JP2002370014A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment system
US7261868B2 (en) 2001-09-13 2007-08-28 Hitachi, Ltd. Process and apparatus for the decomposition of fluorine compounds
JP2010162452A (en) * 2009-01-14 2010-07-29 Tokuyama Corp Treatment method of exhaust gas containing aliphatic halogenated hydrocarbon
CN112547110A (en) * 2019-09-26 2021-03-26 中国石油化工股份有限公司 Molecular sieve catalyst, preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074821A1 (en) 1999-06-09 2000-12-14 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
EP1205234A1 (en) * 1999-06-09 2002-05-15 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
EP1205234A4 (en) * 1999-06-09 2003-04-16 Hitachi Ltd Method and apparatus for disposing of fluorine-containing compound by decomposition
US7294315B1 (en) * 1999-06-09 2007-11-13 Hitachi, Ltd. Method and apparatus for disposing of fluorine-containing compound by decomposition
JP2002336689A (en) * 2001-05-21 2002-11-26 Daikin Ind Ltd Plasma reactor and air cleaner
JP2002370014A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment system
US7261868B2 (en) 2001-09-13 2007-08-28 Hitachi, Ltd. Process and apparatus for the decomposition of fluorine compounds
JP2010162452A (en) * 2009-01-14 2010-07-29 Tokuyama Corp Treatment method of exhaust gas containing aliphatic halogenated hydrocarbon
CN112547110A (en) * 2019-09-26 2021-03-26 中国石油化工股份有限公司 Molecular sieve catalyst, preparation method and application thereof
CN112547110B (en) * 2019-09-26 2023-06-06 中国石油化工股份有限公司 Molecular sieve catalyst, preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6942841B2 (en) Process for treating fluorine compound-containing gas
EP0793995B1 (en) Method of treating gases containing organohalogen compounds
US6077482A (en) Method for treating organohalogen compounds with catalyst
JPH08238418A (en) Decomposition treatment method for organic halogen compound
JP2004082013A (en) Method and catalyst for decomposing perfluorocompound and apparatus for treating perfluorocompound
US6858562B1 (en) Catalyst for decomposing organic harmful substances and method for decomposing organic halides by use thereof
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP3368820B2 (en) Method for treating fluorine compound-containing gas and catalyst
JP2001038206A (en) Catalyst for treating exhaust gas and method and apparatus for treating exhaust gas
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JPH0857255A (en) Fluorocarbon decomposing apparatus
JPH0857323A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
JPH08141367A (en) Catalytic cracking method for aliphatic halide
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
KR100515907B1 (en) Catalyst for removing dioxin and/or nitrogen oxide, and preparation method thereof
JP3931563B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP4399938B2 (en) Monochlorodifluoromethane treatment method
CZ302209B6 (en) Decomposition method of chlorine-containing organic compound comprised in combustion products and catalyst used in this method
JPH08215566A (en) Decomposing method of fluorocarbon
JP2000061305A (en) Catalyst and method for treating exhaust gas
JP3531217B2 (en) Zirconium phosphate molded article for catalyst carrier and method for producing the same
JP2001340764A (en) Method of producing catalyst for treating exhaust gas
JPH0483515A (en) Method for decomposing fluorocarbon type cooling medium
JP3598539B2 (en) Catalyst for decomposition of volatile organic chlorine compounds

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629