JP3570136B2 - Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound - Google Patents

Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound Download PDF

Info

Publication number
JP3570136B2
JP3570136B2 JP00917597A JP917597A JP3570136B2 JP 3570136 B2 JP3570136 B2 JP 3570136B2 JP 00917597 A JP00917597 A JP 00917597A JP 917597 A JP917597 A JP 917597A JP 3570136 B2 JP3570136 B2 JP 3570136B2
Authority
JP
Japan
Prior art keywords
catalyst
titania
mol
organic halogen
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00917597A
Other languages
Japanese (ja)
Other versions
JPH10202061A (en
Inventor
周一 菅野
利昭 荒戸
伸三 池田
健 安田
寿生 山下
茂 小豆畑
慎 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00917597A priority Critical patent/JP3570136B2/en
Priority to EP97301219A priority patent/EP0793995B1/en
Priority to DE69707033T priority patent/DE69707033T2/en
Priority to US08/811,512 priority patent/US5877391A/en
Priority to KR1019970006995A priority patent/KR19980069689A/en
Publication of JPH10202061A publication Critical patent/JPH10202061A/en
Application granted granted Critical
Publication of JP3570136B2 publication Critical patent/JP3570136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、クロロフルオロカーボン類(CFC類、例えばフロン),ハイドロフルオロカーボン類(HCFC類、例えば代替フロン)トリクロロエチレン,臭化メチル,ハロン等フッ素,塩素,臭素のハロゲンを含有する有機化合物の分解に対して高活性を示し、かつ長時間活性を維持する触媒及びその製法に関する。
【0002】
【従来の技術】
クロロフルオロカーボン,ハイドロフルオロカーボン,トリクロロエチレン,臭化メチル,ハロン等、有機化合物中にフッ素,塩素,臭素を含有する有機ハロゲン化合物は、発泡剤,冷媒,消火剤等に幅広く利用されてきた。これらの化合物はオゾン層の破壊,温暖化を引き起こし、発癌性物質の生成等、環境に対し深刻な影響を与えることが指摘され、これまでに使用された有機ハロゲン化合物の回収・分解処理方法が検討されている。
【0003】
ところで、回収した有機ハロゲン化合物は、反応性が低い比較的安定な化合物であるため、適切な分解処理技術がないのが現状である。また、分解生成物中には腐食性のハロゲンガスが含まれるため、分解処理技術を一層困難にしている。分解処理法は、主に高温での燃焼技術,プラズマ技術がある。しかしながら、この方法は、大量の燃料,電力を使用するためエネルギ効率が低く、また、生成するハロゲンによる炉壁の損傷の問題もある。特にプラズマ法では、処理ガス中の有機ハロゲン化合物の含有量が低い場合にはエネルギのロスが大きい。これらに対し、触媒を用いた分解法は触媒の性能が充分に高ければ、低エネルギで処理できる効率的な優れた方法である。
【0004】
従来、TiO−WO触媒は有機ハロゲン化合物の分解用触媒として、特公平6−59388号に報告されている。この触媒はTiOの0.1〜20wt%のWを含む触媒(原子比にすると、Tiが92%以上99.96%以下,Wが8%以下 0.04%以上)であり、ppm オーダのCClを処理するのに375℃で分解率99%を1500時間保持していた。しかし、有機ハロゲン化合物中で触媒毒としての影響はClだけでなく、むしろFの方が大きい。従って、Cl,Fの両方のハロゲン元素と反応しにくい耐ハロゲン性触媒が必要となる。
【0005】
【発明が解決しようとする課題】
本発明は有機ハロゲン化合物中のF及びClとの反応を抑制し、長時間の間、性能を維持することのできる有機ハロゲン化合物を分解する高性能な触媒及び製法,装置,処理方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者等は有機ハロゲン化合物を高効率で分解が可能で、しかも反応物及び分解生成物中に含まれるハロゲン、特にFによる劣化を受けにくい高性能触媒の探索を詳細に進めた結果、本発明に至った。即ち、チタニアとシリカと酸化タングステンを含み、シリカをチタニアに対して0.5重量% 以上2重量%未満で含有し、かつチタニア,酸化タングステンをTiとWの原子比が、Tiが20mol%以上95mol%以下 ,Wが80mol%以下5mol%以上であり、チタニアの少なくとも表面がシリカ,酸化タングステンのうち少なくとも1種の多孔質層で覆われている触媒と、10vol% を超えない有機ハロゲン化合物を含むガス流を触媒と接触させて有機ハロゲン化合物を処理する方法であって、ガス流を500℃を超えない温度で、全ガス流量の30vol% を超えない水蒸気の存在下で接触させて有機ハロゲン化合物を一酸化炭素,二酸化炭素とハロゲン化水素に分解する。触媒は、チタニア粒子表面にシリカの多孔質層を有し、シリカの多孔質層の表面に更に酸化タングステンよりなる多孔質層を有する場合に、優れた分解活性、特に高い耐久性を示すことを見出した。また、チタニア粒子表面に酸化タングステンの多孔質層を有し、酸化タングステンの多孔質層の表面に更にシリカよりなる多孔質層を有する場合にも同様の優れた分解活性を示すことを見出した。この触媒はシリカとチタンとタングステンを酸化物の混合物あるいは複合酸化物の形態で含有している。
【0007】
チタニアは、有機ハロゲン化合物の分解に対して高い活性を示すが、反応ガス中にFが存在すると、TiOFという化合物を形成して触媒から脱離しやすく、そのため活性点が減少するため、活性が徐々に低下することが判明した。
【0008】
従って、チタニアの持つ高い活性を損なうことなく、高寿命を持たせることが必要であった。Fとの反応性が小さい、すなわち、F化しにくい金属酸化物を探索した結果、酸化タングステンがFとほとんど反応しないことを見出した。従って、酸化タングステンのみで高活性を示すことが望ましいが、酸化タングステンのみでは比表面積が小さく、活性は低い。酸化タングステンの比表面積を増大させる方法として、チタニア,酸化タングステン,ゼオライト等の上に分散させる方法があるが、特に、チタニアにシリカあるいは酸化タングステンを混合した場合に活性点(特に強酸点)の量が増加した。シリカは、単体では有機ハロゲン化合物の分解の際にFと反応することが知られている。しかし、チタニアと組み合わせると、触媒中の強酸点が増加し、チタニア単体の活性を上回ることが判った。これらの酸点は、分解生成物であるHF,HClに対し劣化しにくく、高活性を維持する。そこで、チタニアとシリカが混合あるいは複合酸化物化した粒子の表面に酸化タングステンの多孔質層を形成すればチタニアの活性を損なうことなく、触媒寿命を延ばすことができると考えた。
【0009】
チタニア粒子表面にシリカあるいは酸化タングステン多孔質層を形成する方法は、シリカを含む溶液あるいはWを含む溶液をチタニア粒にしみこませ、焼成する含浸法を用いることができる。シリカあるいは酸化タングステンが余剰にある場合、一個一個の細かなチタニア粒子を集合させてできたチタニア造粒粒子の表面も、余剰のシリカあるいはWイオンが被覆できる。
【0010】
また、チタニア粒にシリカあるいはWを含む溶液を塗布したり、蒸着法等により調製することができる。これらの方法ではWが少なくてもチタニア粒子表面を被覆することができる。
【0011】
チタニア粒子表面を覆う、シリカ,酸化タングステンの多孔質層の厚さは、1μm以上1mm以下であることが望ましい。
【0012】
チタニア粒子の表面をシリカあるいは酸化タングステンで覆うには、適切な量のシリカあるいは酸化タングステンが必要であり、特に粒径2〜4mmのチタニア粒子に含浸法により酸化タングステンの多孔質層を形成する場合は、触媒中のチタニア,酸化タングステンをTiに対するWの原子百分率が10%以上でないと、チタニア粒子表面を完全に覆えないことが判明した。一方、粒径2〜4mmのチタニア粒子に含浸法でシリカの多孔質層を形成するには、チタニアに対してシリカは0.5 重量%以上2重量%未満で含有していれば、チタニア単体の活性を向上することが分かった。含浸処理する場合、チタニア粒内部にも酸化タングステンを分散させることができるため、TiとWの原子比は、Tiが20mol% 以上90mol%以下,Wが80mol%以下10mol% 以上が望ましい。特に有機ハロゲン化合物が炭素数1の分子である場合、TiとWの原子比は、Tiが40mol% 以上90mol%以下,Wが60mol%以下10mol% 以上であることが好ましい。炭素数2の分子である場合、分子中に含まれるハロゲン元素の数が多くなるので、TiとWの原子比を、Tiが20mol%以上85mol%以下,Wが80mol% 以下15mol% 以上とし、チタニア粒子の表面の多孔質が厚く積層されていることが好ましい。シリカはいずれの場合にもチタニアに対して約0.5 重量%以上2重量%未満の範囲であることが望ましい。なお、含浸処理時に用いるWを含む溶液は、Wのアンモニウム塩を過酸化水素水に溶かした水溶液を用いることができる。
【0013】
本発明における粒状のチタニアは、転動造粒法により成型されるのが最も効果的である。この場合、触媒内部の空孔量を容易に調節できる。
【0014】
また、第四成分として、硫黄,燐,モリブデン,バナジウムのうち一種以上の成分を添加した触媒は触媒の耐久性が向上することが分かった。即ち、このチタニアとシリカと酸化タングステンよりなる触媒に、さらに第四成分として、S,Mo,Vをチタン原子に対して、0.001〜10mol%で存在すると効果が大きいことが判明した。
【0015】
本発明における触媒は、そのまま粒状、あるいはペレット状,ハニカム状等に成形して使用することができる。成形法は、押出し成形法,打錠成形法,転動造粒法など目的に応じ任意の方法を採用できる。この場合、強度向上や比表面積増加などの目的で、アルミナセメント,カルシウム−ナトリウムセメント、他のセラミックスや有機物成分を混合することもできる。もちろん、アルミナやシリカ等の粒状担体に触媒成分を含浸等の方法で担持して使用することもできる。また、セラミックスや金属製のハニカムや板にコーティングして使用することもできる。
【0016】
本発明の触媒を調製するためのチタン原料は、酸化チタン,加熱により酸化チタンを生成する各種のチタン酸,硫酸チタン,塩化チタン,有機チタン化合物などを使用しうる。
【0017】
これらのチタン原料を水やアンモニア水,アルカリ溶液等で水酸化物の沈殿を生成し、最終的な焼成により酸化物を形成するのも好ましい方法である。
【0018】
シリカ原料はシリカゾル等を用いることができる。
【0019】
さらに、タングステン原料は、酸化タングステン,タングステン酸,パラタングステン酸アンモニウム等が好ましい。リンタングステン酸アンモニウムのように、リンとタングステンの両者を含有する原料を用いることもできる。
【0020】
また、本発明の触媒は触媒中の活性点が酸性であるほど劣化しにくく、触媒中にSやP等の触媒酸性を強める成分が含まれているのも効果的である。Sは硫酸イオン等の酸化物イオンの形で存在している。
【0021】
本発明の対象とする有機ハロゲン化合物は各種のクロロフルオロカーボン(フロン),ハイドロフルオロカーボン(代替フロン),トリクロロエチレン,臭化メチル等、有機化合物中にフッ素,塩素,臭素を含有する化合物である。
【0022】
フロン113,フロン12と臭化メチルを例に取るとそれぞれ次のような反応が代表的なものである。
【0023】
【化1】
CClF−CClF+3HO → CO+CO+3HCl+3HF…(化1)
【0024】
【化2】
CCl+2HO → CO+2HCl+2HF …(化2)
【0025】
【化3】
CHBr+3/2O→ CO+HBr+HO …(化3)炭素数が2の有機ハロゲン化合物の分解反応を実施するには、処理するガス中に水蒸気を有機ハロゲン化合物に対し、モル数で3倍以上存在するように調整しておく。この様な雰囲気で反応を実施することにより、分解効率の向上が期待できる。また分解生成物が後処理の楽な形態のハロゲン化水素で得られるという長所もある。3倍未満ではこれらの効果が充分でない。
【0026】
反応ガス中の有機ハロゲン化合物の濃度は10vol% を超えないことが好ましい。10vol% を超える高濃度であると、酸化タングステンの多孔質層を有する触媒でも、活性が低下しやすい。また、処理濃度が大きくなると、生成するHF,HClが多くなるので、装置材質の腐食等の問題も生じる。逆に処理濃度が 1000ppm 以下の低濃度であると、他の処理方法に比べ分解に必要なエネルギは小さいものの、エネルギロスが生じる。分子中に含まれるハロゲン元素の量に影響されるが、炭素数1の有機ハロゲン化合物を処理する場合は、0.1〜10 vol% の有機ハロゲン化合物濃度が好ましく、炭素数が2の場合は0.1〜6 vol% が好ましい。
【0027】
また、触媒と接触させる温度は500℃を超えないことが好ましい。触媒温度が500℃以上になると、触媒とFとの反応が進行しやすくなり、触媒の性能が低下しやすい。特に炭素数が1の有機ハロゲン化合物を処理する場合、250〜450℃が好ましい。炭素数が2の有機ハロゲン化合物の場合は、分子中のハロゲン元素が多くなる場合があり、300〜500℃が好ましい。なお、500℃を超える温度で有機ハロゲン化合物を処理すると、分解生成物であるHF,HClの高温ガスが装置内を流れることになり、有機ハロゲン化合物処理装置の反応管,配管等の腐食が早く進行してしまい、メンテナンス等のコストがかかる。
【0028】
また、処理ガスは触媒上を空間速度で500〜100,000 /時で使用することが好ましい。炭素数が1の有機ハロゲン化合物を処理する場合、空間速度は1,000〜50,000 /時が好ましく、炭素数2の有機ハロゲン化合物を処理する場合は、500〜10,000 /時の空間速度が好ましい。
【0029】
本発明を実施する反応器の形状は基本的には、通常の固定床,移動床,流動床型の反応器が使用しうるが、分解生成ガスとしてフッ化水素,塩化水素等の腐食ガスが発生するため、分解生成ガスを触媒層通過後ただちにアルカリ溶液と接触させ、酸成分を除去する反応器が好ましい。
【0030】
処理装置は、有機ハロゲン化合物ガス供給装置,水蒸気供給装置,空気供給装置,触媒を充填する反応器,触媒を加熱する加熱源,触媒,分解生成ガス洗浄槽を含み、処理する有機ハロゲン化合物濃度に応じて、装置サイズ,触媒使用量を調節できる。処理する有機ハロゲン化合物が室温で液状である場合、予めガス化して触媒層へ導入する。触媒を加熱する方法は、電気炉等により加熱しても良く、また、プロパン,灯油,都市ガス等の燃焼ガスに有機ハロゲン化合物ガス,水蒸気を混合して触媒層へ導入しても良い。触媒を充填する反応器の材質は、インコネル,ハステロイ等の耐食性材料が好ましい。分解ガス洗浄槽の構造は、スプレ塔が洗浄する効率が高く、また結晶析出等による配管閉塞等が起こりにくい。アルカリ溶液中に分解生成ガスをバブリングする方法,充填塔による洗浄法も好ましい方法である。さらに、これら装置の全体を2tトラック等に積載し、廃棄された冷蔵庫,自動車等の回収場、もしくは有機ハロゲン化合物詰めボンベを貯蔵している場所へ移動して、含有されている有機ハロゲン化合物を抜き出し、直接処理することもできる。また、分解生成ガス洗浄槽内の洗浄液を循環する循環ポンプや、排ガス中の一酸化炭素等を吸着する排ガス吸着槽を同時に搭載しても良い。また、発電機,加熱源となるプロパン,灯油,都市ガス等の燃料を充填したボンベ等も同時に搭載しても良い。
【0031】
本発明の触媒は、チタニア表面に、強酸点を保持するシリカの多孔質層及びフッ化物を生成しにくい酸化タングステン多孔質層を有するため、有機ハロゲン化合物に対して高い活性を示すとともにチタニアのフッ素化(TiOF化)を抑制でき、高耐久性を示す。酸化タングステンはフッ化物を生成しにくいことから耐久性向上に働き、チタニアとシリカは分解率向上に働く。この触媒は、従来触媒のようにただちに触媒性能が劣化しないため、触媒交換等の操作が不要となり、フロン分解プロセスを低コスト化できる。
【0032】
この触媒の調製法は、含浸法が好ましく、含浸法を用いると、多孔質のチタニア粒あるいは造粒してなるチタニア粒の表面にシリカ,酸化タングステンのうち1種の多孔質層を形成するとともに、チタニア粒内部にも均一にシリカ,酸化タングステンのうち1種以上を分散させることができ、チタニア粒表面のシリカあるいは酸化タングステンが剥離した場合でも、チタニア粒子はFとの反応性が低く,高活性,高耐久性を示す。本発明の触媒を用いることで、10vol% を超えない高濃度の有機ハロゲン化合物ガスを効率良く処理することができる。
【0033】
また、チタニアとシリカと酸化タングステンを含む触媒に、第三成分として Mo,Vを添加しても、酸化モリブデン,酸化バナジウムが、酸化タングステンが剥離して露出した酸化チタン表面を覆うため、耐久性が向上する。
【0034】
また、Sが存在すると触媒中の反応点の酸性が増大する。強酸点は分解生成物中の強酸であるHF,HClにより劣化しにくく、これは分解活性向上,耐久性向上に効果的である。
【0035】
【発明の実施の形態】
以下、実施例で本発明を更に詳細に説明する。
【0036】
(実施例1)
本実施例は、チタニアの表面をシリカ及び酸化タングステンの多孔質層で覆った触媒の活性を調べた結果である。
【0037】
直径2〜4mmの粒状酸化チタン(堺化学製,CS−224S)を120℃で2時間乾燥し、触媒Aを作製した。触媒A100gに、20重量%の含有率を有するシリカゾル15gに蒸留水22.5g を添加したゾル水溶液Bを含浸、全体を120℃で2時間大気中で乾燥後、500℃に2時間保持して焼成し、触媒Cを作製した。触媒C中のシリカの量をフッ酸重量分析法で、チタニアの量をICP発光分光分析法で分析すると、チタニアに対して、1.5wt% であった。次に、パラタングステン酸アンモニウム41.25gを過酸化水素水溶液37.5gに溶かした溶液Dを触媒Cに含浸した。含浸後、再び120℃で2時間乾燥して触媒Eを得た。この触媒Eに、再び溶液Dを含浸した。含浸後、120℃で2時間乾燥し、500℃で2時間焼成し、触媒Fを作製した。触媒F中の酸化タングステンの量をICP発光分光分析法で分析すると、Ti:Wの原子比は80:20mol% であった。
【0038】
実験に用いた装置の構成は以下のようである。反応管は内径31mmのインコネル製の反応管で、触媒層を反応管中央に有している。内部に外径3mmのインコネル製の熱電対保護管を有している。この反応管を電気炉で加熱し、熱電対で触媒温度を測定する。水蒸気量の調整は、所定量の純水をポンプで反応管上部に供給し、蒸発させることで行った。有機ハロゲン化合物はCFC12を用いた。供給した処理ガスは下記の組成を有する。
【0039】
CFC12 3%
水蒸気 15%
酸素 10〜20%
窒素 残部
この組成のガスを空間速度2,300 毎時で触媒温度約460℃の触媒層へ通じた。触媒層を通過した分解生成ガスは、アルカリ水溶液中にバブリングさせ、アルカリ水溶液を通過したガス中のCFC12濃度をFIDガスクロマトグラフで分析した。なお、有機ハロゲン化合物の分解率は次式で求めた。
【0040】
【数1】

Figure 0003570136
【0041】
図1に各反応温度におけるCFC12の分解率を示す。比較例として、シリカを添加しなかった触媒G、触媒A100gに、20重量%の含有率を有するシリカゾル5gに蒸留水32.5g を添加したゾル水溶液Bを含浸した以外は、触媒Fと同じ方法で調製した触媒H、触媒A100gに、20重量%の含有率を有するシリカゾル25gに蒸留水12.5g を添加したゾル水溶液Bを含浸した以外は、触媒Fと同じ方法で調製した触媒Iを示す。触媒Iは本発明のシリカ含有量を外れる例である。
【0042】
なお、国連環境計画(UNEP)では、CFC処理方法として認定されるCFC分解率は99%と言われている。
【0043】
(実施例2)
図2は本発明の触媒F及び触媒Gについての触媒温度460℃で100hの連続分解試験を行った結果である。試験条件は実施例1と同様である。
【0044】
(実施例3)
図3は本発明の触媒Fを用いて、各触媒温度でのHCFC22の分解活性を調べた結果である。試験条件は実施例1と同様である。
【0045】
(実施例4)
本実施例は、処理する有機ハロゲン化合物が室温で液体の場合の有機ハロゲン化合物分解装置の例である。分解装置を図4に示す。
【0046】
処理するCFC12ガス1は、FIDガスクロマトグラフ等の分析計3により、濃度を測定し、空気2でフロン濃度3%程度に希釈する。希釈されたフロンガスに、フロンモル数の5倍量の水蒸気4を添加した後、実施例1触媒を充填した触媒層5へ導入する。このときの空間速度は2,300 毎時である(空間速度=ガス流量(ml/h)/触媒量(ml))。触媒層は外側から電気炉6で加熱し、触媒温度を460℃とした。なお、触媒の温度を上げる方法は、プロパンガス等を燃焼させた高温のガスを流す方法も使用できる。分解生成ガスは、スプレノズル7から噴霧される水酸化ナトリウム水溶液と接触しながらアルカリ吸収槽8へバブリングされる。アルカリ吸収槽8を通過したガスは活性炭等を充填した吸着槽9を通過した後、大気に放出させる。なお、スプレノズル7から噴霧する液は、単なる水でも良く、炭酸カルシウム等のスラリ液でも良い。アルカリ吸収槽8中の廃液となったアルカリ水溶液10は定期的に取り出し、新しいアルカリ水溶液11を入れ替えることができる。スプレノズルから噴霧されるアルカリ液はアルカリ吸収槽8内の溶液をポンプ12により循環させる。
【0047】
(実施例5)
本実施例は、処理する有機ハロゲン化合物が室温で液体の場合の有機ハロゲン化合物分解装置の例である。装置を図5に示す。
【0048】
実施例4の有機ハロゲン化合物分解装置に、予熱器14を設けた例である。ここでは実施例3との違いのみを説明する。CFC113液13のように、処理する有機ハロゲン化合物が室温で液体の場合、予熱器14で気化させ、FIDガスクロマトグラフ等の分析計3により、濃度を測定し、空気2でフロン濃度3%程度に希釈する。希釈されたフロンガスは、以下実施例4と同様に処理する。
【0049】
【発明の効果】
本発明によれば、クロロフルオロカーボン類(CFC類),ハイドロフルオロカーボン類(代替フロン類),トリクロロエチレン,臭化メチル,ハロン等のフッ素,塩素,臭素のハロゲンを含有する有機化合物を高効率で分解し、かつ長時間活性を維持することができる。
【図面の簡単な説明】
【図1】本発明の触媒のCFC12の分解活性の関係を示す結果の説明図。
【図2】本発明の触媒についての触媒温度460℃で100hの連続分解試験を行った結果の説明図。
【図3】本発明の触媒のHCFC22の分解活性の関係を示す結果の説明図。
【図4】本発明の実施例4の有機ハロゲン化合物分解装置の系統図。
【図5】本発明の実施例5の有機ハロゲン化合物分解装置の系統図。
【符号の説明】
1…CFC12ガス、2…空気、3…FIDガスクロマトグラフ、4…水蒸気、5…触媒層、6…電気炉、7…スプレノズル、8…アルカリ吸収槽、9…吸着槽、10…廃液、11…新アルカリ水溶液、12…ポンプ、13…CFC113液、14…余熱器。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the decomposition of organic compounds containing halogen such as fluorine, chlorine and bromine such as chlorofluorocarbons (CFCs, for example, chlorofluorocarbons) and hydrofluorocarbons (HCFCs, for example, chlorofluorocarbons). A catalyst which exhibits high activity and maintains activity for a long time, and a method for producing the same.
[0002]
[Prior art]
Organic halogen compounds containing fluorine, chlorine, and bromine in organic compounds, such as chlorofluorocarbon, hydrofluorocarbon, trichloroethylene, methyl bromide, and halon, have been widely used as blowing agents, refrigerants, fire extinguishers, and the like. It has been pointed out that these compounds cause destruction of the ozone layer and warming, and have serious effects on the environment, such as the generation of carcinogens. Is being considered.
[0003]
By the way, since the recovered organic halogen compound is a relatively stable compound having low reactivity, at present, there is no appropriate decomposition treatment technology. Further, the decomposition products contain corrosive halogen gas, which makes the decomposition processing technology more difficult. The decomposition method mainly includes a combustion technique at a high temperature and a plasma technique. However, this method uses a large amount of fuel and electric power, has low energy efficiency, and has a problem of damage to the furnace wall due to generated halogen. In particular, in the plasma method, energy loss is large when the content of the organic halogen compound in the processing gas is low. On the other hand, a decomposition method using a catalyst is an efficient and excellent method that can be processed with low energy if the performance of the catalyst is sufficiently high.
[0004]
Conventionally, a TiO 2 -WO 3 catalyst has been reported as a catalyst for decomposing an organic halogen compound in Japanese Patent Publication No. 6-59388. This catalyst is a catalyst containing 0.1 to 20 wt% of W of TiO 2 (in terms of atomic ratio, Ti is 92% or more and 99.96% or less, W is 8% or less and 0.04% or more), and is in ppm order. Was maintained at 375 ° C. for 1,500 hours at 375 ° C. to treat CCl 4 . However, the effect as a catalyst poison in organic halogen compounds is not only Cl but also F. Therefore, a halogen-resistant catalyst that does not easily react with both halogen elements of Cl and F is required.
[0005]
[Problems to be solved by the invention]
The present invention provides a high-performance catalyst for decomposing an organic halogen compound which can suppress the reaction with F and Cl in the organic halogen compound and maintain the performance for a long time, and a production method, an apparatus, and a processing method. Things.
[0006]
[Means for Solving the Problems]
The present inventors have conducted a detailed search for a high-performance catalyst that can decompose an organic halogen compound with high efficiency and that is less susceptible to degradation by halogens, particularly F, contained in a reaction product and a decomposition product. Invented the invention. That is, it contains titania, silica and tungsten oxide, contains silica in an amount of 0.5% by weight or more and less than 2% by weight with respect to titania, and has an atomic ratio of titania and tungsten oxide of Ti and W of 20 mol% or more. A catalyst in which 95 mol% or less, W is 80 mol% or less and 5 mol% or more, and at least the surface of titania is covered with at least one porous layer of silica and tungsten oxide, and an organic halogen compound not exceeding 10 vol% A method for treating an organic halogen compound by contacting a gas stream containing a gas with a catalyst at a temperature not exceeding 500 ° C. in the presence of water vapor not exceeding 30 vol% of the total gas flow rate. Decomposes compounds into carbon monoxide, carbon dioxide and hydrogen halide. When the catalyst has a porous layer of silica on the surface of titania particles and further has a porous layer of tungsten oxide on the surface of the porous layer of silica, it shows excellent decomposition activity, particularly high durability. I found it. It has also been found that the same excellent decomposition activity is exhibited when a porous layer of tungsten oxide is provided on the surface of titania particles and a porous layer of silica is further provided on the surface of the porous layer of tungsten oxide. This catalyst contains silica, titanium and tungsten in the form of an oxide mixture or composite oxide.
[0007]
Titania shows high activity against decomposition of organic halogen compounds, but when F is present in the reaction gas, it forms a compound called TiOF 2 and is easily desorbed from the catalyst, so that the active sites are reduced, so that the activity is reduced. It was found to decrease gradually.
[0008]
Therefore, it is necessary to provide a long life without impairing the high activity of titania. As a result of searching for a metal oxide which has low reactivity with F, that is, a metal oxide which is hardly converted to F, it was found that tungsten oxide hardly reacts with F. Therefore, it is desirable that only tungsten oxide exhibits high activity, but only tungsten oxide has a small specific surface area and low activity. As a method of increasing the specific surface area of the tungsten oxide, there is a method of dispersing it on titania, tungsten oxide, zeolite, or the like. In particular, when silica or tungsten oxide is mixed with titania, the amount of active sites (particularly strong acid sites) is increased. increased. It is known that silica alone reacts with F at the time of decomposition of an organic halogen compound. However, it was found that when combined with titania, the strong acid sites in the catalyst increased and exceeded the activity of titania alone. These acid sites are hardly deteriorated with respect to HF and HCl which are decomposition products, and maintain high activity. Therefore, it was considered that the catalyst life could be extended without impairing the activity of titania by forming a porous layer of tungsten oxide on the surface of particles in which titania and silica were mixed or formed into a complex oxide.
[0009]
As a method of forming a silica or tungsten oxide porous layer on the surface of titania particles, an impregnation method in which a solution containing silica or a solution containing W is impregnated into titania particles and fired is used. When silica or tungsten oxide is excessive, the surface of the titania granulated particles formed by assembling fine titania particles one by one can also be coated with excess silica or W ions.
[0010]
Further, it can be prepared by applying a solution containing silica or W to the titania particles or by a vapor deposition method. In these methods, the surface of the titania particles can be coated with a small amount of W.
[0011]
The thickness of the porous layer of silica and tungsten oxide covering the surface of the titania particles is desirably 1 μm or more and 1 mm or less.
[0012]
In order to cover the surface of the titania particles with silica or tungsten oxide, an appropriate amount of silica or tungsten oxide is required, particularly when a porous layer of tungsten oxide is formed by impregnation on titania particles having a particle size of 2 to 4 mm. Has found that the titania and tungsten oxide in the catalyst cannot completely cover the surface of the titania particles unless the atomic percentage of W to Ti is 10% or more. On the other hand, in order to form a porous layer of silica by impregnation into titania particles having a particle size of 2 to 4 mm, if the content of silica is 0.5% by weight or more and less than 2% by weight with respect to titania, Was found to improve the activity of In the case of the impregnation treatment, tungsten oxide can be dispersed also in the inside of the titania particles. Therefore, the atomic ratio of Ti to W is desirably 20 to 90 mol% for Ti and 80 to 10 mol% for W. In particular, when the organic halogen compound is a molecule having 1 carbon atom, the atomic ratio of Ti to W is preferably 40 mol% or more and 90 mol% or less, and W is 60 mol% or less and 10 mol% or more. In the case of a molecule having 2 carbon atoms, the number of halogen elements contained in the molecule increases, so that the atomic ratio of Ti to W is set to 20 mol% to 85 mol%, W is set to 80 mol% to 15 mol%, It is preferable that the porous surface of the titania particles is thickly laminated. Desirably, the silica is in each case in the range of about 0.5% to less than 2% by weight relative to titania. In addition, as the solution containing W used in the impregnation treatment, an aqueous solution in which an ammonium salt of W is dissolved in aqueous hydrogen peroxide can be used.
[0013]
The granular titania in the present invention is most effectively formed by a rolling granulation method. In this case, the amount of pores inside the catalyst can be easily adjusted.
[0014]
In addition, it was found that the catalyst to which one or more of sulfur, phosphorus, molybdenum, and vanadium was added as the fourth component improved the durability of the catalyst. That is, it has been found that the effect is great if the catalyst composed of titania, silica and tungsten oxide further contains S, Mo, and V as titanium components in an amount of 0.001 to 10 mol% based on titanium atoms.
[0015]
The catalyst in the present invention can be used as it is formed into granules, pellets, honeycombs, or the like. As the molding method, an arbitrary method such as an extrusion molding method, a tablet molding method, a tumbling granulation method, or the like can be adopted according to the purpose. In this case, alumina cement, calcium-sodium cement, other ceramics, and organic components can be mixed for the purpose of improving the strength and increasing the specific surface area. Needless to say, the catalyst component can be supported on a particulate carrier such as alumina or silica by impregnation or the like. Further, it can be used by coating on a honeycomb or a plate made of ceramics or metal.
[0016]
As the titanium raw material for preparing the catalyst of the present invention, titanium oxide, various titanic acids that generate titanium oxide by heating, titanium sulfate, titanium chloride, organic titanium compounds, and the like can be used.
[0017]
It is also a preferable method to form a precipitate of hydroxide of these titanium raw materials with water, aqueous ammonia, an alkaline solution or the like, and to form an oxide by final firing.
[0018]
As the silica raw material, silica sol or the like can be used.
[0019]
Further, the tungsten raw material is preferably tungsten oxide, tungstic acid, ammonium paratungstate or the like. A raw material containing both phosphorus and tungsten, such as ammonium phosphotungstate, can also be used.
[0020]
Further, the catalyst of the present invention is less susceptible to deterioration as the active sites in the catalyst are more acidic, and it is effective that the catalyst contains a component such as S or P that enhances the catalytic acidity. S exists in the form of oxide ions such as sulfate ions.
[0021]
The organic halogen compounds targeted by the present invention are compounds containing fluorine, chlorine and bromine in organic compounds such as various chlorofluorocarbons (fluorocarbons), hydrofluorocarbons (fluorocarbon alternatives), trichloroethylene and methyl bromide.
[0022]
Taking Freon 113, Freon 12 and methyl bromide as examples, the following reactions are typical, respectively.
[0023]
Embedded image
CCl 2 F-CCLF 2 + 3H 2 O → CO + CO 2 + 3HCl + 3HF (formula 1)
[0024]
Embedded image
CCl 2 F 2 + 2H 2 O → CO 2 + 2HCl + 2HF (Formula 2)
[0025]
Embedded image
CH 3 Br + 3 / 2O 2 → CO + HBr + H 2 O (Chemical Formula 3) In order to carry out a decomposition reaction of an organic halogen compound having 2 carbon atoms, water vapor in the gas to be treated is tripled with respect to the number of moles of the organic halogen compound. It is adjusted so that it exists. By performing the reaction in such an atmosphere, an improvement in the decomposition efficiency can be expected. Another advantage is that the decomposition products are obtained in a form of hydrogen halide which is easy to work up. If it is less than three times, these effects are not sufficient.
[0026]
It is preferable that the concentration of the organic halogen compound in the reaction gas does not exceed 10 vol%. If the concentration is higher than 10 vol%, the activity tends to decrease even with a catalyst having a porous layer of tungsten oxide. In addition, when the treatment concentration is increased, HF and HCl generated are increased, which causes a problem such as corrosion of the material of the apparatus. Conversely, when the treatment concentration is as low as 1000 ppm or less, energy required for decomposition is smaller than other treatment methods, but energy loss occurs. Depending on the amount of the halogen element contained in the molecule, when treating an organic halogen compound having 1 carbon atom, the concentration of the organic halogen compound is preferably 0.1 to 10% by volume. 0.1 to 6 vol% is preferable.
[0027]
Further, the temperature at which the catalyst is brought into contact with the catalyst preferably does not exceed 500 ° C. When the catalyst temperature is 500 ° C. or higher, the reaction between the catalyst and F tends to proceed, and the performance of the catalyst tends to decrease. In particular, when treating an organic halogen compound having 1 carbon atom, the temperature is preferably from 250 to 450 ° C. In the case of an organic halogen compound having 2 carbon atoms, the halogen element in the molecule may increase, and the temperature is preferably 300 to 500 ° C. When an organic halogen compound is treated at a temperature exceeding 500 ° C., high-temperature gases of HF and HCl, which are decomposition products, flow in the apparatus, and the reaction tubes and pipes of the organic halogen compound processing apparatus are rapidly corroded. It progresses, and costs such as maintenance are required.
[0028]
Further, the processing gas is preferably used on the catalyst at a space velocity of 500 to 100,000 / hour. When treating an organic halogen compound having 1 carbon atom, the space velocity is preferably 1,000 to 50,000 / hour, and when treating an organic halogen compound having 2 carbon atoms, a space velocity of 500 to 10,000 / hour is preferred. Speed is preferred.
[0029]
The shape of the reactor for carrying out the present invention can be basically a conventional fixed bed, moving bed or fluidized bed type reactor, but corrosive gases such as hydrogen fluoride and hydrogen chloride are used as decomposition products. For this reason, a reactor is preferred in which the decomposition product gas is brought into contact with an alkali solution immediately after passing through the catalyst layer to remove an acid component.
[0030]
The processing equipment includes an organic halogen compound gas supply device, a water vapor supply device, an air supply device, a reactor for charging the catalyst, a heating source for heating the catalyst, a catalyst, and a cleaning gas cleaning tank. The size of the apparatus and the amount of catalyst used can be adjusted accordingly. When the organic halogen compound to be treated is liquid at room temperature, it is gasified in advance and introduced into the catalyst layer. The catalyst may be heated by an electric furnace or the like, or may be mixed with a combustion gas such as propane, kerosene, city gas, or the like, and then mixed with an organic halogen compound gas or water vapor and introduced into the catalyst layer. The material of the reactor filled with the catalyst is preferably a corrosion-resistant material such as Inconel or Hastelloy. The structure of the cracked gas cleaning tank has a high efficiency of cleaning by the spray tower, and is less likely to cause clogging of pipes due to crystal precipitation or the like. A method of bubbling a decomposition product gas in an alkaline solution and a washing method using a packed tower are also preferable methods. Further, the entirety of these devices is loaded on a 2t truck or the like, and moved to a collection place for discarded refrigerators, automobiles, or the like, or to a place where an organic halogen compound packed cylinder is stored, and the contained organic halogen compounds are removed. Extraction and direct processing are also possible. Further, a circulation pump for circulating the cleaning liquid in the decomposition product gas cleaning tank and an exhaust gas adsorption tank for adsorbing carbon monoxide and the like in the exhaust gas may be simultaneously mounted. Further, a generator, a cylinder filled with a fuel such as propane, kerosene, city gas or the like serving as a heating source may be simultaneously mounted.
[0031]
Since the catalyst of the present invention has a porous layer of silica holding strong acid sites and a tungsten oxide porous layer that hardly generates fluoride on the titania surface, it exhibits high activity for organic halogen compounds and also has a titania fluorine. reduction (TiOF 2 of) can be suppressed, indicating high durability. Tungsten oxide works to improve the durability because it is difficult to generate fluoride, and titania and silica work to improve the decomposition rate. Since this catalyst does not immediately deteriorate in catalytic performance unlike the conventional catalyst, an operation such as replacement of the catalyst is not required, and the cost of the fluorocarbon decomposition process can be reduced.
[0032]
The catalyst is preferably prepared by an impregnation method. When the impregnation method is used, a porous layer of silica or tungsten oxide is formed on the surface of porous titania particles or titania particles formed by granulation. One or more of silica and tungsten oxide can be uniformly dispersed in the interior of the titania particles. Even if the silica or tungsten oxide on the surface of the titania particles is peeled off, the titania particles have low reactivity with F and high reactivity. Shows activity and high durability. By using the catalyst of the present invention, a high-concentration organic halogen compound gas not exceeding 10 vol% can be efficiently treated.
[0033]
Even if Mo and V are added as a third component to a catalyst containing titania, silica and tungsten oxide, molybdenum oxide and vanadium oxide cover the exposed titanium oxide surface after the tungsten oxide is peeled off. Is improved.
[0034]
In addition, the presence of S increases the acidity of the reaction site in the catalyst. Strong acid sites are hardly deteriorated by HF and HCl, which are strong acids in the decomposition product, which is effective for improving decomposition activity and durability.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0036]
(Example 1)
In this example, the activity of a catalyst in which the surface of titania was covered with a porous layer of silica and tungsten oxide was examined.
[0037]
Granular titanium oxide (manufactured by Sakai Chemical Co., Ltd., CS-224S) having a diameter of 2 to 4 mm was dried at 120 ° C. for 2 hours to prepare Catalyst A. 100 g of the catalyst A is impregnated with an aqueous sol solution B obtained by adding 22.5 g of distilled water to 15 g of a silica sol having a content of 20% by weight, and the whole is dried at 120 ° C. for 2 hours in the air and then kept at 500 ° C. for 2 hours. By calcining, Catalyst C was prepared. The amount of silica in the catalyst C was analyzed by hydrofluoric acid gravimetric analysis, and the amount of titania was analyzed by ICP emission spectroscopy. As a result, it was 1.5 wt% with respect to titania. Next, the catalyst C was impregnated with a solution D in which 41.25 g of ammonium paratungstate was dissolved in 37.5 g of an aqueous hydrogen peroxide solution. After impregnation, it was dried again at 120 ° C. for 2 hours to obtain catalyst E. The catalyst E was impregnated with the solution D again. After impregnation, the catalyst was dried at 120 ° C. for 2 hours and calcined at 500 ° C. for 2 hours to prepare Catalyst F. When the amount of tungsten oxide in the catalyst F was analyzed by ICP emission spectroscopy, the atomic ratio of Ti: W was 80:20 mol%.
[0038]
The configuration of the apparatus used in the experiment is as follows. The reaction tube is an Inconel reaction tube having an inner diameter of 31 mm, and has a catalyst layer at the center of the reaction tube. A thermocouple protection tube made of Inconel having an outer diameter of 3 mm is provided inside. The reaction tube is heated in an electric furnace, and the temperature of the catalyst is measured with a thermocouple. The amount of water vapor was adjusted by supplying a predetermined amount of pure water to the upper part of the reaction tube by a pump and evaporating the same. The organic halogen compound used was CFC12. The supplied processing gas has the following composition.
[0039]
CFC12 3%
Steam 15%
Oxygen 10-20%
Nitrogen balance A gas of this composition was passed through the catalyst layer at a catalyst temperature of about 460 ° C. at a space velocity of 2,300 per hour. The decomposition product gas that passed through the catalyst layer was bubbled into an alkaline aqueous solution, and the concentration of CFC12 in the gas that passed through the alkaline aqueous solution was analyzed by FID gas chromatography. The decomposition rate of the organic halogen compound was determined by the following equation.
[0040]
(Equation 1)
Figure 0003570136
[0041]
FIG. 1 shows the decomposition rate of CFC12 at each reaction temperature. As a comparative example, the same method as that of the catalyst F was used except that 100 g of the catalyst A without the silica and 100 g of the catalyst A were impregnated with an aqueous sol solution B obtained by adding 32.5 g of distilled water to 5 g of a silica sol having a content of 20% by weight. Catalyst I prepared in the same manner as Catalyst F, except that 100 g of Catalyst H and Catalyst A prepared in the above were impregnated with 25 g of silica sol having a content of 20% by weight and 12.5 g of distilled water added to 25 g of silica sol. . Catalyst I is an example that deviates from the silica content of the present invention.
[0042]
In the United Nations Environment Program (UNEP), the CFC decomposition rate recognized as a CFC treatment method is said to be 99%.
[0043]
(Example 2)
FIG. 2 shows the results of a continuous cracking test performed on the catalysts F and G of the present invention at a catalyst temperature of 460 ° C. for 100 hours. The test conditions are the same as in Example 1.
[0044]
(Example 3)
FIG. 3 shows the results of examining the decomposition activity of HCFC22 at each catalyst temperature using the catalyst F of the present invention. The test conditions are the same as in Example 1.
[0045]
(Example 4)
This embodiment is an example of an organic halogen compound decomposing apparatus when the organic halogen compound to be treated is a liquid at room temperature. FIG. 4 shows the disassembly apparatus.
[0046]
The concentration of the CFC 12 gas 1 to be processed is measured by an analyzer 3 such as an FID gas chromatograph, and the CFC 12 gas is diluted with air 2 to a Freon concentration of about 3%. After adding steam 5 in an amount of 5 times the number of moles of Freon to the diluted Freon gas, Example 1 is introduced into the catalyst layer 5 filled with the catalyst. The space velocity at this time is 2,300 per hour (space velocity = gas flow rate (ml / h) / catalyst amount (ml)). The catalyst layer was heated in an electric furnace 6 from the outside, and the catalyst temperature was set to 460 ° C. In addition, as a method of raising the temperature of the catalyst, a method of flowing a high-temperature gas obtained by burning propane gas or the like can also be used. The decomposition product gas is bubbled to the alkali absorption tank 8 while being in contact with the aqueous sodium hydroxide solution sprayed from the spray nozzle 7. The gas that has passed through the alkali absorption tank 8 passes through an adsorption tank 9 filled with activated carbon or the like, and is then released to the atmosphere. The liquid sprayed from the spray nozzle 7 may be simple water or a slurry liquid such as calcium carbonate. The alkaline aqueous solution 10 that has become waste liquid in the alkaline absorption tank 8 can be periodically taken out, and a new alkaline aqueous solution 11 can be replaced. The alkali liquid sprayed from the spray nozzle circulates the solution in the alkali absorption tank 8 by the pump 12.
[0047]
(Example 5)
This embodiment is an example of an organic halogen compound decomposing apparatus when the organic halogen compound to be treated is a liquid at room temperature. The device is shown in FIG.
[0048]
This is an example in which a preheater 14 is provided in the organic halogen compound decomposing apparatus of the fourth embodiment. Here, only the differences from the third embodiment will be described. When the organic halogen compound to be treated is a liquid at room temperature, such as the liquid 13 of CFC113, the vapor is vaporized by the preheater 14 and the concentration is measured by the analyzer 3 such as FID gas chromatograph. Dilute. The diluted Freon gas is treated in the same manner as in Example 4 below.
[0049]
【The invention's effect】
According to the present invention, organic compounds containing halogens of fluorine, chlorine and bromine such as chlorofluorocarbons (CFCs), hydrofluorocarbons (alternative chlorofluorocarbons), trichloroethylene, methyl bromide and halon are decomposed with high efficiency. And the activity can be maintained for a long time.
[Brief description of the drawings]
FIG. 1 is an explanatory view of the results showing the relationship between the decomposition activity of CFC12 of the catalyst of the present invention.
FIG. 2 is an explanatory diagram showing the results of conducting a continuous cracking test of the catalyst of the present invention at a catalyst temperature of 460 ° C. for 100 hours.
FIG. 3 is an explanatory diagram of the results showing the relationship between the decomposition activity of HCFC22 of the catalyst of the present invention.
FIG. 4 is a system diagram of an organic halogen compound decomposing apparatus according to a fourth embodiment of the present invention.
FIG. 5 is a system diagram of an apparatus for decomposing an organic halogen compound according to a fifth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... CFC12 gas, 2 ... Air, 3 ... FID gas chromatograph, 4 ... Steam, 5 ... Catalyst layer, 6 ... Electric furnace, 7 ... Spray nozzle, 8 ... Alkaline absorption tank, 9 ... Adsorption tank, 10 ... Waste liquid, 11 ... New alkaline aqueous solution, 12 ... pump, 13 ... CFC113 liquid, 14 ... remaining heater.

Claims (5)

チタニアとシリカと酸化タングステンとを含み、前記シリカをチタニアの0.5 重量%以上2重量%未満の濃度で含有し、前記チタニア,前記酸化タングステンをTiとWの原子比がTiが20 mol %以上90 mol %以下、Wが80 mol %以下10 mol %以上であり、前記チタニアの少なくとも表面が前記シリカと前記酸化タングステンの少なくとも1種類の多孔質層で実質的に覆われている触媒と、10vol% を超えない有機ハロゲン化合物を含むガス流を接触させて有機ハロゲン化合物を処理する方法であって、前記ガス流を500℃を超えない温度で、全ガス流量の30vol% を超えない水蒸気を添加し、前記水蒸気の存在下で前記触媒と接触させて、前記有機ハロゲン化合物を一酸化炭素,二酸化炭素とハロゲン化水素に分解する工程を含んでなることを特徴とする有機ハロゲン化合物含有ガスの処理方法。It contains titania, silica and tungsten oxide, the silica is contained at a concentration of 0.5% by weight or more and less than 2% by weight of titania, and the titania and the tungsten oxide have an atomic ratio of Ti to W of 20 mol % of Ti. At least 90 mol % or less, W is 80 mol % or less and 10 mol % or more , and at least the surface of the titania is substantially covered with at least one kind of porous layer of the silica and the tungsten oxide; A method for treating an organic halogen compound by contacting a gas stream containing not more than 10 vol% of an organic halogen compound, wherein said gas stream is subjected to a process at a temperature not exceeding 500 ° C. and a water vapor not exceeding 30 vol% of the total gas flow rate. was added, the is contacted with the catalyst in the presence of the steam, the organohalogen compounds carbon monoxide, the process decomposes into carbon dioxide and hydrogen halide containing Method of treating organohalogen compound-containing gas, characterized by comprising in. チタニアとシリカと酸化タングステンを含み、シリカをチタニアの0.5 重量%以上2重量%未満の濃度で含有し、かつチタニア,酸化タングステンをTiとWの原子比が20 mol %以上90 mol %以下、Wが80 mol %以下10 mol 以上であり、チタニアの少なくとも表面に、シリカと酸化タングステンの少なくとも1種類の多孔質層を持つことを特徴とする有機ハロゲン化合物分解触媒。Comprises titania and silica and tungsten oxide, silica and at a concentration of less than 0.5 wt% or more 2% by weight of titania, and titania, the atomic ratio of tungsten oxide Ti and W is 20 mol% or more 90 mol% or less , W is less than 80 mol % and 10 mol % An organohalogen compound decomposition catalyst having at least one porous layer of silica and tungsten oxide on at least the surface of titania. 請求項2において、第四成分としてS,Mo,Vの一種以上の元素を含有し、各金属元素の割合がTi原子に対して、0.001〜10mol%で存在する有機ハロゲン化合物分解用触媒。The catalyst for decomposing an organic halogen compound according to claim 2, wherein the fourth component contains one or more elements of S, Mo, and V, and the ratio of each metal element is 0.001 to 10 mol% with respect to Ti atom. . 有機ハロゲン化合物ガス供給装置,水蒸気供給装置,空気供給装置,触媒を充填する反応器,触媒を加熱する加熱源,触媒,分解生成ガス洗浄槽を備えた有機ハロゲン化合物処理装置であって、上記触媒はチタニアとシリカと酸化タングステンを含み、シリカをチタニアの0An organic halogen compound processing apparatus comprising an organic halogen compound gas supply device, a steam supply device, an air supply device, a reactor for charging a catalyst, a heating source for heating the catalyst, a catalyst, and a decomposition product gas cleaning tank, Contains titania, silica and tungsten oxide. .. 5 重量%以上2重量%未満の濃度で含有し、かつチタニア,酸化タングステンをTiとWの原子比が20% By weight and less than 2% by weight, and titania and tungsten oxide having an atomic ratio of Ti to W of 20 molmol %以上9090% or more molmol %以下、Wが80% Or less, W is 80 molmol %以下10% Or less 10 molmol %以上であり、チタニアの少なくとも表面に、シリカと酸化タングステンの少なくとも1種類の多孔質層を持つことを特徴とする、有機ハロゲン化合物処理装置。% Or more, and having at least one kind of porous layer of silica and tungsten oxide on at least the surface of titania. 請求項1において、前記水蒸気を、前記有機ハロゲン化合物に対し、モル数で3倍以上存在するように調整することを特徴とする有機ハロゲン化合物含有ガスの処理方法。2. The method for treating an organic halogen compound-containing gas according to claim 1, wherein the water vapor is adjusted so as to be present at least three times the number of moles of the organic halogen compound.
JP00917597A 1996-03-05 1997-01-22 Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound Expired - Fee Related JP3570136B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00917597A JP3570136B2 (en) 1997-01-22 1997-01-22 Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
EP97301219A EP0793995B1 (en) 1996-03-05 1997-02-25 Method of treating gases containing organohalogen compounds
DE69707033T DE69707033T2 (en) 1996-03-05 1997-02-25 Process for the treatment of gases containing organohalogen compositions
US08/811,512 US5877391A (en) 1996-03-05 1997-03-04 Method for treating gas containing organohalogen compounds, and catalyst for decomposing the organohalogen compounds
KR1019970006995A KR19980069689A (en) 1996-03-05 1997-03-04 Decomposition Method and Catalyst by Catalyst of Organic Halogen Compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00917597A JP3570136B2 (en) 1997-01-22 1997-01-22 Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound

Publications (2)

Publication Number Publication Date
JPH10202061A JPH10202061A (en) 1998-08-04
JP3570136B2 true JP3570136B2 (en) 2004-09-29

Family

ID=11713244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00917597A Expired - Fee Related JP3570136B2 (en) 1996-03-05 1997-01-22 Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound

Country Status (1)

Country Link
JP (1) JP3570136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388788B2 (en) * 2009-10-16 2014-01-15 株式会社トクヤマ Method for treating exhaust gas containing halogenated aliphatic hydrocarbon

Also Published As

Publication number Publication date
JPH10202061A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
EP0793995B1 (en) Method of treating gases containing organohalogen compounds
EP0885648B1 (en) A treatment method for decomposing fluorine compounds, and apparatus and use of a catalyst therefor
JP3977887B2 (en) Treatment method for fluorine compound-containing gas
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
US6942841B2 (en) Process for treating fluorine compound-containing gas
US5759504A (en) Method for treating organohalogen compounds with catalyst
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP3376789B2 (en) Method for treating organic halogen compounds with a catalyst
JP2001054721A (en) Method and device for decomposing fluorocarbons
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP3368820B2 (en) Method for treating fluorine compound-containing gas and catalyst
JP3931563B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JPH08238418A (en) Decomposition treatment method for organic halogen compound
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JPH10286439A (en) Decomposing method of fluorine-containing compound
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
JPH11179201A (en) Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound
JP2000126598A (en) Catalyst and method for decomposing fluorine compound
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
JPH04122419A (en) Organic halide compound decomposing method and decomposing catalyst
JP2008100229A (en) Fluorine compound-containing gas treatment method
JP2001232152A (en) Decomposition treating method of fluorine-containing compound, catalyst and decomposition treating device
JP3598539B2 (en) Catalyst for decomposition of volatile organic chlorine compounds
JPH10286438A (en) Decomposing method of fluorine-containing compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees