JPH11179201A - Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound - Google Patents

Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound

Info

Publication number
JPH11179201A
JPH11179201A JP9350716A JP35071697A JPH11179201A JP H11179201 A JPH11179201 A JP H11179201A JP 9350716 A JP9350716 A JP 9350716A JP 35071697 A JP35071697 A JP 35071697A JP H11179201 A JPH11179201 A JP H11179201A
Authority
JP
Japan
Prior art keywords
catalyst
fluorine
metal
alumina
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9350716A
Other languages
Japanese (ja)
Inventor
Takashi Atokuchi
隆 後口
Hirohide Yada
博英 矢田
Tsunemi Sugimoto
常実 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9350716A priority Critical patent/JPH11179201A/en
Publication of JPH11179201A publication Critical patent/JPH11179201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously decomposite fluorine-contg. compds. including hardly decomposable perfluoro compds. under practical treatment conditions by prepar ing a catalyst showing high activity for continuous decomposition treatment of fluorine-contg. compds. from alumina having a specified Na amt. as a metal. SOLUTION: In the preparation of a catalyst having high activity for catalytic decomposition of fluorine-contg. compds. especially perfluoro compds. such as fluorocarbons, nitrogen fluoride and sulfur fluoride, an alumina having <0.1 wt.% Na as metal is used. At least one kind of metal selected from the 6A group, 8 group and 3B group in the periodic table and/or at least one kind of inorg. acid such as sulfuric acid, phosphoric acid and boric acid may be deposited on the alumina which preferably has <0.1 wt.% Na content as metal. As the metal seed used, Cr, Fe, Co, Ni, Pd, Pt, B and Ga can be used, and the deposition amt. of the metal is 0.01 to 20 pts.wt. based on 100 pts.wt. of the carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、含フッ素化合物特
に、フッ化炭素、フッ化窒素、フッ化硫黄等のパーフル
オロ化合物の接触分解に高い活性を示す触媒および該触
媒を使用する含フッ素化合物の分解処理方法に関する。
本発明の触媒を使用することにより、オゾン層破壊の原
因物質として問題となっているフロンの分解処理が可能
であるだけでなく、代替フロンを使用する工場、特に半
導体製造工場から大気に排出される、フロンに比して分
解がより困難なパーフルオロ化合物量の低減も可能とな
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst having a high activity in the catalytic decomposition of perfluorinated compounds such as carbon fluoride, nitrogen fluoride, sulfur fluoride and the like, and a fluorine-containing compound using the catalyst. The present invention relates to a method for disassembling the material.
By using the catalyst of the present invention, not only is it possible to decompose chlorofluorocarbon, which is a problem as a substance causing ozone layer depletion, but it is also discharged into the atmosphere from factories that use alternative chlorofluorocarbons, especially semiconductor manufacturing plants. In addition, it is possible to reduce the amount of perfluoro compounds which are more difficult to decompose than CFCs.

【0002】[0002]

【従来の技術】揮発性含フッ素化合物の内、塩素とフッ
素を含むフロンは、オゾン層破壊の元凶としてその排出
は今後厳しく規制されることが確定している。揮発性含
フッ素化合物には、このフロンの他、フッ化炭素、フッ
化窒素、フッ化硫黄、フッ化炭化水素より成るパーフル
オロ化合物(以下PFCと称す)と呼ばれる揮発性含フ
ッ素化合物がある。このPFCは、フロンとは異なり塩
素を含まず且つ非常に安定であるためにオゾン層破壊に
は関与しないものであり、未だ排出量の規制がないこと
から、半導体製造現場で洗浄用途に良く使用されている
ものである。しかし、地球温暖化係数が二酸化炭素の1
000倍以上と大きく、その大気への排出はフロン同
様、今後規制される可能性が非常に高い化合物である。
これ等含フッ素化合物の内、エアコン等製品そのものに
含まれ発生源が広範に分布しているためその排出抑制が
非常に困難な特定フロンガスの場合には、その製造・使
用を全面的に禁止するしか手はないかも知れないが、P
FCのように、製造工程で使用はされるものの製品に含
まれて出荷されることはなく、発生源が工場に特定され
ることから、出口での排出抑制が比較的容易であるもの
については、その本来の特性を活かしつつ使用するのが
得策である。勿論、その排出が、基準値が設定された場
合には、それ以下に抑制されることが前提であることは
言うまでもない。
2. Description of the Related Art Among volatile fluorine-containing compounds, Freon containing chlorine and fluorine has been determined to be severely regulated in the future as the cause of ozone layer destruction. In addition to this fluorocarbon, the volatile fluorine-containing compound includes a volatile fluorine-containing compound called a perfluoro compound (hereinafter, referred to as PFC) composed of carbon fluoride, nitrogen fluoride, sulfur fluoride, and fluorocarbon. Unlike PFC, this PFC does not contain chlorine and does not contribute to ozone layer destruction because it is very stable. Since there is no emission control yet, it is often used for cleaning in semiconductor manufacturing sites. Is what is being done. However, the global warming potential is one of carbon dioxide
The emission to the atmosphere is a compound that is very likely to be regulated in the future, like chlorofluorocarbons.
Among these fluorine-containing compounds, the production and use of specific fluorocarbon gases, which are contained in products such as air conditioners themselves and whose emission is very difficult to control due to their wide distribution, are completely prohibited. You may only have a hand, but P
As with FCs, those that are used in the manufacturing process but are not included in the product and are not shipped, and the emission source is specified at the factory, so emission control at the exit is relatively easy. It is advisable to use it while taking advantage of its original characteristics. Of course, it is needless to say that when the reference value is set, the emission is suppressed to a value lower than the reference value.

【0003】上記ガスの排出を抑制する方法としては、
回収する方法と分解処理する方法の二通りが考えられ
が、回収する方法は、排出ガス中に含まれるPFC濃度
が本質的に低いことと、回収装置が複雑化することか
ら、分解処理が好ましい方法である。しかし、PFC、
中でもフッ化炭素は、フロンに比して化学的に安定であ
ることから、通常のフロンの分解に使用される分解方法
では処理は困難であり更に過酷な処理条件が必要であ
る。例えば、単純な燃焼処理に必要な温度は、フロンの
場合には800〜900℃であるが、フッ化炭素に於て
は1000℃以上となるだけでなく、燃焼装置の燃焼炉
やノズル等、高温下で腐蝕性ガスと接触する部分での腐
蝕の問題もあり、実用化には未だ解決すべ問題が残され
ているのが実情である。また、特開平7−116466
及び同平7−132211号公報には、シリカやゼオラ
イトを分解剤ないしはフッ素捕捉剤として使用し、フッ
化炭素を分解する技術が開示されているが、フッ化炭素
を実用的な速度で分解するにはやはり1000℃以上の
高温を要するだけでなく、分解剤の一部がフッ素捕捉剤
として消費されるため、粉体の分解剤を供給しながら反
応を行なう必要が在り、装置的に煩雑になる欠点を有し
たものである。PFCを含む含フッ素化合物の連続処理
には、触媒を用いる接触分解方法が最も有効であると考
えられるが、未だ十分な活性を示す触媒系が見出されて
いないのが実情である。
[0003] As a method of suppressing the above gas emission,
There are two methods, a recovery method and a decomposition method, but the recovery method is preferably a decomposition treatment because the concentration of PFC contained in the exhaust gas is essentially low and the recovery device is complicated. Is the way. However, PFC,
Above all, fluorocarbon is chemically stable as compared with chlorofluorocarbons, so that it is difficult to treat it with a normal decomposition method used for decomposition of chlorofluorocarbons, and further severe processing conditions are required. For example, the temperature required for a simple combustion process is 800 to 900 ° C. in the case of chlorofluorocarbon, but not only 1000 ° C. or more in the case of fluorocarbon, but also a combustion furnace or a nozzle of a combustion device. There is also a problem of corrosion at a portion that comes into contact with a corrosive gas at a high temperature, and there is still a problem to be solved for practical use. Also, Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 7-132211, which discloses a technique for decomposing carbon fluoride by using silica or zeolite as a decomposing agent or a fluorine scavenger, decomposes fluorocarbon at a practical rate. Not only requires a high temperature of 1000 ° C. or more, but also requires a part of the decomposing agent to be consumed as a fluorine scavenger, so that it is necessary to carry out the reaction while supplying the decomposing agent in the form of a powder. It has the following disadvantages. For continuous treatment of a fluorine-containing compound containing PFC, a catalytic cracking method using a catalyst is considered to be the most effective, but a catalyst system showing a sufficient activity has not been found yet.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、実用的な処理条件下で従来技術では分解の困難なP
FCをも含む含フッ素化合物の連続的分解処理を可能に
する触媒系および該触媒を使用する含フッ素化合物の連
続的分解処理方法を提供することに在る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a P which is difficult to decompose in the prior art under practical processing conditions.
It is an object of the present invention to provide a catalyst system capable of continuously decomposing a fluorine-containing compound containing FC and a method for continuously decomposing a fluorine-containing compound using the catalyst.

【0005】[0005]

【課題を解決するための手段】発明者等は、含まれるN
a量がある量以下のアルミナが、PFCをも含む含フッ
素化合物の連続的分解処理に高い活性を示す触媒となる
こと、該触媒を適正に使用すれば上記課題が解決された
含フッ素化合物の連続的分解処理方法となることを見出
し本発明を完成した。すなわち、本発明は、金属として
のNa量が0.1重量%以下であるアルミナよりなる、
含フッ素化合物分解処理用触媒に関する。また、本発明
は、酸素および水共存下において、金属としてのNa量
が0.1重量%以下であるアルミナよりなる触媒と接触
させて行なう含フッ素化合物の分解処理方法に関する。
Means for Solving the Problems The inventors have found that the N
The amount of alumina below a certain amount is a catalyst exhibiting high activity in the continuous decomposition treatment of a fluorine-containing compound including PFC. If the catalyst is used properly, the above problem can be solved. The present inventors have found that the method is a continuous decomposition treatment method and completed the present invention. That is, the present invention comprises alumina having a Na content of 0.1% by weight or less as a metal,
The present invention relates to a catalyst for decomposing fluorine-containing compounds. The present invention also relates to a method for decomposing a fluorine-containing compound, which is carried out in the coexistence of oxygen and water with a catalyst made of alumina containing 0.1% by weight or less of Na as a metal.

【0006】[0006]

【発明の実施の形態】本発明は、Na含量が低いアルミ
ナを触媒とすることを最大の特徴とするものであるが、
多量のNaの存在が含フッ素化合物分解反応に対して示
す阻害作用の本質は現時点では不明である。但し、Na
量の低減は酸量の増加に繋がることが一般に知られてい
ることと、量子化学的計算の結果からAlイオンの電子
対受容性すなわちAlのルイス酸としての特性が大きな
ポイントとなっていることが推察される。触媒または触
媒担体用途のアルミナは多数種市販されており、Si、
Fe、Naが主たる不純物として含まれている。含フッ
素化合物分解反応に阻害効果を示すNaについては、そ
の含量は製品によってNa金属換算で0.0015〜
0.5重量%に亙っており、その中から、本発明の用途
に適した、金属としてのNa含量が0.1重量%以下で
あるアルミナを選択するのが最も良い方法であるが、金
属としてのNa含量が0.1重量%より大であるアルミ
ナについても、硫酸、塩酸、硝酸、酢酸等の無機酸また
は酢酸等の有機酸水溶液で洗浄処理することによりNa
量を低減し、本発明の用途に適した高活性の触媒とする
ことができる。尚、アルミナとしてはα、γ、δ等種々
の結晶形態のものが知られ且つ市販されているが、γお
よびδ型のアルミナが好ましい結果を与え、中でも、触
媒または触媒担体用として最も一般的なγ−アルミナが
最も好ましい結果を与える。また、形状については、粒
状、粉末状、ハニカム状等を反応器および反応方法に合
せて夫々に相応しいものを選ぶことになる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is most characterized by using alumina having a low Na content as a catalyst.
At present, the nature of the inhibitory effect of the presence of a large amount of Na on the decomposition reaction of the fluorine-containing compound is unknown. However, Na
It is generally known that reducing the amount leads to an increase in the amount of acid, and the results of quantum chemical calculations indicate that the electron pair acceptability of Al ions, that is, the characteristics of Al as a Lewis acid is a major point. It is inferred. Many types of alumina for use as a catalyst or catalyst support are commercially available, and include Si,
Fe and Na are contained as main impurities. Depending on the product, the content of Na that exhibits an inhibitory effect on the fluorine-containing compound decomposition reaction is 0.0015 to
The best method is to select an alumina which has a Na content of 0.1% by weight or less, which is suitable for the use of the present invention. Alumina having a Na content of more than 0.1% by weight as a metal is also washed with an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid and acetic acid or an aqueous solution of an organic acid such as acetic acid to obtain Na.
The amount can be reduced, and a highly active catalyst suitable for the use of the present invention can be obtained. As alumina, various crystal forms such as α, γ, and δ are known and commercially available, but γ and δ-type aluminas give preferable results, and among them, most commonly used as catalysts or catalyst carriers. Γ-alumina gives the most favorable results. Regarding the shape, granules, powders, honeycombs and the like are selected according to the reactor and the reaction method.

【0007】本発明においては、Na含有量の低いアル
ミナだけでも含フッ素化合物の接触分解に十分に高い活
性を示す触媒を得ることができるが、ある種の金属及び
/又は無機酸を担持させることにより、更に高活性の触
媒とすることができる。アルミナ上に担持させる金属
は、6A族、8族、3B族から選ばれる金属の少なくと
も一種以上であるが、中でも、遷移金属元素であるC
r、Fe、Co、Ni、Pd、Ptおよび典型金属元素
であるB、Gaが好ましい結果を与える。金属の担持に
当たっては、これ等金属の塩化物、硝酸塩、硫酸塩、燐
酸塩等の各種塩または酸化物を適当な溶媒に溶解させた
後、担体が成形体である場合には一般的に行なわれてい
る含浸法または蒸発乾固法で、また粉末状の場合には機
械的混錬法または蒸発乾固法で、容易に担持させること
ができる。また、アルミナゾルを用いた共沈法で調製す
ることもできるが、担持金属の含フッ素化合物分解反応
に示す促進効果の本質については現時点では不明である
が、C2 6 を被分解物として低温で反応した場合、金
属の担持により、COに代わりCO2 が増加することか
ら、F引き抜きの結果として生成するC、Nの酸素によ
る酸化反応に寄与していることが推測される。
In the present invention, a catalyst exhibiting a sufficiently high activity for catalytic cracking of a fluorine-containing compound can be obtained by using only alumina having a low Na content, but it is necessary to support a certain metal and / or inorganic acid. Thereby, a more highly active catalyst can be obtained. The metal to be supported on alumina is at least one or more metals selected from the group 6A, the group 8 and the group 3B.
r, Fe, Co, Ni, Pd, Pt and typical metal elements B and Ga give favorable results. For supporting the metal, after dissolving various salts or oxides such as chlorides, nitrates, sulfates, and phosphates of these metals in an appropriate solvent, generally, when the carrier is a molded body, the method is generally performed. It can be easily supported by the impregnating method or evaporating to dryness method, or in the case of powder, by mechanical kneading method or evaporating to dryness method. It can also be prepared by a coprecipitation method using alumina sol, but the nature of the promoting effect of the supported metal on the decomposition reaction of the fluorinated compound is unknown at this time, but C 2 F 6 is used as a decomposition target at low temperatures. When the reaction is performed, CO 2 increases instead of CO due to the loading of the metal, and it is presumed that the metal contributes to the oxidation reaction of C and N generated as a result of F extraction by oxygen.

【0008】Na含量の低いアルミナへ更に金属を担持
させる場合の金属の担持量は、金属種にもよるが、担体
100重量部当たり金属換算で0.01〜20重量部と
することにより好ましい結果を得ることができる。金属
量が少なすぎると十分な添加効果が発現しないことがあ
り、多すぎても資源の無駄であるだけではなく、均一に
分散した触媒が得られず、再現性に乏しい触媒となるだ
けでなく、アルミナ担体の優れた特性を殺してしまう虞
がある。尚、触媒中の、特に反応条件下における金属の
存在形態については検証が非常に困難であるため、本発
明では「金属の担持」と表現しているが、これは0価の
金属だけを意味するものではない。
When the metal is further supported on alumina having a low Na content, the amount of the metal depends on the kind of the metal, but a preferable result is 0.01 to 20 parts by weight in terms of metal per 100 parts by weight of the carrier. Can be obtained. If the amount of metal is too small, a sufficient effect of addition may not be exhibited.If the amount is too large, not only is it wasteful of resources, but also a catalyst that is not uniformly dispersed cannot be obtained, resulting in a catalyst with poor reproducibility. However, there is a possibility that the excellent characteristics of the alumina carrier may be lost. In addition, since it is very difficult to verify the existence form of the metal in the catalyst, particularly under the reaction conditions, in the present invention, it is expressed as "support of metal", but this means only a zero-valent metal. It does not do.

【0009】一方、無機酸の働きについても現時点では
不明であるが、担体のAlイオンの回りに配位して、電
気陰性度の高いFが結合しているためδ+に分極した、
反応物分子内のC、N、S原子の吸着を促進し、反応性
を高めると考えられる。尚、本発明で使用される無機酸
は、反応条件から、硫酸、燐酸、ほう酸に限られるが、
中でも強酸性で且つ飛散性の低い硫酸の使用が最も好ま
しい。
[0009] On the other hand, the function of the inorganic acid is also unknown at present, but it is coordinated around the Al ion of the carrier and is polarized to δ + due to the binding of F having a high electronegativity.
It is believed that it promotes the adsorption of C, N, and S atoms in the reactant molecules and enhances the reactivity. The inorganic acid used in the present invention is limited to sulfuric acid, phosphoric acid, and boric acid from the reaction conditions.
Among them, the use of sulfuric acid which is strongly acidic and has low scattering properties is most preferable.

【0010】無機酸の担持は、フリーの酸だけでなく、
硫安等のアンモニウム塩またはエステル等の使用条件下
または使用に先立って行なう前処理で分解して、フリー
の酸を出発原料とした場合と本質的に同じ担持物を与え
る前駆体も使用できる。これ等フリーの酸またはその前
駆体は、金属成分担持の場合と同様、水その他の適当な
溶媒に溶解させた後、担体が成形体である場合には一般
的に行なわれている含浸法または蒸発乾固法で、また粉
末状の場合には機械的混練法または蒸発乾固法で容易に
担持させることができる。担持無機酸量が多い場合、高
い濃度の溶液から一度に担持させても良いし、また、低
濃度の溶液を数回に分けて担持させても良いが、無機酸
が均一に担持された触媒が容易に得られることから、低
濃度の溶液を2〜4回に分けて担持させる方が好ましい
結果を与える。
[0010] The support of the inorganic acid is not only free acid,
Precursors that can be decomposed by use conditions such as ammonium salts such as ammonium sulfate or esters or by a pretreatment performed prior to use to give essentially the same support as when a free acid is used as a starting material can also be used. These free acids or their precursors are dissolved in water or other suitable solvent, as in the case of supporting the metal component, and then, when the carrier is a molded body, a commonly used impregnation method or The support can be easily carried out by an evaporation-drying method, or in the case of a powder, by a mechanical kneading method or an evaporation-drying method. When the amount of the supported inorganic acid is large, a high concentration solution may be supported at a time, or a low concentration solution may be supported in several times. Since a low concentration is easily obtained, it is more preferable to carry the low-concentration solution in two to four times.

【0011】触媒中の無機酸の含有量は、使用する酸の
種類によって異なるが、少なすぎると添加効果が十分に
発現せず、また、多すぎると金属の場合と同様、アルミ
ナが本来有する触媒特性が阻害される事がある。本発明
に於ては、担体であるアルミナ100重量部当たり0.
1〜20重量部とすることにより好適な結果を得ること
ができる。
The content of the inorganic acid in the catalyst varies depending on the type of the acid used. If the amount is too small, the effect of the addition will not be sufficiently exhibited. If the amount is too large, the catalyst originally contained in alumina, as in the case of the metal, will be used. Characteristics may be impaired. In the present invention, 0.1 parts by weight per 100 parts by weight of alumina as a carrier is used.
A suitable result can be obtained by using 1 to 20 parts by weight.

【0012】アルミナに無機酸を担持させたものを触媒
とした場合に、反応の経過と共に触媒中酸量の低減に基
づく触媒活性の低下が生じることがあるが、この時は、
酸を添加して触媒を再賦活することができる。酸の添加
方法は、反応系に必須成分である水を供給する際に、こ
れ等無機酸を水溶液の形態で反応ガスと共に反応系に供
給する方法または、無機酸エステル等の揮発性前駆体を
ガス状で反応ガスに同伴させる方法が採用できる。この
場合における酸の添加は、間欠的または定常的どちらの
方法によって行なっても構わないが、定常的に行なえ
ば、酸量の低減に伴う触媒活性の低下を防止することが
できる。
When a catalyst in which an inorganic acid is supported on alumina is used as a catalyst, the catalytic activity may decrease due to the decrease in the amount of acid in the catalyst as the reaction progresses.
An acid can be added to reactivate the catalyst. The method of adding the acid is a method of supplying these inorganic acids to the reaction system together with the reaction gas in the form of an aqueous solution when supplying water which is an essential component to the reaction system, or a method of adding a volatile precursor such as an inorganic acid ester. It is possible to adopt a method of entraining the reaction gas in a gaseous state. In this case, the acid may be added intermittently or constantly. However, if the acid is constantly added, it is possible to prevent a decrease in the catalytic activity accompanying a decrease in the amount of the acid.

【0013】アルミナに金属と酸の双方を担持させるこ
ともできる。単なる相加効果に留まらず、金属種によっ
ては相乗効果が発現し、好ましい結果を得ることができ
る。尚、この場合、アルミナへに対する金属と酸の添加
順序は特に制限されず、どちらを先に担持させても、ま
たは同時に担持させても構わない。
Alumina can support both a metal and an acid. Not only a mere additive effect, but also a synergistic effect is exhibited depending on the kind of metal, and a favorable result can be obtained. In this case, the order of adding the metal and the acid to the alumina is not particularly limited, and either one of them may be carried first or the other may be carried simultaneously.

【0014】触媒がアルミナのみより成る場合にはその
まま反応管に充填し反応に供することができるが、アル
ミナにその他の成分を担持させて調製した触媒前駆体に
ついては、100℃前後で乾燥後、空気または窒素気流
中で加熱前処理を行ない触媒とする。この賦活処理は、
マッフル炉等を用いて行なっても良いし、必要量の乾燥
後物を含フッ素化合物分解反応用反応器に充填した後、
使用に先立って空気または不活性ガスを流通させながら
加熱して賦活しても良い。加熱温度は、担持する金属
種、担持に使用する前駆体種に依存するが、処理温度が
高すぎるアルミナまたは担持金属の表面積の低下を招く
事があり、また、低すぎると触媒が安定化せず、反応初
期に触媒活性の経時変化を招き何れも好ましくない結果
につながる。従って、本発明に於ては、200〜100
0℃、好ましくは400〜800℃の範囲で加熱処理を
行なう。
When the catalyst comprises only alumina, it can be directly charged into a reaction tube and subjected to a reaction. However, a catalyst precursor prepared by supporting other components on alumina is dried at about 100 ° C. A catalyst is prepared by performing a pre-heating treatment in a stream of air or nitrogen. This activation process
It may be carried out using a muffle furnace or the like, or after filling a required amount of the dried product into a reactor for a fluorine-containing compound decomposition reaction,
Prior to use, it may be activated by heating while flowing air or an inert gas. The heating temperature depends on the type of the metal to be supported and the type of the precursor used for the support, but the treatment temperature may cause a decrease in the surface area of the alumina or the supported metal, and if the temperature is too low, the catalyst may be stabilized. However, the catalyst activity changes with time in the early stage of the reaction, which leads to undesirable results. Therefore, in the present invention, 200 to 100
The heat treatment is performed at 0 ° C., preferably at 400 to 800 ° C.

【0015】含フッ素化合物の分解反応は、含フッ素化
合物、酸素及び水の混合ガスを触媒上に供給しながら、
300〜1000℃、好ましくは400〜900℃の温
度範囲で行なう。混合ガスの供給速度は、50000/
時間以下、好ましくは100〜100000/時間であ
る。
The decomposition reaction of the fluorine-containing compound is performed by supplying a mixed gas of the fluorine-containing compound, oxygen and water onto the catalyst.
It is carried out in a temperature range of 300 to 1000 ° C, preferably 400 to 900 ° C. The supply rate of the mixed gas is 50,000 /
Or less, preferably 100 to 100000 / hour.

【0016】本発明の反応ガス中に含まれる含フッ素化
合物の濃度は、3容量%以下とするのが良い。反応ガス
中に含まれる含フッ素化合物濃度が高すぎると、触媒寿
命に悪い影響を与えることがあるからである。一般に半
導体製造工場から排出される排ガス中のPFC濃度は1
容量%以下であり問題にならないが、3容量%以上含ま
れる場合には、空気、窒素等の希釈ガス添加して、濃度
3容量%以下となるようにするのが良い。また、反応ガ
スにはPFCに加えて酸素および水を含ませるが、この
うち酸素は、PFCの炭素をCO2 およびCOに変換す
るために必要な成分であり、水は、分解反応で生成する
ハロゲンをHFとして触媒系外に排出するのに必要な成
分であるだけでなく、アルミナ中のAlがフッ化アルミ
ニウムとして触媒系外に逃散するのを抑制する働きをも
有する。
The concentration of the fluorine-containing compound contained in the reaction gas of the present invention is preferably 3% by volume or less. If the concentration of the fluorine-containing compound contained in the reaction gas is too high, the life of the catalyst may be adversely affected. Generally, the PFC concentration in the exhaust gas discharged from a semiconductor manufacturing plant is 1
This is not a problem because it is not more than 3% by volume, but when it is contained at 3% by volume or more, it is preferable to add a diluent gas such as air or nitrogen so that the concentration becomes 3% by volume or less. The reaction gas contains oxygen and water in addition to PFC. Among them, oxygen is a component necessary for converting carbon of PFC into CO 2 and CO, and water is generated by a decomposition reaction. In addition to being a component necessary for discharging halogen as HF out of the catalyst system, it also has a function of preventing Al in alumina from escaping out of the catalyst system as aluminum fluoride.

【0017】反応ガス中に含まれる酸素量は、PFCの
炭素をCO2 およびCOに変換するのに十分な量であれ
ば特に制限はないが、反応ガス中のPFC濃度が上記し
た範囲内であれば、空気が使用可能であるだけでなく、
最も好ましい酸素源である。一方、反応ガス中に含まれ
る水の量は、反応ガス中に含まれるハロゲン量と同量以
上10倍以内すなわち、CF4 であれば4〜40モル
倍、C2 6 であれば6〜60モル倍とすれば好適な結
果を得ることができる。水の供給は、一般的に用いられ
ている方法すなわち、液体用ポンプを用いて液体状で反
応器に供給する方法、または、サチュレーターを用いて
ガス状で反応ガスに同伴させる方法が問題なく適用でき
る。
The amount of oxygen contained in the reaction gas is not particularly limited as long as it is an amount sufficient to convert PFC carbon into CO 2 and CO, but the PFC concentration in the reaction gas is within the above range. If not only air is available,
It is the most preferred oxygen source. On the other hand, the amount of water contained in the reaction gas is equal to or more than 10 times the amount of halogen contained in the reaction gas, that is, 4 to 40 mole times for CF 4 and 6 to 40 times for C 2 F 6 . If it is 60 mole times, a favorable result can be obtained. Water can be supplied by a generally used method, that is, a method of supplying a liquid state to a reactor using a liquid pump, or a method of entraining a gaseous state with a reaction gas using a saturator without any problem. it can.

【0018】含フッ素化合物の触媒による接触分解反応
は、流通式、或いはバッチ式の何れでも行ない得るが、
装置の簡便性および処理能力の高さから、流通式が好ま
しい。尚、流通式の場合、固定床、流動床の何れでも適
用可能である。
The catalytic cracking reaction of a fluorine-containing compound with a catalyst can be carried out by either a flow system or a batch system.
The flow type is preferred because of the simplicity of the device and the high processing capacity. In the case of a flow type, any of a fixed bed and a fluidized bed can be applied.

【0019】反応器を出た後の排ガスは、アルカリ水溶
液を充填したスクラバーを通したり、固体アルカリを充
填した吸着器を通す一般的に行なわれている方法で、分
解反応で生成したHFを除去した後、大気中に放出され
る。
Exhaust gas after leaving the reactor is passed through a scrubber filled with an aqueous alkali solution or through an adsorber filled with solid alkali to remove HF generated by the decomposition reaction. After being released into the atmosphere.

【0020】[0020]

【実施例】以下、具体的例を示し、本発明を更に詳しく
説明する。 実施例1 金属換算で0.0074重量%のNaを含むγ−アルミ
ナ(水沢化学製、商品名:Neobead GB−45、粒径:
4〜5mm)5mlを、内径1.0cmの石英製反応管
に詰め、窒素気流中700℃で1時間加熱した後、1容
量%のC2 6/空気混合ガスおよび水を夫々20ml
(N.T.P.)/分および0.36g/時間の速度で
供給しながらC2 6 分解反応を行ない、反応開始後3
時間経過時に於ける出口ガス中のC2 6 量をガスクロ
マトグラフィ−で分析し、触媒活性の評価を行なった。
その結果、次式で表わされるC2 6 転化率は85%で
あった。尚、生成物としては、二酸化炭素がガスクロマ
トグラフィー及びFTIRで確認された。 転化率=[(原料ガス中のC2 6 量−出口ガス中のC
2 6 量)÷原料ガス中のC2 6 量]×100
Now, the present invention will be described in further detail with reference to specific examples. Example 1 γ-alumina containing 0.0074% by weight of Na in terms of metal (manufactured by Mizusawa Chemical Co., trade name: Neobead GB-45, particle size:
4-5 mm) 5 ml was packed in a quartz reaction tube having an inner diameter of 1.0 cm, heated at 700 ° C. for 1 hour in a nitrogen stream, and then 20 ml of a 1% by volume C 2 F 6 / air mixed gas and water were added.
(NTP) / min and a feed rate of 0.36 g / hour to carry out a C 2 F 6 decomposition reaction.
The amount of C 2 F 6 in the outlet gas over time was analyzed by gas chromatography to evaluate the catalytic activity.
As a result, the C 2 F 6 conversion represented by the following formula was 85%. As a product, carbon dioxide was confirmed by gas chromatography and FTIR. Conversion rate = [(C 2 F 6 amount in raw material gas−C in outlet gas)
2 F 6 amount) ÷ C 2 F 6 amount in raw material gas] × 100

【0021】実施例2 金属換算で0.016重量%のNaを含むγ−アルミナ
(日揮化学製、商品名:N612N、柱状成形品:径3
mm×長さ3mm)を触媒として使用した他は実施例1
と同様にしてC2 6 分解反応を行なった。反応開始後
3時間経過時に於けるC2 6 転化率は90%であっ
た。
Example 2 γ-alumina containing 0.016% by weight of Na in terms of metal (manufactured by JGC Chemicals, trade name: N612N, columnar molded product: diameter 3)
Example 1 except that (mm × 3 mm length) was used as the catalyst.
A C 2 F 6 decomposition reaction was performed in the same manner as described above. The C 2 F 6 conversion after 3 hours from the start of the reaction was 90%.

【0022】実施例3 ここでは、Na含量が更に低いアルミナを使用した例を
示す。すなわち、金属換算で0.003重量%のNaを
含むγ−アルミナ(日揮ウニバーサル製、商品名:NS
T−7、粒径:1〜1.5mm)を触媒として使用した
他は実施例1と同様にしてC2 6 分解反応を行なっ
た。反応開始後3時間経過時に於けるC2 6 転化率は
91%であった。
Example 3 Here, an example using alumina having a lower Na content will be described. That is, γ-alumina containing 0.003% by weight of Na in terms of metal (manufactured by JGC Universal Corporation, trade name: NS)
T-7, particle size: 1-1.5 mm) were performed except that used as the catalyst in the same manner as in Example 1 C 2 F 6 decomposition reaction. The C 2 F 6 conversion after 3 hours from the start of the reaction was 91%.

【0023】比較例1 ここでは、Na量が本発明の範囲を外れたアルミナを使
用した例を示す。すなわち、金属換算で0.38重量%
のNaを含むγ−アルミナ(水沢化学製、商品名:Neob
ead RN、粒径:2〜3mm)を触媒として使用した他
は実施例1と同様の方法でC2 6 分解反応を行なっ
た。反応開始後3時間経過時に於けるC2 6 転化率は
22%であった。
COMPARATIVE EXAMPLE 1 Here, an example using alumina having a Na content outside the range of the present invention will be described. That is, 0.38% by weight in metal conversion
Na-containing γ-alumina (manufactured by Mizusawa Chemical Co., trade name: Neob
ead RN, particle size: 2 to 3 mm) except that was used as a catalyst was subjected to C 2 F 6 decomposition reaction in the same manner as in Example 1. After 3 hours from the start of the reaction, the C 2 F 6 conversion was 22%.

【0024】比較例2 ここでは、Na量が本発明の範囲を外れたアルミナを使
用した他の例を示す。金属換算で0.20重量%のNa
を含むγ−アルミナ(住友化学製、商品名:KHA−2
4、粒径:2〜3mm)を触媒として使用した他は実施
例1と同様の方法でC2 6 分解反応を行なった。反応
開始後3時間経過時に於けるC2 6転化率は17%で
あった。
Comparative Example 2 Here, another example using alumina whose Na content is out of the range of the present invention will be described. 0.20% by weight of Na in metal conversion
-Alumina (Sumitomo Chemical, trade name: KHA-2)
4, particle diameter: 2 to 3 mm) except that was used as a catalyst was subjected to C 2 F 6 decomposition reaction in the same manner as in Example 1. The C 2 F 6 conversion after 3 hours from the start of the reaction was 17%.

【0025】実施例4 ここでは、Na量が本発明の範囲に含まれるアルミナに
更に金属を担持させた例を示す。NiSO4 ・6H
2 O、0.5gを蒸留水30gに溶かした溶液に、実施
例1で使用したNa含量が0.0074重量%のアルミ
ナ10.0gを加え、ロータリーエバポレーターを使用
し、60℃減圧乾固した後、100℃で一晩乾燥した。
得られたNi担持アルミナ5.0mlを触媒として使用
した他は実施例1と同様の方法でC2 6 分解反応を行
なった。反応開始後3時間経過時に於けるC2 6 転化
率は95%であった。
Example 4 Here, an example in which a metal is further supported on alumina whose Na content is within the range of the present invention will be described. NiSO 4 · 6H
To a solution prepared by dissolving 0.5 g of 2O in 30 g of distilled water was added 10.0 g of alumina having a Na content of 0.0074% by weight, which was used in Example 1, and dried at 60 ° C. under reduced pressure using a rotary evaporator. Thereafter, it was dried at 100 ° C. overnight.
A C 2 F 6 decomposition reaction was performed in the same manner as in Example 1 except that 5.0 ml of the obtained Ni-supported alumina was used as a catalyst. The C 2 F 6 conversion after 3 hours from the start of the reaction was 95%.

【0026】実施例5 ここでは、Na量が本発明の範囲に含まれるアルミナに
更に無機酸を担持させた例を示す。実施例1で使用し
た、金属換算で0.0074重量%のNaを含むγ−ア
ルミナ5mlをガラス皿上に平らに並べ、1規定硫酸水
溶液10mlをピペットで均等に滴下した後、100℃
で一晩乾燥した。得られた硫酸担持アルミナ5.0ml
を触媒として使用した他は実施例1と同様の方法でC2
6 分解反応を行なった。反応開始後3時間経過時に於
けるC2 6 転化率は91%であった。
Example 5 Here, an example in which an inorganic acid is further supported on alumina whose Na content is within the range of the present invention will be described. 5 ml of γ-alumina containing 0.0074% by weight of Na in terms of metal used in Example 1 was placed flat on a glass dish, and 10 ml of a 1N aqueous sulfuric acid solution was evenly dropped with a pipette.
And dried overnight. 5.0 ml of the obtained alumina supporting sulfuric acid
C 2 was prepared in the same manner as in Example 1 except that
An F 6 decomposition reaction was performed. The C 2 F 6 conversion after 3 hours from the start of the reaction was 91%.

【0027】以上の結果より、Na含有量が本発明の範
囲にあるアルミナが、本発明の範囲を外れて多量のNa
を含むアルミナに比して、非常に高いC2 6 分解活性
を有していることが分かる。また、Na含有量が本発明
の範囲にあるアルミナに金属または無機酸を担持させる
ことにより、C2 6 分解活性が更に向上することが分
かる。
From the above results, it can be seen that the alumina having a Na content within the range of the present invention is a large amount of Na outside the range of the present invention.
It has an extremely high C 2 F 6 decomposition activity as compared to alumina containing. In addition, it can be seen that by supporting a metal or an inorganic acid on alumina having a Na content within the range of the present invention, the C 2 F 6 decomposition activity is further improved.

【0028】[0028]

【発明の効果】本発明の触媒は、含フッ素化合物の内の
フロンは勿論のこと、フロンに比べて分解の困難なPF
Cをも1000℃以下の実用的な反応温度で分解するこ
とを可能にした。PFCは、1997年12月開催の地
球温暖化防止京都会議において、削減目標のメニューに
入っており、環境への排出が今後規制されることが確実
な物質である。産業の米とも言われる半導体製造工程に
おいてその使用が不可欠であるにも拘らず、その地球温
暖化係数の大きさから環境への排出が今後規制されるこ
との確実なPFCの分解処理を可能にした本発明の技術
的、社会的意義は大きい。
As described above, the catalyst of the present invention can be used not only for chlorofluorocarbon but also for PF which is more difficult to decompose than fluorocarbon.
C was also able to be decomposed at a practical reaction temperature of 1000 ° C. or less. PFC has been included in the menu of reduction targets at the Kyoto Conference on Global Warming Prevention held in December 1997, and it is certain that emissions into the environment will be regulated in the future. Despite the fact that its use is indispensable in the semiconductor manufacturing process, which is also referred to as rice in the industry, it enables the decomposition of PFC, whose emission to the environment will be regulated in the future due to its large global warming potential. The technical and social significance of the present invention is great.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07B 35/06 B01D 53/36 G ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07B 35/06 B01D 53/36 G

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】金属としてのNa量が0.1重量%以下で
あるアルミナよりなる、含フッ素化合物分解処理用触
媒。
1. A catalyst for decomposition treatment of a fluorine-containing compound, comprising alumina having an Na content of 0.1% by weight or less as a metal.
【請求項2】金属としてのNa量が0.1重量%以下で
あるアルミナに、6A族、8族、3B族から選ばれる少
なくとも一種以上の金属及び/又は硫酸、燐酸、ほう酸
から選ばれる少なくとも一種以上の無機酸を担持させ
た、含フッ素化合物分解処理用触媒。
2. An alumina having a Na content of 0.1% by weight or less as a metal, wherein at least one metal selected from the group 6A, 8 and 3B and / or at least one selected from the group consisting of sulfuric acid, phosphoric acid and boric acid. A catalyst for decomposing fluorine-containing compounds, which carries one or more inorganic acids.
【請求項3】金属種が、Cr、Fe、Co、Ni、P
d、Pt、BおよびGaから選ばれる金属の少なくとも
一種以上である、請求項2に記載の、含フッ素化合物分
解処理用触媒。
3. The method according to claim 1, wherein the metal species is Cr, Fe, Co, Ni, P.
The fluorine-containing compound decomposition treatment catalyst according to claim 2, wherein the catalyst is at least one or more metals selected from d, Pt, B, and Ga.
【請求項4】触媒中の金属担持量が、アルミナ100重
量部当たり金属換算で0.01〜20重量部である、請
求項2または請求項3の何れかに記載の、含フッ素化合
物分解処理用触媒。
4. The process for decomposing a fluorine-containing compound according to claim 2, wherein the amount of metal supported in the catalyst is 0.01 to 20 parts by weight in terms of metal per 100 parts by weight of alumina. Catalyst.
【請求項5】触媒中の無機酸の担持量がアルミナ100
重量部当たり0.1〜20重量部である、請求項2〜4
の何れかに記載の含フッ素化合物分解処理用触媒。
5. The catalyst according to claim 1, wherein the amount of the inorganic acid carried in the catalyst is 100% alumina.
The amount is 0.1 to 20 parts by weight per part by weight.
The catalyst for decomposing fluorine-containing compound according to any one of the above.
【請求項6】被反応物である含フッ素化合物が、パーフ
ルオロ化合物、フロンから選ばれる1種または混合物で
ある、請求項1から7までの何れかに記載の、ガス状含
フッ素化合物の分解処理用触媒。
6. The decomposition of a gaseous fluorine-containing compound according to any one of claims 1 to 7, wherein the fluorine-containing compound to be reacted is one or a mixture selected from a perfluoro compound and a fluorocarbon. Processing catalyst.
【請求項7】酸素および水共存下において、金属として
のNa量が0.1重量%以下であるアルミナよりなる触
媒と接触させて行なう含フッ素化合物の分解処理方法。
7. A method for decomposing a fluorine-containing compound, which is carried out in the presence of oxygen and water by bringing it into contact with a catalyst comprising alumina containing 0.1% by weight or less of Na as a metal.
【請求項8】酸素および水共存下において、金属として
のNa量が0.1重量%以下であるアルミナに、6A
族、8族、3B族から選ばれる少なくとも一種以上の金
属及び/又は硫酸、燐酸、ほう酸から選ばれる少なくと
も一種以上の無機酸を担持させた触媒と接触させて行な
う、含フッ素化合物の分解処理方法。
8. An alumina having 0.1% by weight or less of Na as a metal in the presence of oxygen and water,
A method for decomposing a fluorine-containing compound, which is carried out by contacting with a catalyst supporting at least one or more metals selected from Group III, VIII and 3B and / or at least one or more inorganic acids selected from sulfuric acid, phosphoric acid and boric acid. .
【請求項9】酸素および水共存下において、Cr、F
e、Co、Ni、Pd、Pt、BおよびGaから選ばれ
る金属の少なくとも一種以上をアルミナ100重量部当
たり金属換算で0.01〜20重量部及び/又は無機酸
をアルミナ100重量部当たり0.1〜20重量部担持
させた請求項7または8の何れかに記載の触媒と接触さ
せて行なう、含フッ素化合物分解処理方法。
9. Cr, F in the presence of oxygen and water
e, Co, Ni, Pd, Pt, B, and at least one metal selected from the group consisting of B and Ga in an amount of 0.01 to 20 parts by weight in terms of metal per 100 parts by weight of alumina and / or 0.1 to 0.2 parts by weight of inorganic acid per 100 parts by weight of alumina. A method for decomposing a fluorine-containing compound, which is carried out by contacting 1 to 20 parts by weight of the catalyst according to claim 7.
【請求項10】被反応物である含フッ素化合物が、パー
フルオロ化合物、フロンから選ばれる1種または混合物
である、請求項7〜9の何れかに記載の、ガス状含フッ
素化合物の分解処理方法。
10. The decomposition treatment of a gaseous fluorinated compound according to claim 7, wherein the fluorinated compound to be reacted is one or a mixture selected from perfluoro compounds and chlorofluorocarbons. Method.
JP9350716A 1997-12-19 1997-12-19 Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound Pending JPH11179201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9350716A JPH11179201A (en) 1997-12-19 1997-12-19 Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9350716A JPH11179201A (en) 1997-12-19 1997-12-19 Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound

Publications (1)

Publication Number Publication Date
JPH11179201A true JPH11179201A (en) 1999-07-06

Family

ID=18412375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9350716A Pending JPH11179201A (en) 1997-12-19 1997-12-19 Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound

Country Status (1)

Country Link
JP (1) JPH11179201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077496A1 (en) * 2004-02-17 2005-08-25 Ebara Corporation Method and apparatus for treating gas containing fluorine-containing compounds
JP2006306736A (en) * 2005-04-26 2006-11-09 National Institute Of Advanced Industrial & Technology Method of hydrothermally decomposing fluorinated organic compound
US7138551B2 (en) 2004-11-05 2006-11-21 E. I. Du Pont De Nemours And Company Purification of fluorinated alcohols
CN101965320A (en) * 2008-03-07 2011-02-02 旭硝子株式会社 Method for decomposing water-soluble fluorinated organic compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077496A1 (en) * 2004-02-17 2005-08-25 Ebara Corporation Method and apparatus for treating gas containing fluorine-containing compounds
US7138551B2 (en) 2004-11-05 2006-11-21 E. I. Du Pont De Nemours And Company Purification of fluorinated alcohols
JP2006306736A (en) * 2005-04-26 2006-11-09 National Institute Of Advanced Industrial & Technology Method of hydrothermally decomposing fluorinated organic compound
CN101965320A (en) * 2008-03-07 2011-02-02 旭硝子株式会社 Method for decomposing water-soluble fluorinated organic compound
US8067661B2 (en) * 2008-03-07 2011-11-29 Asahi Glass Company, Limited Method for decomposing water-soluble fluorinated organic compound
JP5402920B2 (en) * 2008-03-07 2014-01-29 旭硝子株式会社 Method for decomposing water-soluble fluorine-containing organic compounds

Similar Documents

Publication Publication Date Title
EP0885648B1 (en) A treatment method for decomposing fluorine compounds, and apparatus and use of a catalyst therefor
JP3977887B2 (en) Treatment method for fluorine compound-containing gas
US5179058A (en) Process for manufacturing a carbonaceous catalyst for the reduction of nitrogen oxides in exhaust gases
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
KR19980069689A (en) Decomposition Method and Catalyst by Catalyst of Organic Halogen Compound
JPS5982930A (en) Reduction of nitrogen oxide
KR100318353B1 (en) How to purify exhaust gas
JPS6323743A (en) Production of nickel and/or cobalt catalyst
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
TW200808440A (en) Absorption composition and process for purifying streams of substances
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
JPH11179201A (en) Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound
JPH11165071A (en) Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
JP2000015060A (en) Method for decomposing fluorine compound by using catalyst
JPH10286439A (en) Decomposing method of fluorine-containing compound
JP2000126598A (en) Catalyst and method for decomposing fluorine compound
KR20200092068A (en) Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
KR20200086983A (en) Metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JPH08229354A (en) Treatment of organic halogen compound with catalyst
JP2000225342A (en) Catalyst for decomposing fluorine-containing compound and method for decomposing fluorine-containing compound
JPH10286438A (en) Decomposing method of fluorine-containing compound
GB2276332A (en) Catalytic method of replacing halogen in halocarbons