KR20200092068A - Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method - Google Patents

Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method Download PDF

Info

Publication number
KR20200092068A
KR20200092068A KR1020190009150A KR20190009150A KR20200092068A KR 20200092068 A KR20200092068 A KR 20200092068A KR 1020190009150 A KR1020190009150 A KR 1020190009150A KR 20190009150 A KR20190009150 A KR 20190009150A KR 20200092068 A KR20200092068 A KR 20200092068A
Authority
KR
South Korea
Prior art keywords
catalyst
decomposing
zirconium
tungsten
perfluorinated compound
Prior art date
Application number
KR1020190009150A
Other languages
Korean (ko)
Inventor
문영환
김종산
정헌
박은서
윤등기
최선
Original Assignee
코아텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코아텍주식회사 filed Critical 코아텍주식회사
Priority to KR1020190009150A priority Critical patent/KR20200092068A/en
Publication of KR20200092068A publication Critical patent/KR20200092068A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention relates to a catalyst for decomposing perfluorinated compounds, comprising: an alumina support prepared by mixing, drying and calcinating a carrier configured to have at least one selected from alpha alumina, alumina, pseudo-boehmite, and silica, as well as tungsten (W) and zirconium (Zr) in a water-containing solvent, preferably by supporting tungsten (W) and zirconium (Zr) as active ingredients on a mixed catalyst of alumina, tungsten and zirconium through a neutralization precipitation method. According to the present invention, the metal oxide catalyst for removing large-capacity perfluorinated compounds is an acid-resistant catalyst, has durability against fluorine generated by decomposition of halogenated acid gases or perfluorinated compounds contained in perfluorinated compounds, and can also improve a reaction activity. Thus, the catalyst can be used for the purpose of decomposing cleaning agents and etching agents of perfluorinated compounds used in semiconductor manufacturing processes and display manufacturing processes, and useful as a catalyst for decomposing perfluorinated compounds discharged from processes using halogen acid gas.

Description

대용량 과불화화합물 제거를 위한 텅스텐-지르코늄 금속산화물 촉매 및 그 제조 방법{Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method}Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method

본 발명은 과불화 화합물을 분해하기 위한 알루미늄 산화물 촉매 및 이를 제조하는 방법에 관한 것이며, 보다 상세하게는 과불화 화합물을 분해하기 위한 알루미늄 산화물 촉매의 제조 방법은 지르코늄(Zr) 및 텅스텐(W) 성분을 증류수에 용해하여 용액을 생성하는 단계와, 상기 용액에 알루미늄 산화물을 혼합하여 담지체(catalyst supporting material)를 생성하는 단계와, 상기 담지체에 대한 건조를 수행하는 단계 및 상기 담지체에 대한 소성을 수행하여 Zr-W-Al 촉매를 생성하는 단계를 포함한다. 따라서, 시간에 따라 과불화 화합물에 대한 분해 효율이 저감되는 비율이 낮추고, 내열성 및 내화학성의 특성을 구비하여 과불화 화합물에 대한 높은 분해 효율을 유지할 수 있다. The present invention relates to an aluminum oxide catalyst for decomposing a perfluorinated compound and a method for manufacturing the same, and more particularly, a method for preparing an aluminum oxide catalyst for decomposing a perfluorinated compound is a zirconium (Zr) and tungsten (W) component Dissolving in distilled water to produce a solution, and mixing the aluminum oxide with the solution to produce a carrier (catalyst supporting material), performing the drying of the carrier and firing for the carrier And performing Zr-W-Al catalyst. Therefore, the rate at which the decomposition efficiency for the perfluorinated compound is reduced over time is lowered, and characteristics of heat resistance and chemical resistance are provided to maintain high decomposition efficiency for the perfluorinated compound.

반도체 제조공정에서 배출되는 유해 폐가스는 각 공정에 따라 매우 다양한 종류가 배출되고 있으며, 대부분 휘발성이 강하며 인체에 유해하거나 지구온난화 지수가 높은 성분들이므로 완전히 분해하여 제거하여야 한다. Hazardous waste gas emitted from the semiconductor manufacturing process is discharged in various types according to each process, and most of them are highly volatile and harmful to the human body or have high global warming index, so they must be completely decomposed and removed.

그중 반도체 공정의 식각(etching) 및 증착(CVD) 공정에서 주로 배출되는 과불화화합물인 PFC (perfluorocompound)는 매우 안정하여 제거가 용이하지 않다. Among them, perfluorocompound (PFC), a perfluorinated compound mainly discharged from etching and deposition (CVD) processes of semiconductor processes, is very stable and is not easily removed.

PFC는 냉매로 사용하는 CFC (chlorofluorocompound) 보다도 안정하며, 지구 온난화지수가 클 뿐만 아니라, 분해시간도 매우 길기 때문에 대기 중에 방출될 경우에 축적되는 문제점이 있다.PFC is more stable than chlorofluorocompound (CFC) used as a refrigerant, and has a problem of accumulation when released into the atmosphere because it has a large global warming index and a very long decomposition time.

반도체 공정에서 배출되는 PFC는 해마다 높은 증가율로 증가하고 있다. 따라서 PFC 발생이 지구 온난화에 미치는 영향이 크기 때문에, 각국에서는 PFC에 대한 규제를 점진적으로 강화되고 있다.PFC emissions from semiconductor processes are increasing at a high rate each year. Therefore, because of the large impact of PFC outbreaks on global warming, countries are gradually tightening regulations on PFC.

PFC 배출량을 감축하기 위하여 새로운 대체가스를 개발하려는 시도가 있어 왔으나, 아직까지 반도체 제조공정 중 실리콘기판 식각에 사용하는 가스로서 CF4 보다 효율이 높고 제품성이 뛰어난 대체 가스는 제시되지 않았다. 이에 따라 대부분의 반도체 제조공정에 CF4 가 사용되고 있다.Attempts have been made to develop new alternative gases to reduce PFC emissions, but no alternative gas has been proposed that is more efficient and more productive than CF 4 as a gas used for etching silicon substrates during semiconductor manufacturing. Accordingly, CF 4 is used in most semiconductor manufacturing processes.

PFC 들, 특히 탄소계 PFC들을 제거하기 위한 여러 기술들이 개발 중에 있는데, PSA 및 분리막을 이용한 분리회수 및 플라즈마, 연소 또는 촉매를 이용한 분해제거로 나누어 볼 수 있다.Several technologies for removing PFCs, especially carbon-based PFCs, are under development, and can be divided into separation recovery using PSA and membrane and decomposition removal using plasma, combustion or catalyst.

촉매 분해법은 난분해성인 PFC를 촉매 및 수증기를 사용하여 800℃ 이하의 낮은 온도에서 분해하는 기술로서, 촉매 분해법을 사용하면 분해온도를 현저히 낮출 수 있으므로, 많은 장점을 가져오게 된다. The catalytic decomposition method is a technique of decomposing PFC, which is poorly decomposable, at a low temperature of 800° C. or less using a catalyst and water vapor, and using the catalytic decomposition method can significantly lower the decomposition temperature, thus bringing many advantages.

예컨대, 800℃ 이하의 낮은 온도에서 과불화 화합물을 분해를 하게 되면, 연속 운전에 따르는 운전비 감소 및 시스템의 내구성 확보가 용이해진다는 장점과, 배가스 중에 존재하는 N2로부터 기인되는 열적(thermal) NOx의 발생을 억제하고 장치 부식을 크게 낮출 수 있는 상승된 이점이 있다. 한편, 촉매의 반응활성을 높임으로 인하여 스크러버의 크기를 크게 줄여, 소형화할 수 있는 유리한 이점이 있다.For example, if the perfluorinated compound is decomposed at a low temperature of 800° C. or lower, the advantages of reducing the operating cost and securing the durability of the system due to continuous operation, and thermal NOx resulting from N 2 present in the exhaust gas There is an increased advantage that can suppress the occurrence of and significantly reduce device corrosion. On the other hand, by increasing the reaction activity of the catalyst, the size of the scrubber is greatly reduced, and there is an advantage that it can be downsized.

그러나, 촉매적 분해법은 반응 후에 생성되는 HF, F2 등의 할로겐 화합물들이 촉매의 성능을 급격히 저하시키기 때문에 촉매를 주기적으로 교체해야 하는 문제점이 있고, 이러한 문제점을 해결하기 위하여 할로겐 화합물에 의하여 비활성화된 촉매를 수증기와 접촉시켜 원래의 촉매상태로 되돌리거나, 촉매 표면에 피막을 형성시키는 등 다양한 연구가 진행되었다.However, the catalytic decomposition method has a problem in that the catalysts must be periodically replaced because halogen compounds such as HF and F 2 generated after the reaction rapidly decrease the performance of the catalyst. Various studies have been conducted, such as returning the catalyst to its original state by contacting the catalyst with water vapor, or forming a film on the surface of the catalyst.

종래 일본특허공개 평11-70332 및 평10-46824에서는 알루미늄 산화물 내부에 Zn, Ni, Ti, Fe 등과 같은 여러 가지 전이금속을 적어도 한 가지 이상 포함하는 금속성분과 알루미늄의 복합 산화물 형태로 촉매를 제조하여 과불화 화합물을 분해할 수 있음을 개시하고 있고, 미국특허 제6,023,007호 및 제6,162,957호에서는 다양한 종류의 금속 포스페이트 촉매가 과불화 화합물을 분해하는 촉매로 사용될 수 있음을 개시하고 있다. In Japanese Patent Laid-Open Nos. Hei 11-70332 and Hei 10-46824, catalysts are produced in the form of a complex oxide of aluminum and a metal component containing at least one of various transition metals such as Zn, Ni, Ti, and Fe inside aluminum oxide. In order to decompose perfluorinated compounds, US Patent Nos. 6,023,007 and 6,162,957 disclose that various types of metal phosphate catalysts can be used as catalysts for decomposing perfluorinated compounds.

그러나, 상기와 같이 금속 성분이 별도로 첨가된 다성분 복합산화물 형태의 알루미늄포스페이트는 제조 공정이 복잡할 뿐만 아니라 경제성 면에서도 불리하며 장기간의 사용 가능성도 불투명하다. However, as described above, aluminum phosphate in the form of a multi-component composite oxide in which metal components are separately added is not only complicated in manufacturing process, but also disadvantageous in terms of economic efficiency and long-term useability is unclear.

그래서, 오랜 시간 촉매 활성이 유지될 수 있는 내구성을 지닌 촉매를 간단하고, 경제적으로 제조할 수 있는 방법의 개발이 여전히 요구되고 있는 상황이다. 이것이 본 발명의 기술적 사상이고 핵심 기술적 과제 중 하나이다.Therefore, there is a need to develop a simple and economical method for manufacturing a catalyst having durability capable of maintaining catalytic activity for a long time. This is the technical idea of the present invention and one of the core technical problems.

본 발명이 해결하고자 하는 과제는 반도체 제조 공정 또는 LCD와 같은 디스플레이 제조 공정에서 사용된 후 부산물로 산성 기체인 할로겐 화합물이 포함된 과불화 화합물을 완전히 분해할 수 있고 내구성이 우수하여 오랜 시간 촉매 활성이 유지될 수 있는 과불화 화합물 분해용 촉매를 제공하는데 있다.The problem to be solved by the present invention is to be able to completely decompose a perfluorinated compound containing an acidic gaseous halogen compound as a by-product after being used in a semiconductor manufacturing process or a display manufacturing process such as LCD, and has excellent durability for long-term catalytic activity. It is to provide a catalyst for decomposing a perfluorinated compound that can be maintained.

본 발명이 해결하고자 하는 또 다른 과제는 본 발명의 핵심 기술적 사상으로 종래의 불화 화합물 분해용 촉매보다 낮은 온도에서 과불화 화합물을 분해할 수 있어, 연속 운전에 따르는 운전비 감소 및 시스템의 내구성 확보가 용이하고, 배가스 중에 존재하는 N2 로부터 기인되는 열적(thermal) NOx의 발생을 억제하고 장치 부식을 크게 낮출 수 있으며, 한편, 촉매의 반응활성을 높임으로 인하여 스크러버의 크기를 크게 줄이고, 소형화할 수 있는 과불화 화합물 분해용 촉매를 제공하는데 있다.Another problem to be solved by the present invention is the core technical idea of the present invention, which can decompose a perfluorinated compound at a lower temperature than a catalyst for decomposing a conventional fluorinated compound, so that it is easy to reduce operating costs and secure durability of the system according to continuous operation. In addition, it is possible to suppress the generation of thermal NOx caused by N 2 present in the flue gas and significantly reduce the corrosion of the device. On the other hand, by increasing the reaction activity of the catalyst, the size of the scrubber can be greatly reduced and miniaturized. It is to provide a catalyst for decomposing a perfluorinated compound.

본 발명 과제의 해결 수단은 텅스텐(W) 및 지르코늄(Zr) 중 하나 이상을 선택하여 주성분으로 하고, 담체로써 Al 및 Si 중 하나 이상으로 구성된 종래의 과불화 화합물 분해용 촉매보다 낮은 온도에서 높은 반응활성을 가진 과불화화합물 분해용 촉매를 제공하는데 있다.The solution for solving the problem of the present invention is to select one or more of tungsten (W) and zirconium (Zr) as a main component, and react at a lower temperature than a catalyst for decomposing a conventional perfluorinated compound composed of one or more of Al and Si as a carrier. It is to provide a catalyst for decomposing an active perfluorinated compound.

본 발명의 또 다른 과제의 해결 수단으로 텅스텐(W)의 전구체는 텅스텐산 나트륨 (Na2WO4ㆍ2H2O), 파라텅스텐산 암모늄 (5(NH4)2Oㆍ12WO3ㆍ5H2O), 텅스텐 옥사이드 (WO3), 염화 텅스텐 (WCl6) 또는 이의 혼합물이고, 지르코늄(Zr)의 전구체는 질산 지르코늄(Zr(NO3)4), 황산 지르코늄(Zr(SO4)2), 지르코늄 하이드로 옥사이드 (Zr(OH)2), 지르코늄 옥사이드 (ZrO) 또는 이의 혼합물이며, 알루미늄(Al)의 전구체는 알파 알루미나, 알루미나 및 수도-보에마이트(pseudo-boehmite) 중 적어도 하나를 선택하며, 실리콘(Si)의 전구체로 실리카(SiO2) 및 물유리 중에서 적어도 하나의 군에서 선택하여 제조된 과불화 화합물 분해용 촉매를 제공하는데 있다.As a solution of another problem of the present invention, the precursor of tungsten (W) is sodium tungstate (Na 2 WO 4 ㆍ2H 2 O), ammonium paratungstate (5(NH 4 ) 2 O·12WO 3 ㆍ5H 2 O ), tungsten oxide (WO 3 ), tungsten chloride (WC l6 ) or mixtures thereof, the precursors of zirconium (Zr) are zirconium nitrate (Zr(NO 3 ) 4 ), zirconium sulfate (Zr(SO 4 ) 2 ), zirconium Hydro oxide (Zr(OH) 2 ), zirconium oxide (ZrO) or a mixture thereof, the precursor of aluminum (Al) is at least one of alpha alumina, alumina and pseudo-boehmite, and silicon It is to provide a catalyst for decomposing a perfluorinated compound selected from at least one group among silica (SiO2) and water glass as a precursor of (Si).

본 발명의 또 다른 과제의 해결 수단은 원료를 용매에서 혼합, 건조 및 소성하여 제조한, 중량비가 Al : W : Zr = 100 : 0.1 ~ 10 : 0.1 ~ 5 인 알루미나 및 텅스텐, 지르코늄 혼합 촉매 지지체를 포함하는 과불화 화합물 분해용 촉매를 제공하는데 있다.Another solution of the present invention is to prepare a mixture of alumina and tungsten, zirconium mixed catalyst support having a weight ratio of Al: W: Zr = 100: 0.1 to 10: 0.1 to 5, prepared by mixing, drying and firing the raw material in a solvent. It is to provide a catalyst for decomposing a perfluorinated compound.

본 발명의 또 다른 과제의 해결 수단은 촉매의 제조공법으로 졸-겔(Sol-Gel), 중화 침전법, 함침법, 공침법을 이용하여 제조된 과불화 화합물 분해용 촉매를 제공하는데 있다Another solution of the present invention is to provide a catalyst for decomposing a perfluorinated compound prepared using a sol-gel, neutralization precipitation method, impregnation method, or coprecipitation method as a catalyst manufacturing method.

본 발명의 또 다른 과제의 해결 수단은 중화제로 암모니아수, 가성 소다수, 생석회수 로 구성된 염기성 용액 군에서 하나를 선택하여 제조된 과불화 화합물 분해용 촉매를 제공하는데 있다.Another solution of the present invention is to provide a catalyst for decomposing a perfluorinated compound prepared by selecting one of a basic solution group consisting of ammonia water, caustic soda water, and quick lime water as a neutralizing agent.

본 발명의 또 다른 과제의 해결 수단은 금속원료의 분산제로 황산, 염산, 질산, 초산으로 구성된 산성 용액 군에서 하나를 선택하여 제조된 과불화 화합물 분해용 촉매를 제공하는데 있다.Another solution of the present invention is to provide a catalyst for decomposing a perfluorinated compound prepared by selecting one of a group of acidic solutions consisting of sulfuric acid, hydrochloric acid, nitric acid, and acetic acid as a dispersant for a metal raw material.

본 발명의 또 다른 과제의 해결 수단은 텅스텐(W), 지르코늄(Zr)을 주성분으로 하고, 담체로써 알루미늄(Al) 또는 실리콘(Si)을 혼합하는 단계와, 혼합된 화합물을 과불화 화합물을 분해 제거하기 위해 제조된 입자 상태, 구, 펠릿 및 링 중 하나 이상의 형태로 성형하는 단계와, 성형된 과불화 화합물 분해용 촉매를 건조시켜 소성하는 단계를 포함하는 과불화화합물 분해용 촉매 제조 방법을 제공하는데 있다.Another method of solving the problem of the present invention is a step of mixing tungsten (W), zirconium (Zr) as a main component, and mixing aluminum (Al) or silicon (Si) as a carrier, and decomposing the mixed compound into a perfluorinated compound. Provided is a method for producing a catalyst for decomposing a perfluorinated compound, which comprises molding in a form of at least one of particles, spheres, pellets, and rings prepared for removal, and drying and firing the catalyst for decomposing the formed perfluorinated compound. Is doing.

본 발명에 따른 과불화 화합물 분해용 촉매는 내산성 촉매로서, 과불화 화합물에 포함된 할로겐족 산성가스 또는 과불화합물이 분해하여 생성된 불소에 대해 내구성을 가지며, 반응활성도 증진시킬 수 있는 상승된 효과가 있다.The catalyst for decomposing a perfluorinated compound according to the present invention is an acid-resistant catalyst, has durability against fluorine generated by decomposition of a halogenated acid gas or a perfluorinated compound contained in the perfluorinated compound, and has an increased effect of enhancing reaction activity. .

또한, 본 발명에 따른 과불화 화합물 분해용 촉매는 반도체 제조공정 및 디스플레이 제조공정에서 사용되는 세정제 및 에칭제 중 과불화 화합물을 분해하는 목적으로 사용이 가능하고, 특히 F2, Cl2, Br2 등과 같은 할로겐 산성가스를 사용하는 공정에서 배출되는 과불화 화합물을 분해하는 촉매로 유용하게 사용할 수 있는 유리한 효과가 있다.In addition, the catalyst for decomposing a perfluorinated compound according to the present invention can be used for the purpose of decomposing a perfluorinated compound among cleaning agents and etching agents used in semiconductor manufacturing processes and display manufacturing processes. In particular, F 2 , Cl 2 , Br 2 There is an advantageous effect that can be usefully used as a catalyst for decomposing a perfluorinated compound discharged from a process using a halogen acid gas.

본 발명의 또 다른 효과는 종래의 불화 화합물 분해용 촉매보다 낮은 온도에서 과불화 화합물을 분해하게 되어, 연속 운전에 따르는 운전비 감소 및 시스템의 내구성 확보가 용이해지고, 배가스 중에 존재하는 N2로부터 기인되는 열적(thermal) NOx의 발생을 억제하고 장치 부식을 크게 낮출 수 있으며, 촉매의 높은 반응활성으로 인하여 스크러버의 크기를 크게 줄이고, 소형화할 수 있는 상승된 효과가 있다.Another effect of the present invention is to decompose the perfluorinated compound at a lower temperature than the catalyst for decomposing the conventional fluorinated compound, reducing the operating cost and securing the durability of the system due to continuous operation, and originating from N 2 present in the exhaust gas. It can suppress the generation of thermal NOx and greatly reduce device corrosion, and has a raised effect that can greatly reduce the size of the scrubber and downsize due to the high reaction activity of the catalyst.

도 1은 본 발명에 따른 실시예 2의 각 촉매를 사용하여 CF4 분해 반응 전, 후 촉매의 결정상 변화를 나타낸 것이다.Figure 1 shows the crystalline phase change of the catalyst before and after the CF 4 decomposition reaction using each catalyst of Example 2 according to the present invention.

본 발명을 실시하기 위한 구체적인 기술적 사상, 기술적 과제, 구성 및 이에 따른 작용효과에 대하여 살펴본다.It looks at the specific technical idea, technical problem, configuration for carrying out the present invention and its operational effects.

본 발명의 핵심 기술적 사상 중 하나는 반도체 제조 공정 또는 LCD와 같은 디스플레이 제조 공정에서 사용된 후 부산물로 산성 기체인 할로겐 화합물이 포함된 과불화 화합물을 완전히 분해할 수 있고 내구성이 우수하여 오랜 시간 촉매 활성이 유지될 수 있는 과불화 화합물 분해용 촉매를 제공하는데 있다.One of the core technical ideas of the present invention is that it can be completely decomposed of a perfluorinated compound containing an acidic gaseous halogen compound as a by-product after being used in a semiconductor manufacturing process or a display manufacturing process such as LCD, and has excellent durability for long-term catalytic activity It is to provide a catalyst for decomposing a perfluorinated compound that can be maintained.

본 발명의 또 다른 핵심 기술적 사상은 종래의 불화 화합물 분해용 촉매보다 낮은 온도에서 과불화 화합물을 분해할 수 있어, 연속 운전에 따르는 운전비 감소 및 시스템의 내구성 확보가 용이해지고, 배가스 중에 존재하는 N2 로부터 기인되는 열적(thermal) NOx의 발생을 억제하고 장치 부식을 크게 낮출 수 있으며, 한편, 촉매의 반응활성을 높임으로 인하여 스크러버의 크기를 크게 줄이고, 소형화할 수 있는 과불화 화합물 분해용 촉매를 제공하는데 있다.Another core technical idea of the present invention can decompose the perfluorinated compound at a lower temperature than the catalyst for decomposing the conventional fluoride compound, thereby reducing the operating cost and securing the durability of the system due to continuous operation, and N 2 present in the exhaust gas It can suppress the generation of thermal NOx caused by and significantly reduce device corrosion, while providing a catalyst for decomposing a perfluorinated compound that can greatly reduce the size of a scrubber and miniaturize it by increasing the reaction activity of the catalyst. Is doing.

본 발명의 기술적 사상을 이루기 위한 다양한 실시 예를 살펴본다.Various embodiments for achieving the technical spirit of the present invention will be described.

본 발명의 제1 실시 예는 수도-보에마이트(pseudo-boehmite) 원료와, 텅스텐(W), 지르코늄(Zr) 그리고 질산이 첨가된 물 함유 용매에서 중화침전, 건조 및 소성하여 제조한, 중량비가 Al :W : Zr = 100 : 0.1 ~ 10 : 0.1 ~ 5 인 알루미나 및 텅스텐, 지르코늄 혼합 지지체를 포함하는 과불화 화합물 분해용 촉매를 제공할 수 있다.The first embodiment of the present invention was prepared by neutralization, drying and firing in a water-containing solvent to which water-boehmite (pseudo-boehmite) raw materials, tungsten (W), zirconium (Zr), and nitric acid were added, weight ratio It is possible to provide a catalyst for decomposing a perfluorinated compound comprising an alumina having a Al:W:Zr=100:0.1 to 10:0.1 to 5 and a mixed tungsten and zirconium support.

본 발명의 제2 실시 예는 텅스텐 및 지르코늄 중 적어도 하나를 녹인 수용액을, 알파 알루미나, 감마 알루미나, 수도-보에마이트(pseudo-boehmite)로 구성된 군에서 적어도 하나 이상 선택된 알루미나 전구체와 혼합하는 단계를 포함하며, 소정의 형태로 제조하여 건조 및 소성하는 단계를 포함하되, 중량비가 Al :W : Zr = 100 : 0.1 ~ 10 : 0.1 ~ 5 인 Al-W-Zr 산화물을 제조하는 단계를 포함한다.The second embodiment of the present invention comprises the steps of mixing an aqueous solution of at least one of tungsten and zirconium with an alumina precursor selected from at least one selected from the group consisting of alpha alumina, gamma alumina, and pseudo-boehmite. It includes, and comprises a step of manufacturing and drying and firing in a predetermined form, the weight ratio of Al:W: Zr = 100: 0.1 to 10: 0.1 to 5 includes the step of producing an Al-W-Zr oxide.

본 발명의 제3 실시 예는 제1 실시 예의 과불화 화합물 분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화화합물을 분해하는 단계를 포함하는 과불화 화합물 처리 방법을 제공한다.The third embodiment of the present invention provides a method for treating a perfluorinated compound comprising the step of decomposing the perfluorinated compound in a gas containing a perfluorinated compound using the catalyst for decomposing the perfluorinated compound of the first embodiment.

본 발명의 제4 실시 예는 제1 실시 예의 과불화 화합물 분해용 촉매를 사용하여, 과불화 화합물 함유 가스에서 과불화 화합물을 분해하는 단계를 포함하는 반도체 제조공정 또는 디스플레이 제조공정을 제공할 수 있다.The fourth embodiment of the present invention can provide a semiconductor manufacturing process or a display manufacturing process including the step of decomposing a perfluorinated compound in a gas containing a perfluorinated compound using the catalyst for decomposing the perfluorinated compound of the first embodiment. .

"과불화 화합물(Perfluoro compound : PFC)"에는 불소(F)를 2개 이상 함유하는 탄소함유 PFC(carboncontaining perfluoro compound), 질소함유 PFC(nitrogen-containing perfluoro compound), 황함유 PFC(sulfur-containing perfluoro compound)이 포함될 수 있다. “Perfluoro compound (PFC)” includes carbon-containing perfluoro compound (PFC) containing two or more fluorine (F), nitrogen-containing perfluoro compound (PFC), and sulfur-containing perfluoro compound (PFC). compound).

탄소함유 PFC에는 CF4, CHF3, CH2F2, C2F4, C2F6, C3F6, C3F8, C4F8, C4F10 등과 같은 포화 및 불포화 지방족(aliphatic) 성분들뿐만 아니라 사이클형 지방족 및 방향족(aromatic) 과불소탄소가 포함될 수 있다. Carbon-containing PFCs include saturated and unsaturated aliphatics such as CF 4 , CHF 3 , CH 2 F 2 , C 2 F 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 8 , C 4 F 10, etc. (aliphatic) components as well as cyclic aliphatic and aromatic (aromatic) perfluorocarbons may be included.

질소함유 PFC에는 NF3 가 대표적으로 포함될 수 있으며, 황함유 PFC에는 SF4, SF6 등이 포함될 수 있다. Nitrogen-containing PFC may typically include NF 3 , and sulfur-containing PFC may include SF 4 , SF 6, and the like.

그러나, 본 명세서에서 과불화 화합물(PFC)은 촉매에 의해 분해되어 HF와 같은 가스상의 생성물을 형성할 수 있는 화합물까지 확장될 수 있으며, 이 역시 본 발명의 보호범위에 속한다.However, in the present specification, the perfluorinated compound (PFC) can be extended to a compound that can be decomposed by a catalyst to form a gaseous product such as HF, which also falls within the protection scope of the present invention.

텅스텐(W)의 전구체는 텅스텐산 나트륨 (Na2WO4ㆍ2H2O), 파라텅스텐산 암모늄 (5(NH4)2Oㆍ12WO3ㆍ5H2O), 텅스텐 옥사이드 (WO3), 염화 텅스텐 (WCl6) 또는 이의 혼합물이고, 지르코늄(Zr)의 전구체는 질산 지르코늄(Zr(NO3)4), 황산 지르코늄(Zr(SO4)2), 지르코늄 하이드로 옥사이드 (Zr(OH)2), 지르코늄 옥사이드 (ZrO) 또는 이의 혼합물이며, 알루미늄(Al)의 전구체는 알파 알루미나, 알루미나 및 수도-보에마이트(pseudo-boehmite) 중 적어도 하나를 선택하며, 실리콘(Si)의 전구체로 실리카(SiO2) 및 물유리 중에서 적어도 하나의 군에서 선택하여 제조된 과불화 화합물 분해용 촉매를 제공하는데 있다.The precursor of tungsten (W) is sodium tungstate (Na 2 WO 4 ㆍ2H 2 O), ammonium paratungstate (5(NH 4 ) 2 Oㆍ12WO 3 ㆍ5H 2 O), tungsten oxide (WO 3 ), chloride Tungsten (WC 16 ) or a mixture thereof, the precursors of zirconium (Zr) are zirconium nitrate (Zr(NO 3 ) 4 ), zirconium sulfate (Zr(SO 4 ) 2 ), zirconium hydrooxide (Zr(OH) 2 ), Zirconium oxide (ZrO) or a mixture thereof, and the precursor of aluminum (Al) is at least one selected from alpha alumina, alumina, and pseudo-boehmite, and silica (SiO2) is a precursor of silicon (Si). And it is to provide a catalyst for decomposing a perfluorinated compound selected from at least one group of water glass.

산성가스는 물과 접촉하게 되면 산성을 띠는 가스로서, 이의 비제한적인 예로는 할로겐, 할로겐화수소, 질소산화물(NOx), 황산화물(SOx), 아세트산, 승화수은, 황화수소, 이산화탄소 등이 있다. 산성가스는 부식을 야기할 뿐만 아니라, 촉매의 활성을 저하시킬 수 있다.Acid gas is an acidic gas when it comes into contact with water, and non-limiting examples include halogen, hydrogen halide, nitrogen oxide (NOx), sulfur oxide (SOx), acetic acid, mercury sublimation, hydrogen sulfide, carbon dioxide, and the like. Acid gas not only causes corrosion, but can also degrade the activity of the catalyst.

PFC와 수분 사이에 진행되는 가수분해 반응은 흡열반응으로써 고온일수록 분해가 용이한 자발적 반응을 유도할 수 있으므로 PFC 분해가 빠르게 진행된다. 그러나, 고온은 촉매의 열적 안정성을 저하시킨다.The hydrolysis reaction that proceeds between PFC and moisture is an endothermic reaction, and the higher the temperature, the more easily it can induce a spontaneous reaction. However, high temperatures degrade the thermal stability of the catalyst.

즉, 500~800℃의 운전조건은 촉매가 물리적 또는 화학적인 변화 없이 장시간 활성을 유지하기에는 높은 온도 조건으로서 촉매의 내구성 확보가 가장 큰 문제이다. That is, the operating condition of 500 to 800°C is a high temperature condition for the catalyst to maintain its activity for a long time without physical or chemical changes, and securing the durability of the catalyst is the biggest problem.

특히, 부산물로 생성되는 HF와 수증기가 동시에 존재하는 500~800℃의 반응 분위기 하에서 지속적으로 내구성을 갖는 촉매 개발이 상업화에 중요한 기술적 과제가 되고 있다.In particular, the development of a catalyst having a durable durability under a reaction atmosphere of 500 to 800° C. in which HF and water vapor generated as by-products are present at the same time has become an important technical problem for commercialization.

할로겐족 산성가스에 대한 저항성을 높이기 위해 활성 성분을 고분산시키는 것이 바람직하나, 활성 성분의 고분산 기술이 용이하지 않아 결과적으로 분해 활성이 낮아지는 문제점이 있다. It is preferable to highly disperse the active ingredient in order to increase the resistance to the halogen acid gas, but there is a problem in that the decomposition activity is lowered as a result of the high dispersion technology of the active ingredient is not easy.

따라서, 이러한 문제점을 해결하기 위해, 본 발명에 따른 과불화 화합물 분해용 촉매의 하나의 실시 예는, 알루미나에 텅스텐 및 지르코늄 활성금속을 공침하여, 중량비가 Al :W : Zr = 100 : 0.1 ~ 10 : 0.1 ~ 5 이 되도록 알루미나와 텅스텐, 지르코늄을 균일하게 혼합한 다공성 촉매 지지체를 제조하는 것이다.Therefore, in order to solve this problem, one embodiment of the catalyst for decomposing a perfluorinated compound according to the present invention is co-precipitated with tungsten and zirconium active metals in alumina, so that the weight ratio is Al:W:Zr = 100: 0.1 to 10 : To prepare a porous catalyst support in which alumina, tungsten, and zirconium are uniformly mixed to be 0.1 to 5.

따라서, 본 발명에 따른 과불화 화합물 분해용 촉매의 또 다른 실시 예는 수도-보에마이트(pseudo-boehmite) 원료와, 텅스텐(W) 및 지르코늄(Zr) 졸 상태에서 혼합하여, 건조 및 소성하여 제조하되, 중량비가 Al :W : Zr = 100 : 0.1 ~ 10 : 0.1 ~ 5 인 알루미나 및 텅스텐, 지르코늄 혼합 촉매 지지체를 포함한다.Accordingly, another embodiment of the catalyst for decomposing a perfluorinated compound according to the present invention is mixed with a raw material of water-boehmite and tungsten (W) and zirconium (Zr), and dried and calcined. Prepared, but includes alumina and tungsten, zirconium mixed catalyst support having a weight ratio of Al:W:Zr=100:0.1-10:0.1-5.

과불화 화합물의 촉매분해 반응에서 적용 가능한 촉매는 대부분 고체산 촉매이며, 이 중에서도 Al2O3 촉매가 가장 많이 이용되고 있다. Most catalysts applicable in the catalytic decomposition reaction of perfluorinated compounds are solid acid catalysts, and among them, Al 2 O 3 catalysts are most frequently used.

따라서, 본 발명에 따른 과불화 화합물 분해용 촉매에서, 알루미나는 활성금속 담지 대상인 지지체 역할 뿐만 아니라, 과불화 화합물 분해활성이 있는 주촉매 역할을 한다. 촉매 활성면에서 α, γ, δ - 알루미나 중 γ-알루미나가 바람직하다. 또한, γ-알루미나의 α상으로의 전이를 억제할 수 있으면, PFC에 대한 높은 분해능을 장시간 유지시킬 수 있는 상승된 효과가 있다.Accordingly, in the catalyst for decomposing a perfluorinated compound according to the present invention, alumina serves as a support for which an active metal is supported, as well as a main catalyst having a decomposed perfluorinated compound. In terms of catalytic activity, γ-alumina is preferred among α, γ, and δ-alumina. In addition, if the transition of γ-alumina to the α phase can be suppressed, there is an increased effect of maintaining high resolution for PFC for a long time.

활성금속으로서 텅스텐(W)이 담지되면, PFC 촉매분해 반응시 발생하는 HF에 대한 촉매 효율향상 측면에서 바람직한 결과를 부여할 수 있다.When tungsten (W) is supported as an active metal, it is possible to impart desirable results in terms of improving catalyst efficiency for HF generated during PFC catalytic decomposition reaction.

상기 활성금속은 초기습식 함침법(incipient-wetness method)으로 상기 촉매 지지체에 담지될 수 있다.The active metal may be supported on the catalyst support by an incipient-wetness method.

본 발명의 따라 제조된 과불화 화합물 분해용 촉매의 건조 및 소성은 110℃의 항온 항습조에서 1차 건조, 200 ℃이상에서 2차 건조 및 400 ~ 1000 ℃ 공기 분위기 하에서 소성하여 3차 건조시키는 단계로 수행될 수 있다.Drying and firing of the catalyst for decomposing the perfluorinated compound prepared according to the present invention is primary drying in a constant temperature and humidity tank at 110° C., secondary drying at 200° C. or higher, and calcination under an air atmosphere of 400 to 1000° C. to perform tertiary drying. Can be performed with.

본 발명의 따른 과불화 화합물 분해용 촉매의 최종 형상은 구, 펠릿, 링과 같은 입상일 수도 있고, 벌집형상 등으로 성형할 수도 있다. The final shape of the catalyst for decomposing the perfluorinated compound according to the present invention may be a granular shape such as a sphere, pellet, or ring, or may be molded into a honeycomb shape.

촉매 성형법으로서는 압출 성형법, 타정 성형법, 전동 조립법 등의 임의의 방법을 사용할 수 있다. 또한, 세라믹제 또는 금속제의 벌집형 또는 판에 본 발명의 촉매를 코팅하여 사용할 수도 있다.As the catalyst forming method, any method such as an extrusion molding method, a tableting molding method, or an electric granulation method can be used. Further, the catalyst of the present invention may be coated on a honeycomb or plate made of ceramic or metal.

본 발명에 따른 과불화 화합물 분해용 촉매는 할로겐족 산성가스를 함유하는 과불화 화합물을 분해 제거함에 있어 우수한 분해 효과 및 내구성을 나타내므로, 할로겐족 산성가스가 함유된 공정, 특히, 반도체 제조 산업에서 부터 LCD 공정 현장에 이르기까지 사용되는 세정제, 에칭제 및 용매 등에 존재하는 과불화 화합물을 분해하는 목적으로 사용될 수 있고, 또한, F2, Cl2, Br2 등과 같은 할로겐족 산성 가스를 사용하는 공정에서 배출되는 과불화화합물을 분해 제거하는데 유리한 효과가 있다.The catalyst for decomposing a perfluorinated compound according to the present invention exhibits an excellent decomposition effect and durability in decomposing and removing a perfluorinated compound containing a halogenated acidic gas, so that a process containing a halogenated acidic gas, in particular, an LCD from the semiconductor manufacturing industry It can be used for the purpose of decomposing perfluorinated compounds present in cleaning agents, etchants, and solvents used up to the process site, and also discharged from processes using halogenated acid gases such as F 2 , Cl 2 , Br 2, etc. It has an advantageous effect in decomposing and removing perfluorinated compounds.

CF4를 분해하는 촉매는 폐가스에 포함된 PFC를 대부분 분해시킬 수 있으며, 과불화화합물을 이루는 탄소를 CO2로 전환시킬 수 있어서, 반도체 공정에서 발생된 폐가스 처리에 주로 사용할 수 있지만, 반도체 공정이 아니라도 PFC를 세정제, 에칭제, 용매, 반응원료 등의 목적으로 사용하거나 제조하는 공정이나 작업장에서도 유용하게 사용할 수 있다.The catalyst that decomposes CF 4 can decompose most of the PFC contained in the waste gas, and converts carbon constituting a perfluorinated compound into CO 2 , so it can be mainly used for treating waste gas generated in a semiconductor process, but the semiconductor process If not, PFC can be used for the purpose of cleaning agents, etching agents, solvents, reaction raw materials, etc., or can be usefully used in manufacturing processes or workplaces.

불산(HF)을 포함한 산성가스들은 산 가스 스크러버(acid gas scrubber)를 거쳐 제거한 후 배출한다. 그러나, 가수분해에서 발생하는 불산은 RCS를 비롯하여 후단 공정에 심각한 부식 문제를 야기할 뿐만 아니라, PFC 분해 촉매의 활성에도 영향을 미친다.Acid gases including hydrofluoric acid (HF) are removed through an acid gas scrubber before being discharged. However, hydrofluoric acid generated in hydrolysis not only causes serious corrosion problems in the downstream process including RCS, but also affects the activity of the PFC decomposition catalyst.

따라서, 본 발명에 따른 과불화 화합물 분해용 촉매는 할로겐 산성가스에 내구성이 있으므로, 할로겐 산성가스를 함유하는 과불화 화합물 함유 가스를 처리하는데 특히 적합하므로 종래 기술과 대비하여 상승된 효과가 있다.Therefore, the catalyst for decomposing a perfluorinated compound according to the present invention is durable to a halogen acid gas, and thus is particularly suitable for treating a gas containing a perfluorinated compound containing a halogen acid gas, and thus has an increased effect compared to the prior art.

본 발명에서 PFC의 촉매 분해반응 시 온도는 500 내지 800℃, 바람직하기로 600 내지 750℃, 더욱 바람직하기로 500 내지 600℃ 이다.In the present invention, the temperature during the catalytic decomposition of PFC is 500 to 800°C, preferably 600 to 750°C, and more preferably 500 to 600°C.

본 발명에 따른 촉매는, 폐가스 중의 과불화화합물을 분해 제거하기 위해 제조된 입자 그대로 또는 구, 펠릿, 링과 같은 형태로 필요한 크기로 성형한 후, 촉매 반응기 내부에 층(bed)을 이루게 하여 사용할 수 있다. 촉매 반응기 내부에 형성되는 촉매층은 충진층(또는 고정층)이나 유동층 형태로 운용될 수 있다.The catalyst according to the present invention is used to form a bed in the catalytic reactor after shaping to the required size in the form of particles or spheres, pellets, or rings prepared to decompose and remove perfluorinated compounds in the waste gas. Can. The catalyst layer formed inside the catalytic reactor may be operated in the form of a packed bed (or fixed bed) or a fluidized bed.

촉매 반응기에서 가수분해 반응을 수행하기 위하여 외부로부터 물이 반응기 내부로 유입될 수 있다. 물은 반응기 외부에 별도로 구비된 공급원을 통해 공급될 수 있으며, 반응기 내부로 유입되기 전에 열교환기를 거쳐 가열되어 수증기 형태로 공급될 수 있다. 바람직하게는, 상기 반응기 내부에 공급되는 물은 순수를 사용하고, 가수분해 반응 속도를 고려하여 공급량을 조절할 수 있다.In order to perform a hydrolysis reaction in a catalytic reactor, water may be introduced into the reactor from the outside. Water may be supplied through a separate source provided outside the reactor, and heated through a heat exchanger before being introduced into the reactor to be supplied in the form of water vapor. Preferably, the water supplied to the reactor uses pure water, and the supply amount can be adjusted in consideration of the hydrolysis reaction rate.

상기 수증기는 수증기/PFC의 몰비가 1 ∼ 100 범위로 포함되며, 수증기와 함께 산소를 0 ∼ 50% 농도범위로 사용하여 촉매의 비활성화 없이 PFC를 분해할 수 있다. 수증기의 함유량이 상기 범위를 벗어나면 반응활성이 떨어진다.The water vapor includes a molar ratio of water vapor/PFC in the range of 1 to 100, and it is possible to decompose PFC without deactivation of the catalyst by using oxygen in a concentration range of 0 to 50% with water vapor. When the content of water vapor falls outside the above range, the reaction activity decreases.

본 발명에 따른 과불화 화합물 분해용 촉매의 제조는 졸-겔(Sol-Gel)법, 중화 침전법, 함침법, 공침법 중 하나를 선택하여 제조한다.The catalyst for decomposing a perfluorinated compound according to the present invention is prepared by selecting one of a sol-gel method, a neutralization precipitation method, an impregnation method, and a coprecipitation method.

본 발명에 따른 과불화 화합물 분해용 촉매 제조시 사용되는 중화제는 암모니아 수, 가성 소다 수, 생석회 수 중 하나 이상을 선택 사용한다.The neutralizing agent used in the preparation of the catalyst for decomposing a perfluorinated compound according to the present invention is selected from one or more of ammonia water, caustic soda water, and quicklime water.

본 발명에 따른 과불화 화합물 분해용 촉매 제조시 사용되는 금속원료의 분산제는 황산, 염산, 질산 및 초산 중에서 하나를 선택하여 사용한다.The dispersant of the metal raw material used in preparing the catalyst for decomposing the perfluorinated compound according to the present invention is selected from sulfuric acid, hydrochloric acid, nitric acid and acetic acid.

또한, 본 발명의 보호 범위는 본 발명에 따른 과불화화합물 분해용 촉매의 제조 방법을 포함한다. In addition, the protection scope of the present invention includes a method for preparing a catalyst for decomposing a perfluorinated compound according to the present invention.

과불화화합물 분해용 촉매의 제조 방법은 텅스텐(W) 및 지르코늄(Zr) 중 하나 이상을 주성분으로 하고, 담체로써 Al 및 Si 중 하나 이상을 혼합하는 단계를 포함하며, 혼합된 화합물을 과불화 화합물을 분해 제거하기 위해 제조된 입자 상태, 구, 펠릿 및 링 중 하나 이상의 형태로 성형하는 단계를 포함한다.The method for preparing a catalyst for decomposing a perfluorinated compound includes the step of mixing at least one of tungsten (W) and zirconium (Zr) as a main component, and one or more of Al and Si as a carrier, and mixing the compound with a perfluorinated compound It comprises the step of molding in the form of one or more of the state, spheres, pellets and rings prepared to decompose and remove.

본 발명에 따른 과불화화합물 분해용 촉매의 제조 방법은 앞서 기술한 과불화화합물 분해용 촉매에서 적용된 기술적 구성 중 제조 방법과 관련된 구성을 포함할 수 있다. The method for preparing a catalyst for decomposing a perfluorinated compound according to the present invention may include a configuration related to the manufacturing method among the technical components applied in the catalyst for decomposing a perfluorinated compound.

본 발명의 상시 실시 예의 조성물을 포함한 제시된 수치 범위 내에서 구체적으로 소정의 수치를 적용하여 촉매를 제조하고 및 제조된 촉매의 작용효과를 대비하여 살펴본다.The catalyst is prepared by specifically applying a predetermined value within a given numerical range including the composition of the always-on embodiment of the present invention, and the effect of the prepared catalyst is examined.

[하나의 구체적인 실시 예 1] Zr-Al 산화물 촉매의 제조[One specific example 1] Preparation of Zr-Al oxide catalyst

500g 의 증류수에 수도-보에마이트 100g 을 넣은 후, 10g 의 질산을 첨가한 후 완전히 용해시켰다. 용해된 혼합액에 지르코늄 산화물을 넣은 후 6시간 동안 교반한다.After adding 100 g of water-boehmite to 500 g of distilled water, 10 g of nitric acid was added and completely dissolved. After adding zirconium oxide to the dissolved mixture, the mixture is stirred for 6 hours.

혼합 용액을 암모니아수를 사용하여 pH8 로 중화한다. 여과 후 110℃ 에서 6시간 동안 건조하고, 750℃ 에서 4시간 소성하여 Zr-Al 산화물을 제조한다. 이때 지르코늄의 양은 수도-보에마이트의 Al 중량 대비 1%의 비율을 적용하였다.The mixed solution is neutralized to pH8 with ammonia water. After filtration, the mixture was dried at 110°C for 6 hours, and fired at 750°C for 4 hours to prepare a Zr-Al oxide. At this time, the amount of zirconium was applied to a ratio of 1% to the weight of Al of water-boehmite.

[또 다른 하나의 구체적인 실시 예 2] Zr-Al 산화물 촉매의 제조[Another specific example 2] Preparation of Zr-Al oxide catalyst

지르코늄의 양이 1 wt% 대신 5 wt% 인 것을 제외하고, 실시예 1과 동일한 방법으로 Zr-Al 산화물을 제조하였다.Zr-Al oxide was prepared in the same manner as in Example 1, except that the amount of zirconium was 5 wt% instead of 1 wt%.

[또 다른 하나의 구체적인 실시 예 3] W-Al 산화물 촉매의 제조[Another specific example 3] Preparation of W-Al oxide catalyst

5wt% 의 텅스텐 산화물을 과산화수소 20g 에 넣고, 가열하여 완전히 용해시킨다. 100g 의 수도-보에마이트를 증류수 500g 과 질산 10g 이 첨가된 용액에 넣고 완전히 용해시키고, 상기 텅스텐 용액과 혼합하였다. 혼합 용액을 암모니아수를 사용하여 pH 8으로 중화한다. 여과 후 110℃에서 6시간 동안 건조하고, 750℃에서 4시간 동안 소성하여 W-Al 산화물을 제조하였다.5 wt% of tungsten oxide was added to 20 g of hydrogen peroxide, and completely dissolved by heating. 100 g of water-boehmite was placed in a solution to which 500 g of distilled water and 10 g of nitric acid were added, completely dissolved, and mixed with the tungsten solution. The mixed solution is neutralized to pH 8 with ammonia water. After filtration, the mixture was dried at 110°C for 6 hours, and fired at 750°C for 4 hours to prepare a W-Al oxide.

[또 다른 하나의 구체적인 실시 예 4] W-Al 산화물 촉매의 제조[Another specific example 4] Preparation of W-Al oxide catalyst

텅스텐의 양이 5wt% (중량비 또는 중량%) 대신 10wt% 인 것을 제외하고, 실시예 3과 동일한 방법으로 W-Al 산화물을 제조하였다. W-Al oxide was prepared in the same manner as in Example 3, except that the amount of tungsten was 10 wt% instead of 5 wt% (weight ratio or wt%).

[또 다른 하나의 구체적인 실시 예 5] Zr-W-Al 산화물 촉매의 제조[Another specific example 5] Preparation of Zr-W-Al oxide catalyst

5wt% (중량비)의 텅스텐 산화물을 과산화수소 20g 에 넣고, 가열하여 완전히 용해시킨다. 5wt% 의 지르코늄 산화물을 증류수에 넣고 완전히 용해시키고, 상기 텅스텐 용액과 혼합한다. 100g 의 수도-보에마이트를 500g 의 증류수와 질산으로 완전히 용해시키고, 상기 텅스텐-지르코늄과 용액과 혼합하고 6 시간동안 교반한다. 암모니아수를 사용하여 pH8 으로 중화한다. 여과 후 110℃ 에서 6 시간 동안 건조하고, 750℃에서 4시간 동안 소성하여 Zr-W-Al 산화물을 제조하였다.5 wt% (weight ratio) of tungsten oxide was added to 20 g of hydrogen peroxide, and completely dissolved by heating. 5% by weight of zirconium oxide is added to distilled water, completely dissolved, and mixed with the tungsten solution. 100 g of water-boehmite is completely dissolved with 500 g of distilled water and nitric acid, mixed with the tungsten-zirconium solution and stirred for 6 hours. Neutralize to pH8 with ammonia water. After filtration, the mixture was dried at 110°C for 6 hours, and calcined at 750°C for 4 hours to prepare a Zr-W-Al oxide.

[비교예 1] Al 산화물 촉매의 제조[Comparative Example 1] Preparation of Al oxide catalyst

500g 의 증류수에 수도-보에마이트 100g 을 넣은 후 10g 의 질산을 첨가한 후 완전히 용해시켰다. 혼합 용액을 암모니아수를 사용하여 pH8 으로 중화하였다. 여과 후 110℃ 에서 6 시간 동안 건조하고, 750 ℃에서 4 시간 소성하여 Al 산화물을 제조하였다. After adding 100 g of water-boehmite to 500 g of distilled water, 10 g of nitric acid was added and completely dissolved. The mixed solution was neutralized to pH8 with ammonia water. After filtration, the mixture was dried at 110° C. for 6 hours, and calcined at 750° C. for 4 hours to prepare Al oxide.

본 발명에 따라 제조된 Zr-Al 산화물 촉매들과 비교 예로 제조된 Al 산화물 촉매의 과불화 화합물(CF4) 제거율을 측정하여 비교해 본다.Compare the Zr-Al oxide catalysts prepared according to the present invention by measuring the removal rate of the perfluorinated compound (CF 4 ) of the Al oxide catalyst prepared as a comparative example.

실시 예 1~5의 Zr-Al 산화물 촉매와 대조군으로써 비교예 1의 방법으로 제조한 Al 산화물 촉매의 과불화 화합물(CF4)의 제거율을 비교하기 위하여 하기 실험을 수행하였다. The following experiment was performed to compare the removal rate of the perfluorinated compound (CF4) of the Al oxide catalyst prepared by the method of Comparative Example 1 as a control with the Zr-Al oxide catalysts of Examples 1 to 5.

실시예 1~5 및 비교예 1에서 제조된 촉매를 각각 7ml씩 취하여 1/2 inch 인코넬(Inconel) 반응관에 채우고, 외부히터를 사용하여 반응온도를 750~800℃ 로 조절하여, SV 1700h-1의 조건에서 테트라플루오르메탄(CF4) 5000 ppm, 공기(Air) 200ml/min을 공급하면서 테트라플루오르메탄을 분해하였다. 테트라플루오르메탄 전환율은 하기 수학식1로 계산하였고, 반응물은 FT-IR을 이용하여 분석하였다. 그 결과를 하기 표1에 나타내었다. Examples 1 to 5 and Comparative Example 1, taken respectively by 7ml of a catalyst produced in filling the 1/2 inch Inconel (Inconel) reaction tube, to control the reaction temperature using an external heater to 750 ~ 800 ℃, SV 1700h - Tetrafluormethane was decomposed while supplying 5000 ppm of tetrafluoromethane (CF 4 ) and 200 ml/min of air under the conditions of 1 . Tetrafluoromethane conversion was calculated by the following equation (1), and the reaction was analyzed using FT-IR. The results are shown in Table 1 below.

Figure pat00001
Figure pat00001

제거율 (%)Removal rate (%) 반응온도 (℃)Reaction temperature (℃) 750℃750℃ 800℃800℃ 실시예 1Example 1 9898 100100 실시예 2Example 2 100100 100100 실시예 3Example 3 9595 100100 실시예 4Example 4 9696 100100 실시예 5Example 5 100100 100100 비교예 1Comparative Example 1 6565 100100

표 1에 나타낸 바와 같이, 본 발명에 따른 방법으로 제조한 촉매의 테트라플로오로메탄의 제거율은 750℃ 온도 조건하에서 95~100% 를 보인 반면, 대조군의 Al 산화물 촉매의 테트라플로오로메탄의 제거율은 750℃ 온도 조건하에서 65% 의 테트라플로오로메탄의 제거율을 보였다.As shown in Table 1, the removal rate of tetrafluoromethane of the catalyst prepared by the method according to the present invention was 95 to 100% under the temperature condition of 750° C., while the removal rate of tetrafluoromethane of the control Al oxide catalyst was The removal rate of tetrafluoromethane was 65% under 750°C temperature.

도 1은 본 발명에 따른 실시 예 2의 Zr-Al 산화물 촉매를 사용하여 CF4 분해 반응 전, 후 촉매의 결정상 변화를 나타낸 것이다.Figure 1 shows the crystal phase change of the catalyst before and after the CF 4 decomposition reaction using the Zr-Al oxide catalyst of Example 2 according to the present invention.

본 발명은 알파 알루미나, 알루미나, 수도-보에마이트(pseudo-boehmite) 및 실리카 중 적어도 하나 이상으로 선택 구성된 담체와, 텅스텐(W) 및 지르코늄(Zr)을 물 함유 용매에서 혼합, 건조 및 소성하여 제조한 알루미나 지지체를 포함하되, 바람직하게는 알루미나, 텅스텐 및 지르코늄 혼합 촉매에 활성성분으로 텅스텐(W)과 지르코늄(Zr)을 중화 침전법으로 담지한 과불화 화합물 분해용 촉매를 제공하여 과불화 화합물을 효율적으로 제거할 수 있으므로 산업상 이용 가능성이 매우 높다. The present invention is a carrier consisting of at least one selected from alpha alumina, alumina, pseudo-boehmite and silica, and tungsten (W) and zirconium (Zr) mixed, dried and calcined in a water-containing solvent. It includes a prepared alumina support, but is preferably an alumina, tungsten and zirconium mixed catalyst to provide a catalyst for decomposing a perfluorinated compound carrying tungsten (W) and zirconium (Zr) as neutralizing precipitates by a neutralization precipitation method. Since it can be efficiently removed, it is highly available for industrial use.

Claims (7)

텅스텐(W) 및 지르코늄(Zr) 중 하나 이상을 선택하여 주성분으로 하고, 담체로써 Al 및 Si 중 하나 이상을 선택하여 주성분과 혼합하여 제조됨을 특징으로 하는 과불화화합물 분해용 촉매.A catalyst for decomposing a perfluorinated compound, characterized in that it is prepared by selecting one or more of tungsten (W) and zirconium (Zr) as a main component and mixing one or more of Al and Si as a carrier with a main component. 제1항에 있어서,
텅스텐(W)의 전구체는 텅스텐산 나트륨 (Na2WO4ㆍ2H2O), 파라텅스텐산 암모늄 (5(NH4)2Oㆍ12WO3ㆍ5H2O), 텅스텐 옥사이드 (WO3), 염화 텅스텐 (WCl6) 또는 이의 혼합물이고, 지르코늄(Zr)의 전구체는 질산 지르코늄(Zr(NO3)4), 황산 지르코늄(Zr(SO4)2), 지르코늄 하이드로 옥사이드 (Zr(OH)2), 지르코늄 옥사이드 (ZrO) 또는 이의 혼합물이며, 알루미늄(Al)의 전구체는 알파 알루미나, 알루미나 및 수도-보에마이트(pseudo-boehmite) 중 적어도 하나를 선택하며, 실리콘(Si)의 전구체로 실리카(SiO2) 및 물유리 중 적어도 하나의 군에서 선택됨을 특징으로 하는 과불화 화합물 분해용 촉매.
According to claim 1,
The precursor of tungsten (W) is sodium tungstate (Na 2 WO 4 ㆍ2H 2 O), ammonium paratungstate (5(NH 4 ) 2 Oㆍ12WO 3 ㆍ5H 2 O), tungsten oxide (WO 3 ), chloride Tungsten (WC 16 ) or a mixture thereof, the precursors of zirconium (Zr) are zirconium nitrate (Zr(NO 3 ) 4 ), zirconium sulfate (Zr(SO 4 ) 2 ), zirconium hydrooxide (Zr(OH) 2 ), Zirconium oxide (ZrO) or a mixture thereof, and the precursor of aluminum (Al) is at least one selected from alpha alumina, alumina, and pseudo-boehmite, and silica (SiO2) is a precursor of silicon (Si). And a catalyst for decomposing a perfluorinated compound, characterized in that it is selected from at least one of water glass.
제1항에 있어서,
텅스텐(W), 지르코늄(Zr), 알루미늄(Al)을 용매에서 혼합하고, 건조시킨 후 소성시켜 제조하되, 중량비가 Al : W : Zr = 100 : 0.1 ~ 10 : 0.1 ~ 5 인 알루미나 및 텅스텐, 지르코늄 혼합 촉매 지지체를 포함하는 과불화 화합물 분해용 촉매.
According to claim 1,
Prepared by mixing tungsten (W), zirconium (Zr), and aluminum (Al) in a solvent, drying and firing, but alumina and tungsten having a weight ratio of Al:W:Zr=100:0.1-10:0.1-5 A catalyst for decomposing a perfluorinated compound comprising a zirconium mixed catalyst support.
제1항 내지 제3항 중 어느 한 항에 있어서,
과불화 화합물 분해용 촉매의 제조는 졸-겔(Sol-Gel)법, 중화 침전법, 함침법, 공침법 중 하나를 선택하여 제조됨을 특징으로 하는 과불화 화합물 분해용 촉매.
The method according to any one of claims 1 to 3,
The catalyst for decomposing a perfluorinated compound is prepared by selecting one of a sol-gel (Sol-Gel) method, a neutralization precipitation method, an impregnation method, and a coprecipitation method.
제1항 내지 제3항 중 어느 한 항에 있어서,
과불화 화합물 분해용 촉매 제조시 사용되는 중화제는 암모니아 수, 가성 소다 수, 생석회 수 중 하나 이상을 선택하여 제조됨을 특징으로 하는 과불화 화합물 분해용 촉매.
The method according to any one of claims 1 to 3,
A catalyst for decomposing a perfluorinated compound is prepared by selecting at least one of ammonia water, caustic soda water, and quicklime water.
제1항 내지 제3항 중 어느 한 항에 있어서,
과불화 화합물 분해용 촉매 제조시 사용되는 금속원료의 분산제로 황산, 염산, 질산 및 초산 중에서 하나를 선택하여 제조됨을 특징으로 하는 과불화 화합물 분해용 촉매.
The method according to any one of claims 1 to 3,
A catalyst for decomposing a perfluorinated compound, characterized in that it is prepared by selecting one of sulfuric acid, hydrochloric acid, nitric acid, and acetic acid as a dispersant for a metal raw material used in manufacturing a catalyst for decomposing a perfluorinated compound.
텅스텐(W) 및 지르코늄(Zr) 중 하나 이상을 선택하여 주성분으로 하고 담체로써 Al 및 Si 중 하나 이상을 선택하여 주성분과 혼합하는 단계와,
혼합된 화합물을 과불화 화합물을 분해 제거하기 위해 제조된 입자 상태, 구, 펠릿 및 링 중 하나 이상의 형태로 성형하는 단계와,
성형된 과불화 화합물 분해용 촉매를 건조시켜 소성하는 단계를 포함함을 특징으로 하는 과불화화합물 분해용 촉매 제조 방법.
Selecting one or more of tungsten (W) and zirconium (Zr) as a main component, and selecting one or more of Al and Si as a carrier to mix with the main component,
Molding the mixed compound into one or more of the form of particles, spheres, pellets and rings prepared to decompose and remove the perfluorinated compound,
A method for producing a catalyst for decomposing a perfluorinated compound, comprising drying and firing the catalyst for decomposing the formed perfluorinated compound.
KR1020190009150A 2019-01-24 2019-01-24 Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method KR20200092068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190009150A KR20200092068A (en) 2019-01-24 2019-01-24 Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190009150A KR20200092068A (en) 2019-01-24 2019-01-24 Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210021504A Division KR20210020982A (en) 2021-02-18 2021-02-18 Tungsten-zirconium metal oxide catalyst for decomposing large-capacity perfluorinated compounds and method for decomposing perfluorinated compounds using the catalyst

Publications (1)

Publication Number Publication Date
KR20200092068A true KR20200092068A (en) 2020-08-03

Family

ID=72042867

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190009150A KR20200092068A (en) 2019-01-24 2019-01-24 Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method

Country Status (1)

Country Link
KR (1) KR20200092068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029777A1 (en) * 2022-08-04 2024-02-08 주식회사 에코프로에이치엔 Catalyst for decomposing perfluorocompounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029777A1 (en) * 2022-08-04 2024-02-08 주식회사 에코프로에이치엔 Catalyst for decomposing perfluorocompounds

Similar Documents

Publication Publication Date Title
JP3977887B2 (en) Treatment method for fluorine compound-containing gas
KR101867507B1 (en) Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof
US6942841B2 (en) Process for treating fluorine compound-containing gas
EP0885648B1 (en) A treatment method for decomposing fluorine compounds, and apparatus and use of a catalyst therefor
KR100461758B1 (en) Catalyst for decomposition of perfluoro-compound in waste-gas and method of decomposition with thereof
US6673326B1 (en) Catalytic processes for the reduction of perfluorinated compounds and hydrofluorocarbons
US20210362132A1 (en) Metal oxide catalysts for removal of large capacity perfluorinated compounds
KR20200092068A (en) Tungsten-zirconium metal oxide catalysts for removal of large capacity perfluorinated compounds and its manufacturing method
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
KR20180121730A (en) Acid-resistant catalyst for decomposing perfluorinated compounds having increased forming strength and use thereof
KR20210020982A (en) Tungsten-zirconium metal oxide catalyst for decomposing large-capacity perfluorinated compounds and method for decomposing perfluorinated compounds using the catalyst
KR101869375B1 (en) Aluminum oxide catalyst for decomposing perfluorinated compounds and method of manufacturing the same
JPH10286439A (en) Decomposing method of fluorine-containing compound
KR101810924B1 (en) Particulate solid reducing agents
WO2024135453A1 (en) Discharge gas treatment method and discharge gas treatment device
WO2024135452A1 (en) Exhaust gas treatment method and exhaust gas treatment device
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
WO2024101331A1 (en) Chlorine gas decomposition method and chlorine gas removal method
WO2023228889A1 (en) Chlorine gas-decomposing catalyst and exhaust gas treatment device
JP2000225342A (en) Catalyst for decomposing fluorine-containing compound and method for decomposing fluorine-containing compound
JP2007237150A (en) Catalyst detoxifying treatment method of emission gas
JPH11179201A (en) Catalyst for decomposition of fluorine-containing compound and fluorine-containing compound
TWI352616B (en) Method for treating gas containing fluorine compou
JP2008100229A (en) Fluorine compound-containing gas treatment method
JP2000126598A (en) Catalyst and method for decomposing fluorine compound

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application
A107 Divisional application of patent