JPH0616818B2 - Exhaust gas purification method and device - Google Patents

Exhaust gas purification method and device

Info

Publication number
JPH0616818B2
JPH0616818B2 JP2074936A JP7493690A JPH0616818B2 JP H0616818 B2 JPH0616818 B2 JP H0616818B2 JP 2074936 A JP2074936 A JP 2074936A JP 7493690 A JP7493690 A JP 7493690A JP H0616818 B2 JPH0616818 B2 JP H0616818B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
mixed
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2074936A
Other languages
Japanese (ja)
Other versions
JPH03275126A (en
Inventor
速水 伊東
修平 巽
彰一 高尾
賢郎 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2074936A priority Critical patent/JPH0616818B2/en
Publication of JPH03275126A publication Critical patent/JPH03275126A/en
Publication of JPH0616818B2 publication Critical patent/JPH0616818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、道路トンネルからの換気ガス等のように、低
濃度の一酸化窒素(NO)、二酸化窒素(NO2)等の窒素酸化
物(NOx)含有する排ガスの浄化方法及び装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to nitrogen oxides such as low concentration nitric oxide (NO) and nitrogen dioxide (NO 2 ) such as ventilation gas from a road tunnel. The present invention relates to a method and an apparatus for purifying exhaust gas containing (NOx).

〔従来の技術〕[Conventional technology]

道路トンネル内の換気設備は、主として煤塵による視程
障害の除去、あるいは有害物質濃度を許容濃度以下の水
準に保ち、トンネル利用者の安全確保と不快感の低減と
を主たる目的として設けられている。現在一般に用いら
れている換気方式は、新鮮な外気をトンネル内に送気
し、あるいは汚染空気をトンネル外に換気することによ
り、汚染空気を希釈する方式が用いられている。
Ventilation equipment in road tunnels is provided mainly for the purpose of removing visibility obstacles caused by soot dust or maintaining the concentration of harmful substances below a permissible concentration, ensuring the safety of tunnel users and reducing discomfort. As a ventilation method generally used at present, a method of diluting contaminated air by sending fresh outside air into the tunnel or ventilating contaminated air outside the tunnel is used.

一方、最近の道路トンネルでは、延長が10kmを越える
ものが建設されるなど、長大なトンネルが計画される場
合がある。このような長大トンネルの換気設備では、ト
ンネル中間部において空気の交換を行うための換気用立
坑を建設する必要があり、換気設備に係わる工事費が多
額となるとともに運転経費も多大となる。
On the other hand, in recent road tunnels, there are cases where long tunnels are planned, such as construction of roads with an extension of more than 10 km. In the ventilation equipment for such a long tunnel, it is necessary to construct a ventilation shaft for exchanging air in the middle part of the tunnel, which results in a large construction cost for the ventilation equipment and a large operating cost.

一方、従来の換気方式では、トンネル内で高濃度に汚染
された空気が、坑口あるいは換気口より集中して連続的
に放出されるため、周辺の大気環境の汚染が問題とされ
る。このため、省エネルギーで、周辺環境への汚染度を
軽減し得る新しい換気方式の開発が望まれている。これ
らの問題を解決する方法として、トンネルから排出され
る空気中の窒素酸化物を活性炭によって吸着除去する方
法などが検討されているが、現在の活性炭の場合、吸着
量が十分とはいえず、再生コストなども含めた経済性の
面で問題があり、実用化には至っていない。
On the other hand, in the conventional ventilation method, the air polluted to a high concentration inside the tunnel is continuously discharged from the well or the ventilation port in a concentrated manner, which causes a problem of pollution of the surrounding atmospheric environment. Therefore, it is desired to develop a new ventilation method that can save energy and reduce the degree of pollution to the surrounding environment. As a method of solving these problems, a method of adsorbing and removing nitrogen oxides in the air discharged from the tunnel with activated carbon has been studied, but in the case of the current activated carbon, the adsorbed amount is not sufficient, It has not been put to practical use because it has a problem in terms of economic efficiency, including recycling costs.

従来、特開昭49−129671号公報には、NOxが含有ガスに
オゾンを混合し、その混合ガスを活性炭層を通過させて
NOxを除去するNOx除去装置が開示されている。
Conventionally, JP-A-49-129671 discloses that NOx is mixed with a gas containing ozone and the mixed gas is passed through an activated carbon layer.
A NOx removing device for removing NOx is disclosed.

特開昭49−129695号公報には、NOをMnO2系触媒によりNO
2に酸化した後、吸着剤により吸着除去するNOの除去方
法が開示されている。
JP-A-49-129695 discloses that NO is converted to NO by an MnO 2 -based catalyst.
A method of removing NO is disclosed, in which after being oxidized to 2 , NO is adsorbed and removed by an adsorbent.

特開平1-155933号公報には、道路トンネルからの換気ガ
スをゼオライト系吸着剤で処理し、NOxを吸着除去した
後、この吸着剤をNH3含有高温空気で再生処理する方法
が開示されている。
JP-A 1-155933 discloses a method of treating ventilation gas from a road tunnel with a zeolite-based adsorbent to remove NOx by adsorption, and then regenerating the adsorbent with NH 3 -containing high temperature air. There is.

ま、特開平1-155934号公報には、道路トンネルからの換
気ガスをシリカゲル系脱湿剤で処理した後、ゼオライト
系吸着剤でNOxを吸着除去し、この処理換気ガスを脱湿
剤に通気し、加熱再生させる方法が開示されている。
Moreover, in JP-A-1-155934, after treating ventilation gas from a road tunnel with a silica gel-based dehumidifying agent, NOx is adsorbed and removed with a zeolite-based adsorbent, and this treated ventilation gas is passed through the dehumidifying agent. However, a method of heating and regenerating is disclosed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のように、現在はトンネルの換気ガスは、処理をし
ないまま大気中に放出されている。浄化方法としては、
活性炭による吸着除去法が検討されたが、活性炭のNOx
吸着量が不十分であり実用化に至っていない。
As mentioned above, the ventilation gas in the tunnel is currently released into the atmosphere without any treatment. As a purification method,
The adsorption removal method using activated carbon was investigated, but NOx of activated carbon
The amount of adsorption is insufficient and it has not been put to practical use.

トンネル排ガス中のNOxは、主として一酸化窒素(NO)で
あり、このNOはこのままの形では、活性炭などに吸着さ
れないし、アルカリ吸着剤にも吸収されない。
The NOx in the tunnel exhaust gas is mainly nitric oxide (NO), and this NO is not adsorbed on the activated carbon or the like as it is, nor is it adsorbed on the alkali adsorbent.

現在、前記のように、主として、NOをNO2まで酸化した
後活性炭やゼオライトに吸着させて処理する技術が検討
されているが、活性炭の場合、NO2の吸着量が十分大き
いものが無いため、経済性の面から実用化がむつかし
い。また、ゼオライトの場合、湿気があるとNO2の吸着
性能が極端に低下するため、予め処理ガスを除湿する必
要があり、トンネル排ガスのように大量のガス(300〜40
0Nm3/sec程度)を処理する場合、実用的でない。
Currently, as described above, mainly, a technology of oxidizing NO to NO 2 and then adsorbing it to activated carbon or zeolite is being studied, but in the case of activated carbon, there is no NO 2 adsorption amount that is sufficiently large. However, it is difficult to put it into practical use from the economical aspect. Further, in the case of zeolite, since the adsorption performance of NO 2 is extremely lowered when there is moisture, it is necessary to dehumidify the treated gas in advance, and a large amount of gas (300 to 40
0Nm 3 / sec) is not practical.

本発明はNOをN2O5まで酸化すれば、きわめて容易に吸着
あるいは吸収される性質のあることに着目し、NOをオゾ
ンによって酸化処理し、N2O5にして吸収しようとするも
のである。
The present invention focuses on the fact that if NO is oxidized to N 2 O 5 , it is very easily adsorbed or absorbed, and NO is oxidized by ozone to be converted to N 2 O 5 to be absorbed. is there.

但し、NOのN2O5への酸化反応は反応速度が小さく、NOと
オゾンの接触時間を数十秒取る必要があり、トンネル排
ガスの処理の場合、処理装置のスペースの制約があり、
反応時間を短縮する必要がある。そこで、NOのN2O5への
酸化を促進する触媒について検討した結果、酸化マンガ
ン系触媒、酸化ニッケル系触媒、活性炭(特にヤシガラ
系活性炭)が有望であることを見出した。
However, the oxidation reaction of NO to N 2 O 5 has a low reaction rate, it is necessary to take the contact time of NO and ozone for several tens of seconds, and in the case of the treatment of tunnel exhaust gas, there is a restriction on the space of the treatment device.
It is necessary to shorten the reaction time. Therefore, as a result of investigating a catalyst that promotes the oxidation of NO to N 2 O 5 , it was found that manganese oxide-based catalyst, nickel oxide-based catalyst, and activated carbon (especially coconut husk activated carbon) are promising.

第4図は、無触媒の場合の、NOのN2O5への酸化における
触媒時間の影響を示している。供給ガスNO濃度は4.4pp
m、供給ガス量は5/minで、O3/NOモル比4.7、8.
1、10.6の場合について実験を行ったものである。
第4図から、NOのN2O5への変換率を80%とするために
は、約20秒もかかることがわかる。
FIG. 4 shows the effect of catalyst time on the oxidation of NO to N 2 O 5 without catalyst. Supply gas NO concentration is 4.4pp
m, the supply gas amount is 5 / min, the O 3 / NO molar ratio is 4.7, 8.
The experiment was conducted for the cases of 1 and 10.6.
It can be seen from FIG. 4 that it takes about 20 seconds to set the conversion rate of NO to N 2 O 5 to 80%.

なお、前記公報には、NOxをN2O5に酸化した後除去する
方法は、何ら開示も示唆もされていない。
It should be noted that the above publication does not disclose or suggest any method of removing NOx after oxidizing it to N 2 O 5 .

本発明は上記の諸点に鑑みなされたもので、NO、NO2
のNOxを含有する排ガスにオゾンを混合し、酸化マンガ
ン系触媒、酸化ニッケル系触媒、活性炭等によってNOx
をN2O5に酸化した後、高効率で吸収除去する方法及び装
置を提供することを目的とするものである。
The present invention has been made in view of the above points, NO, NO is mixed with exhaust gas containing NOx such as NO 2 , NOx by manganese oxide-based catalyst, nickel oxide-based catalyst, activated carbon and the like.
It is an object of the present invention to provide a method and an apparatus for highly efficiently absorbing and removing nitrogen after being oxidized to N 2 O 5 .

〔課題を解決するための手段及び作用〕[Means and Actions for Solving the Problems]

上記の目的を達成するために、請求項1の排ガス浄化方
法は、一酸化窒素(NO)、二酸化窒素(NO2)等の窒素酸化
物(NOx)を含む排ガスにオゾンを混合し、この混合ガス
を、二酸化マンガン、酸化ニッケル、二酸化ケイ素、二
酸化チタン、酸化銅、活性炭からなる群より選ばれた触
媒物質を主成分とする触媒層を通過させることにより、
窒素酸化物(NOx)を五酸化二窒素(N2O5)に酸化すると同
時に未反応オゾンを分解し、さらに、この混合ガス中の
N2O5、NOxを前記触媒層により吸収除去することを特徴
としている。
In order to achieve the above object, the exhaust gas purification method according to claim 1 mixes ozone with exhaust gas containing nitrogen oxides (NOx) such as nitric oxide (NO) and nitrogen dioxide (NO 2 ), By passing the gas through a catalyst layer containing a catalyst substance selected from the group consisting of manganese dioxide, nickel oxide, silicon dioxide, titanium dioxide, copper oxide and activated carbon as a main component,
Nitrogen oxide (NOx) is oxidized to dinitrogen pentoxide (N 2 O 5 ) and at the same time unreacted ozone is decomposed.
The catalyst layer is characterized by absorbing and removing N 2 O 5 and NOx.

上記の触媒物質は、NOのN2O5への酸化促進効果、N2O5
NO2などのNOxの吸収効果、未反応オゾンの分解効果を有
している。
The above-mentioned catalyst substance has an effect of promoting the oxidation of NO to N 2 O 5 , N 2 O 5 and
It has the effect of absorbing NOx such as NO 2 and the effect of decomposing unreacted ozone.

請求項2の方法は、一酸化窒素(NO)、二酸化窒素(NO2)
等の窒素酸化物(NOx)を含む排ガスにオゾンを混合し、
この混合ガスを、二酸化マンガン、酸化ニッケル、二酸
化ケイ素、二酸化チタン、酸化銅、活性炭からなる群よ
り選ばれた触媒物質を主成分とする触媒層を通過させる
ことにより、窒素酸化物(NOx)を五酸化二窒素(N2O5)に
酸化すると同時に未反応オゾンを分解した後、この混合
ガス中のN2O5、NOxを、アルカリ吸収剤によって吸収除
去することを特徴としている。
The method according to claim 2 is applied to nitric oxide (NO) and nitrogen dioxide (NO 2 ).
Ozone is mixed with exhaust gas containing nitrogen oxides (NOx), etc.,
Nitrogen oxides (NOx) are obtained by passing this mixed gas through a catalyst layer whose main component is a catalyst substance selected from the group consisting of manganese dioxide, nickel oxide, silicon dioxide, titanium dioxide, copper oxide, and activated carbon. It is characterized by oxidizing undiluted ozone at the same time as oxidizing to dinitrogen pentoxide (N 2 O 5 ), and then absorbing and removing N 2 O 5 and NOx in this mixed gas with an alkali absorbent.

触媒層によって、NOをN2O5に酸化した後、石灰石のよう
なアルカリ吸収剤(固体)によって吸収除去する方法で
もよい。しかし、実験の結果、N2O5に酸化すれば、触媒
自体に吸収されることが明らかになった。これは、多分
共存する水分よって亜硝酸あるいは硝酸に変化するため
と考えられる。
A method of oxidizing NO to N 2 O 5 by the catalyst layer and then absorbing and removing with an alkali absorbent (solid) such as limestone may be used. However, as a result of the experiment, it was revealed that the catalyst itself was absorbed when it was oxidized to N 2 O 5 . This is probably because the coexisting water changes to nitrous acid or nitric acid.

請求項3の方法は、触媒物質に石灰石、生石灰、ドロマ
イト等のアルカリ系吸収剤を混合して用いることを特徴
としている。
The method of claim 3 is characterized in that an alkaline absorbent such as limestone, quick lime or dolomite is mixed with the catalyst substance and used.

請求項4の方法は、触媒物質として、二酸化マンガン系
触媒もしくは酸化ニッケル系触媒と、活性炭とを混合し
たものを用いることを特徴としている。
The method of claim 4 is characterized in that a mixture of a manganese dioxide-based catalyst or a nickel oxide-based catalyst and activated carbon is used as the catalyst substance.

請求項5の方法は、触媒物質として、二酸化マンガン系
触媒もしくは酸化ニッケル系触媒、活性炭及びアルカリ
吸収剤を混合したものを用いることを特徴としている。
The method of claim 5 is characterized in that a mixture of a manganese dioxide-based catalyst or a nickel oxide-based catalyst, activated carbon and an alkali absorbent is used as the catalyst substance.

上記の方法において、排ガスにオゾンを混合し、この混
合ガスを二酸化マンガン触媒層、酸化ニッケル触媒層あ
るいは活性炭層を通過させることによって、排ガス中の
NOxの大半をN2O5まで酸化する。酸化処理された排ガス
は、触媒や活性炭自信の吸収(吸着)されるか、あるい
は石灰石などのアルカリ系吸収剤によって吸収除去す
る。
In the above method, the exhaust gas is mixed with ozone, and the mixed gas is passed through the manganese dioxide catalyst layer, the nickel oxide catalyst layer or the activated carbon layer to obtain
Most of NOx is oxidized to N 2 O 5 . The exhaust gas subjected to the oxidation treatment is absorbed (adsorbed) by the catalyst or activated carbon, or is absorbed and removed by an alkaline absorbent such as limestone.

酸化触媒層における主反応は、次式のとおりである。The main reaction in the oxidation catalyst layer is as follows.

NO+O3=NO2+O2 NO2+O3=NO3+O2 NO3+NO2→N2O5 また、アルカリ剤として石灰石を用いた場合の反応は、
次式のとおりである。
NO + O 3 = NO 2 + O 2 NO 2 + O 3 = NO 3 + O 2 NO 3 + NO 2 → N 2 O 5 In addition, the reaction when limestone is used as the alkaline agent is
The formula is as follows.

CaCO3+N2O5→Ca(NO3)2+CO2 また、請求項6の方法は、O3/NOxモル比を0.5〜10
の範囲に調整することを特徴としている。
CaCO 3 + N 2 O 5 → Ca (NO 3 ) 2 + CO 2 The method of claim 6 has an O 3 / NOx molar ratio of 0.5 to 10.
It is characterized by adjusting to the range of.

O3/NOxモル比が0.5未満の場合は、N2O5の生成が大幅
に減少するという不都合があり、10を越える場合は、
O3発生に要する所要電力が増大し経済性の面で不利とな
ると当時に、未反応オゾンが多くなり、これが二次公害
を引き起こすおそれがあるという不都合がある。
When the O 3 / NOx molar ratio is less than 0.5, the production of N 2 O 5 is significantly reduced, and when it exceeds 10,
If the electric power required to generate O 3 increases and it becomes economically disadvantageous, unreacted ozone increases at that time, which may cause secondary pollution.

請求項7の方法は、触媒層を40〜80℃に加熱することを
特徴としている。
The method of claim 7 is characterized in that the catalyst layer is heated to 40 to 80 ° C.

触媒層の温度が40℃以上の場合は、処理ガスを加熱しな
ければいけないが、NOのN2O5への酸化反応速度が大幅に
増大するという利点があり、80℃を越える場合は、処理
ガスの加熱に要するコストが増大しすぎるとともに、活
性炭を用いる場合には、オゾンによる活性炭の酸化が促
進され、活性炭の消失が著しいという不都合がある。
When the temperature of the catalyst layer is 40 ° C or higher, the processing gas must be heated, but there is an advantage that the oxidation reaction rate of NO to N 2 O 5 is significantly increased, and when it exceeds 80 ° C, The cost required for heating the processing gas increases too much, and when activated carbon is used, oxidation of activated carbon by ozone is promoted, resulting in significant disappearance of activated carbon.

そして、請求項8の排ガス浄化装置は、第1図に示すよ
うに、排ガス中のNO、NO2等のNOxをN2O5に酸化しN2O5
吸収するための触媒を充填した触媒充填部1と、この触
媒充填部1の上流側に接続されたオゾナイザー2とを包
含することを特徴としている。4は排風機、5は換気塔
である。
The exhaust gas purifying apparatus according to claim 8, as shown in FIG. 1, was filled with a catalyst for absorbing N 2 O 5 by oxidizing NO in the exhaust gas, the NOx such as NO 2 to N 2 O 5 It is characterized by including a catalyst filling portion 1 and an ozonizer 2 connected to the upstream side of the catalyst filling portion 1. 4 is an exhaust fan, and 5 is a ventilation tower.

請求項9の装置は、第2図に示すように、排ガス中のN
O、NO2等のNOxをN2O5に酸化しN2O5を吸収するための触
媒及びアルカリ剤を充填した触媒・アルカリ剤充填部1
aと、この触媒・アルカリ剤充填部1aの上流側に接続
されたオゾナイザー2とを包含することを特徴としてい
る。
According to the apparatus of claim 9, as shown in FIG.
O, NOx and N 2 O 5 oxide and N 2 O 5 catalyst, the alkaline agent filling section 1 filled with a catalyst and an alkaline agent for absorbing such NO 2
a and an ozonizer 2 connected to the upstream side of the catalyst / alkali agent filled portion 1a.

請求項10の装置は、第3図に示すように、排ガス中の
NO、NO2等のNOxをN2O5に酸化しN2O5を吸収するための触
媒を充填した触媒充填部1と、この触媒充填部1の上流
側に接続されたオゾナイザー2と、触媒充填部1の下流
側に接続されたアルカリ剤充填部3とを包含することを
特徴としている。
The apparatus of claim 10 is, as shown in FIG.
NO, NOx in such NO 2 and catalyst packed portion 1 catalyst was packed to absorb N 2 O 5 oxidized to N 2 O 5, and ozonizer 2 connected to the upstream side of the catalyst packed section 1, It is characterized by including an alkaline agent filling portion 3 connected to the downstream side of the catalyst filling portion 1.

なお、触媒充填部1、触媒・アルカリ剤充填部1a、ア
ルカリ剤充填部3は、固定層又は移動層のいずれでもよ
い。
The catalyst filling unit 1, the catalyst / alkali agent filling unit 1a, and the alkali agent filling unit 3 may be either a fixed bed or a moving bed.

〔実施例〕〔Example〕

以下、本発明の実施例及び比較例について説明する。 Hereinafter, examples and comparative examples of the present invention will be described.

実施例1 内径150mmの円筒型触媒充填層に、平均粒径5mmの二酸化
マンガン系触媒を充填し、NOを4.3ppm、NO2を0.9ppm含
有する排ガスにオゾンを25.9ppm混合した処理ガスを通
し、下記の処理条件で連続浄化処理を実施した。その結
果、約60時間連続運転した後の定常状態において90%の
NOx除去率が得られた。なお、層入口、出口のガス組成
は下記の如くであった。
Example 1 A cylindrical catalyst packed bed having an inner diameter of 150 mm was packed with a manganese dioxide-based catalyst having an average particle size of 5 mm, and a treated gas obtained by mixing 25.9 ppm of ozone with exhaust gas containing 4.3 ppm of NO and 0.9 ppm of NO 2 was passed through. The continuous purification treatment was carried out under the following treatment conditions. As a result, 90% of the steady state after continuous operation for about 60 hours
The NOx removal rate was obtained. The gas composition at the layer inlet and outlet was as follows.

(1) 処理条件 処理ガス量 600/min O3/NO=5 NOx酸化触媒……二酸化マンガン系触媒 触媒層の空気速度(SV) 50,000h-1(常温) (2) 供給ガス組成 NO 4.3ppm NO2 0.9ppm O3 25.9ppm 空気 バランス (3) 触媒層出口ガス組成 NO 0.2ppm NO2 0.3ppm N2O5 0.0ppm O 0.0ppm 実施例2 内径150mmの円筒型触媒充填層に、平均粒径5mmの二酸化
マンガン系触媒と平均粒径5mmの石灰石とを重量比で
5:1で混合・充填し、NOを7.0ppm、NO5を1.5ppm含有
する排ガスにオゾンを42.0ppm混合した処理ガスを通
し、下記の処理条件で連続浄化処理を実施した。その結
果、約60時間連続運転した後の定常状態において、92%
のNOx除去率が得られた。なお、層入口、出口のガス組
成は下記の如くであった。
(1) Treatment conditions Treatment gas amount 600 / min O 3 / NO = 5 NOx oxidation catalyst …… Manganese dioxide catalyst Air velocity (SV) of catalyst layer 50,000h -1 (room temperature) (2) Supply gas composition NO 4.3ppm NO 2 0.9ppm O 3 25.9ppm Air balance (3) Catalyst layer outlet gas composition NO 0.2ppm NO 2 0.3ppm N 2 O 5 0.0ppm O 3 0.0ppm Example 2 Average particle size in cylindrical catalyst packed bed with inner diameter of 150mm A treatment gas in which a manganese dioxide-based catalyst having a diameter of 5 mm and a limestone having an average particle diameter of 5 mm are mixed and filled at a weight ratio of 5: 1, and exhaust gas containing 7.0 ppm of NO and 1.5 ppm of NO 5 is mixed with 42.0 ppm of ozone. The continuous purification treatment was carried out under the following treatment conditions. As a result, in the steady state after about 60 hours of continuous operation, 92%
The NOx removal rate of was obtained. The gas composition at the layer inlet and outlet was as follows.

(1) 処理条件 処理ガス量 600/min O3/NO=4.0 NOx酸化触媒……二酸化マンガン系触媒 アルカリ……石灰石 触媒/アルカリ混合層の空気速度(SV) 50,000h-1(常温) (2) 供給ガス組成 NO 7.0ppm NO2 1.5ppm O3 42.0ppm 空気 バランス (3) 触媒・石灰石層出口ガス組成 NO 0.1ppm NO2 0.6ppm N2O5 0.0ppm O3 0.1ppm 実施例3 内径150mmの円筒型触媒充填層に、平均粒径3mmのヤシ殻
活性炭を充填し、NOを4.5ppm、NO2を0.6ppm含有する排
ガスにオゾンを13.1ppm混合した処理ガスを通し、下記
の処理条件で連続浄化処理を施した。その結果、約60時
間連続運転した後の定常状態において、82%のNOx除去
率が得られらた。なお、層入口、出口のガス組成は下記
の如くであった。
(1) Treatment conditions Treatment gas amount 600 / min O 3 /NO=4.0 NOx Oxidation catalyst …… Manganese dioxide catalyst Alkaline …… Limestone Catalyst / Alkali mixed layer air velocity (SV) 50,000h -1 (normal temperature) (2) ) Supply gas composition NO 7.0ppm NO 2 1.5ppm O 3 42.0ppm Air balance (3) Catalyst / limestone layer outlet gas composition NO 0.1ppm NO 2 0.6ppm N 2 O 5 0.0ppm O 3 0.1ppm Example 3 of 150mm inner diameter Cylindrical catalyst packed bed was packed with coconut shell activated carbon with an average particle size of 3 mm, and exhaust gas containing NO of 4.5 ppm and NO 2 of 0.6 ppm was mixed with ozone at 13.1 ppm and passed under the following processing conditions. Purified. As a result, NOx removal rate of 82% was obtained in steady state after continuous operation for about 60 hours. The gas composition at the layer inlet and outlet was as follows.

(1) 処理条件 処理ガス量 600/min O3/NO=2.5 NOx酸化触媒……ヤシガラ系活性炭 触媒層の空気速度(SV) 80,000h-1(常温) (2) 供給ガス組成 NO 4.5ppm NO2 0.6ppm O3 13.1ppm 空気 バランス (3) 活性炭層出口ガス組成 NO 0.1ppm NO2 0.8ppm N2O5 0.0ppm O3 0.0ppm 実施例4 内径150mmの円筒型触媒充填層に、平均粒径5mmのヤシ殻
活性炭と平均粒径5mmの石炭石とを重量比で4:1に混
合・充填し、NOを9.0ppm、NO2を1.5ppm含有する排ガス
にオゾンを31.4ppm混合した処理ガスを通し、下記の処
理条件で連続浄化処理を実施した。その結果、約60時間
連続運転した後の定常状態において、92%のNOx除去率
が得られらた。なお、層入口、出口のガス組成は下記の
如くであった。
(1) Treatment conditions Treatment gas amount 600 / min O 3 /NO=2.5 NOx Oxidation catalyst ...... Coconut husk activated carbon Air velocity in catalyst layer (SV) 80,000h -1 (room temperature) (2) Supply gas composition NO 4.5ppm NO 2 0.6ppm O 3 13.1ppm Air balance (3) Activated carbon layer outlet gas composition NO 0.1ppm NO 2 0.8ppm N 2 O 5 0.0ppm O 3 0.0ppm Example 4 Average particle size in cylindrical catalyst packed bed with inner diameter of 150mm 5 mm coconut shell activated carbon and coal stone with an average particle size of 5 mm were mixed and filled at a weight ratio of 4: 1 to produce a treated gas in which exhaust gas containing 9.0 ppm of NO and 1.5 ppm of NO 2 was mixed with ozone of 31.4 ppm. Throughout, continuous purification treatment was carried out under the following treatment conditions. As a result, NOx removal rate of 92% was obtained in the steady state after continuous operation for about 60 hours. The gas composition at the layer inlet and outlet was as follows.

(1) 処理条件 処理ガス量 600/min O3/NO=3.0 NOx酸化触媒……ヤシガラ系活性炭 アルカリ……石灰石 混合層の空間速度(SV)70,000h-1(常温) (2) 供給ガス組成 NO 9.0ppm NO2 1.5ppm O3 31.4ppm 空気 バランス (3) 活性炭・石灰石層出口ガス組成 NO 0.3ppm NO2 0.5ppm N2O5 0.0ppm O3 0.0ppm 実施例5 内径150mmの円筒型触媒充填層に、平均粒径4mmの酸化ニ
ッケル系触媒を充填し、他の内径150mmの円筒型触媒充
填層に平均粒径5mmの石灰石を充填し、これらの充填層
を直列に接続して、NOを6.1ppm、NO2を1.1ppm含有する
排ガスにオゾンを57.4ppm混合した処理ガスを通し、下
記の処理条件で連続浄化処理した。その結果、約60時
間連続運転した後の定常状態において、79%のNOx除去
率が得られらた。なお、層入口、出口のガス組成は下記
の如くであった。
(1) Treatment conditions Treatment gas amount 600 / min O 3 /NO=3.0 NOx oxidation catalyst …… coconut husk activated carbon alkali ・ ・ ・ Limestone space velocity (SV) 70,000h -1 (normal temperature) (2) Supply Gas composition NO 9.0ppm NO 2 1.5ppm O 3 31.4ppm Air balance (3) Activated carbon / limestone layer outlet gas composition NO 0.3ppm NO 2 0.5ppm N 2 O 5 0.0ppm O 3 0.0ppm Example 5 Cylindrical type with inner diameter of 150mm The catalyst packed bed is filled with a nickel oxide-based catalyst having an average particle size of 4 mm, and another cylindrical catalyst packed layer having an inner diameter of 150 mm is filled with limestone having an average particle size of 5 mm, and these packed layers are connected in series, A treatment gas in which 57.4 ppm of ozone was mixed with exhaust gas containing 6.1 ppm of NO and 1.1 ppm of NO 2 was passed through to carry out continuous purification treatment under the following treatment conditions. As a result, a NOx removal rate of 79% was obtained in a steady state after continuous operation for about 60 hours. The gas composition at the layer inlet and outlet was as follows.

(1) 処理条件 処理ガス量 600/min O3/NO=8.0 NOx酸化触媒……酸化ニッケル/珪藻土担体触媒 触媒層の空間速度(SV) 80,000h-1(常温) アルカリ……石灰石 アルカリ層の空気速度(SV)200,000h-1(常温) (2) 供給ガス組成 NO 6.1ppm NO2 1.1ppm O3 57.4ppm 空気 バランス (3) 触媒層出口ガス組成 NO 0.2ppm NO2 1.8ppm N2O5 1.9ppm O3 0.4ppm (4) 石灰石層出口ガス組成 NO 0.1ppm NO2 1.4ppm N2O5 0.0ppm O3 0.1ppm 実施例6 内径150mmの円筒型触媒充填層に、平均粒径5mmの酸化ニ
ッケル系触媒と平均粒径5mmの石灰石とを重量比で4:
1に混合・充填し、NOを7.0ppm、NO2を1.4ppm含有する
排ガスにオゾンを60.0ppm混合した処理ガスを通し、下
記の処理条件で連続浄化処理を実施した。その結果、約
60時間連続運転した後の定常状態において、72%のNOx
除去率が得られた。なお、層入口、出口のガス組成は下
記の如くであった。
(1) Treatment conditions Treatment gas amount 600 / min O 3 /NO=8.0 NOx oxidation catalyst …… Nickel oxide / diatomaceous earth carrier catalyst Space velocity (SV) of catalyst layer 80,000h -1 (normal temperature) Alkaline …… Limestone Air velocity (SV) 200,000h -1 (room temperature) (2) Supply gas composition NO 6.1ppm NO 2 1.1ppm O 3 57.4ppm Air balance (3) Catalyst layer outlet gas composition NO 0.2ppm NO 2 1.8ppm N 2 O 5 1.9ppm O 3 0.4ppm (4) Limestone layer outlet gas composition NO 0.1ppm NO 2 1.4ppm N 2 O 5 0.0ppm O 3 0.1ppm Example 6 Oxidation with an average particle diameter of 5mm in a cylindrical catalyst packed bed with an inner diameter of 150mm A nickel-based catalyst and limestone having an average particle size of 5 mm were used in a weight ratio of 4:
1 was mixed and filled, and a treatment gas in which 60.0 ppm of ozone was mixed with exhaust gas containing 7.0 ppm of NO and 1.4 ppm of NO 2 was passed through to carry out continuous purification treatment under the following treatment conditions. As a result, about
72% NOx in steady state after 60 hours of continuous operation
A removal rate was obtained. The gas composition at the layer inlet and outlet was as follows.

(1) 処理条件 処理ガス量 600/min O3/NOx=7.0 NOx酸化触媒……酸化ニッケル/珪藻土担体触媒 アルカリ……石灰石 触媒/アルカリ混合層の空間速度(SV) 80,000h-1(常温) (2) 供給ガス組成 NO 7.0ppm NO2 1.4ppm O3 60.0ppm 空気 バランス (3) 触媒・アルカリ剤層出口ガス組成 NO 0.3ppm NO2 2.1ppm N2O5 0.0ppm O3 0.2ppm 比較例1 内径150mmの円筒型充填層に、平均粒径5mmの石灰石を充
填し、NO4.4ppm、NO2 0.5ppmを含有する排ガスにオゾン
を20.2ppm混合した処理ガスを通し、下記の処理条件で
連続浄化処理を実施した。その結果、約60時間連続運転
した後の定常状態において25%のNOx除去率しか得られ
なかった。なお、層入口、出口のガス組成は下記の如く
であった。
(1) Treatment conditions Treatment gas amount 600 / min O 3 /NOx=7.0 NOx oxidation catalyst …… Nickel oxide / diatomaceous earth carrier catalyst Alkaline ・ ・ ・ Limestone catalyst / space velocity of mixed layer (SV) 80,000h -1 (normal temperature) (2) Supply gas composition NO 7.0ppm NO 2 1.4ppm O 3 60.0ppm Air balance (3) Catalyst / alkali agent layer outlet gas composition NO 0.3ppm NO 2 2.1ppm N 2 O 5 0.0ppm O 3 0.2ppm Comparative Example 1 A cylindrical packed bed with an inner diameter of 150 mm was filled with limestone with an average particle size of 5 mm, and exhaust gas containing NO 4.4 ppm and NO 2 0.5 ppm was mixed with ozone at 20.2 ppm to pass through the processing gas and continuously purify under the following processing conditions. The treatment was carried out. As a result, only about 25% NOx removal rate was obtained in the steady state after continuous operation for about 60 hours. The gas composition at the layer inlet and outlet was as follows.

(1) 処理条件 NOx酸化触媒……無触媒 アルカリ……石灰石 O3/NO=5 処理ガス量 600/min アルカリ層の空気速度(SV) 50,000h-1(常温) (2) 供給ガス組成 NO 4.4ppm NO2 0.5ppm O3 20.2ppm 空気 バランス (3) 石灰石層出口ガス組成 NO 0.5ppm NO2 3.3ppm N2O5 0.0ppm O3 16.2ppm 〔発明の効果〕 本発明は上記のように構成されているので、つぎのよう
な効果を奏する。
(1) Treatment conditions NOx Oxidation catalyst …… No catalyst Alkali ・ ・ ・ Limestone O 3 / NO = 5 Treatment gas amount 600 / min Air velocity in alkali layer (SV) 50,000h -1 (room temperature) (2) Supply gas composition NO 4.4ppm NO 2 0.5ppm O 3 20.2ppm Air balance (3) Limestone layer outlet gas composition NO 0.5ppm NO 2 3.3ppm N 2 O 5 0.0ppm O 3 16.2ppm [Effect of the invention] The present invention is configured as described above Therefore, the following effects are achieved.

(1) NO、NO2をN2O5まで酸化するので、きわめて容易に
吸着・除去又は吸収・除去することができる。
(1) Since NO and NO 2 are oxidized to N 2 O 5, they can be adsorbed / removed or absorbed / removed extremely easily.

(1) 二酸化マンガン、酸化ニッケル、二酸化ケイ素、
二酸化チタン、酸化銅、活性炭等の触媒物質は、NOのN2
O5への酸化促進効果、N2O5やNO2等のNOxの吸収効果、及
び未反応オゾンの分解効果を有しているので、きわめて
効率よく浄化処理することができる。
(1) manganese dioxide, nickel oxide, silicon dioxide,
Catalytic substances such as titanium dioxide, copper oxide, activated carbon are NO 2 of NO.
Since it has the effect of promoting oxidation to O 5 , the effect of absorbing NO x such as N 2 O 5 and NO 2 , and the effect of decomposing unreacted ozone, it can be purified very efficiently.

(3) 上記の触媒物質にアルカリ剤を混合したり、また
は、触媒層の下流にアルカリ剤充填層を設けるとによ
り、さらに効率よく浄化処理することができる。このた
め、小量の除去剤で大量のNOxを除去することができ、
経済性の面で大幅に改善できる。
(3) A more efficient purification treatment can be achieved by mixing the above-mentioned catalyst substance with an alkaline agent or providing an alkaline agent-filled layer downstream of the catalytic layer. Therefore, a large amount of NOx can be removed with a small amount of scavenger,
It can be greatly improved in terms of economy.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は、本発明の排ガス浄化装置の実施例を
示す説明図、第4図は、無触媒の場合の、NOのN2O5への
酸化における接触時間と、NOのN2O5への変換率との関係
を示すグラフである。 1……触媒充填部、1a……触媒・アルカリ剤充填部、
2……オゾナイザー、3……アルカリ剤充填部、4……
排風機、5……換気塔
1 to 3 are explanatory views showing an embodiment of the exhaust gas purifying apparatus of the present invention, and FIG. 4 is a contact time in the oxidation of NO to N 2 O 5 in the case of no catalyst, and NO it is a graph showing the relationship between the conversion to N 2 O 5. 1 ... Catalyst filling section, 1a ... Catalyst / alkali agent filling section,
2 ... Ozonizer, 3 ... Alkaline agent filling part, 4 ...
Ventilator, 5 ... Ventilation tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 20/04 ZAB B 7202−4G 21/18 ZAB 8017−4G 23/34 ZAB A 8017−4G 23/74 ZAB 8017−4G 321 A 8017−4G C01B 13/10 ZAB D 9152−4G (72)発明者 上島 賢郎 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B01J 20/04 ZAB B 7202-4G 21/18 ZAB 8017-4G 23/34 ZAB A 8017-4G 23 / 74 ZAB 8017-4G 321 A 8017-4G C01B 13/10 ZAB D 9152-4G (72) Inventor Kenro Uejima 3-1-1 Higashikawasakicho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】一酸化窒素(NO)、二酸化窒素(NO2)等の窒
素酸化物(NOx)を含む排ガスにオゾンを混合し、この混
合ガスを、二酸化マンガン、酸化ニッケル、二酸化ケイ
素、二酸化チタン、酸化銅、活性炭からなる群より選ば
れた触媒物質を主成分とする触媒層を通過させることに
より、窒素酸化物(NOx)を五酸化二窒素(N2O5)に酸化す
ると同時に未反応オゾンを分解し、さらに、この混合ガ
ス中のN2O5、NOxを前記触媒層により吸収除去すること
を特徴とする排ガス浄化方法。
1. Ozone is mixed with exhaust gas containing nitrogen oxides (NOx) such as nitric oxide (NO) and nitrogen dioxide (NO 2 ), and the mixed gas is mixed with manganese dioxide, nickel oxide, silicon dioxide, and dioxide. Nitrogen oxide (NOx) is oxidized to dinitrogen pentoxide (N 2 O 5 ) at the same time by passing through a catalyst layer containing a catalyst substance selected from the group consisting of titanium, copper oxide and activated carbon as a main component. A method for purifying exhaust gas, which comprises decomposing reaction ozone and further absorbing and removing N 2 O 5 and NOx in the mixed gas by the catalyst layer.
【請求項2】一酸化窒素(NO)、二酸化窒素(NO2)等の窒
素酸化物(NOx)を含む排ガスにオゾンを混合し、この混
合ガスを、二酸化マンガン、酸化ニッケル、二酸化ケイ
素、二酸化チタン、酸化銅、活性炭からなる群より選ば
れた触媒物質を主成分とする触媒層を通過させることに
より、窒素酸化物(NOx)を五酸化二窒素(N2O5)に酸化す
ると同時に未反応オゾンを分解した後、この混合ガス中
のN2O5、NOxを、アルカリ吸収剤によって吸収除去する
ことを特徴とする排ガス浄化方法。
2. Ozone is mixed with exhaust gas containing nitrogen oxides (NOx) such as nitric oxide (NO) and nitrogen dioxide (NO 2 ), and this mixed gas is mixed with manganese dioxide, nickel oxide, silicon dioxide, and dioxide. Nitrogen oxide (NOx) is oxidized to dinitrogen pentoxide (N 2 O 5 ) at the same time by passing through a catalyst layer containing a catalyst substance selected from the group consisting of titanium, copper oxide and activated carbon as a main component. After decomposing reaction ozone, N 2 O 5 and NOx in this mixed gas are absorbed and removed by an alkali absorbent, and an exhaust gas purification method is provided.
【請求項3】触媒物質に石灰石、生石灰、ドロマイト等
のアルカリ系吸収剤を混合して用いることを特徴とする
請求項1又は2記載の排ガス浄化方法。
3. The exhaust gas purification method according to claim 1, wherein an alkaline absorbent such as limestone, quick lime or dolomite is mixed with the catalyst substance.
【請求項4】触媒物質として、二酸化マンガン系触媒も
しくは酸化ニッケル系触媒と、活性炭とを混合したもの
を用いることを特徴とする請求項1又は2記載の排ガス
浄化方法。
4. The exhaust gas purification method according to claim 1, wherein a mixture of a manganese dioxide catalyst or a nickel oxide catalyst and activated carbon is used as the catalyst substance.
【請求項5】触媒物質として、二酸化マンガン系触媒も
しくは酸化ニッケル系触媒、活性炭及びアルカリ吸収剤
を混合したものを用いることを特徴とする請求項1又は
2記載の排ガス浄化方法。
5. The exhaust gas purification method according to claim 1 or 2, wherein a mixture of a manganese dioxide-based catalyst or a nickel oxide-based catalyst, activated carbon and an alkali absorbent is used as the catalyst substance.
【請求項6】O3/NOxモル比を0.5〜10の範囲に調整する
ことを特徴とする請求項1又は2記載の排ガス浄化方
法。
6. The exhaust gas purification method according to claim 1 or 2, wherein the O 3 / NOx molar ratio is adjusted in the range of 0.5 to 10.
【請求項7】触媒層を40〜80℃に加熱することを特徴と
する請求項1又は2記載の排ガス浄化方法。
7. The exhaust gas purification method according to claim 1 or 2, wherein the catalyst layer is heated to 40 to 80 ° C.
【請求項8】排ガス中のNO、NO2等のNOxをN2O5に酸化し
N2O5を吸収するための触媒を充填した触媒充填部(1)
と、この触媒充填部(1)の上流側に接続されたオゾナ
イザー(2)とを包含することを特徴とする排ガス浄化
装置。
8. A method for oxidizing NOx such as NO and NO 2 in exhaust gas to N 2 O 5
Catalyst filling part filled with a catalyst for absorbing N 2 O 5 (1)
And an ozonizer (2) connected to the upstream side of the catalyst filling section (1).
【請求項9】排ガス中のNO、NO2等のNOxをN2O5に酸化し
N2O5を吸収するための触媒及びアルカリ剤を充填した触
媒・アルカリ剤充填部(1a)と、この触媒・アルカリ
剤充填部(1a)の上流側に接続されたオゾナイザー
(2)とを包含することを特徴とする排ガス浄化装置。
9. Oxidizing NOx such as NO and NO 2 in exhaust gas to N 2 O 5.
A catalyst / alkali agent filling part (1a) filled with a catalyst for absorbing N 2 O 5 and an alkali agent, and an ozonizer (2) connected to the upstream side of the catalyst / alkali agent filling part (1a). An exhaust gas purification device characterized by including.
【請求項10】排ガス中のNO、NO2等のNOxをN2O5に酸化
しN2O5を吸収するための触媒を充填した触媒充填部
(1)と、この触媒充填部(1)の上流側に接続された
オゾナイザー(2)と、触媒充填部(1)の下流側に接
続されたアルカリ剤充填部(3)とを包含することを特
徴とする排ガス浄化装置。
10. NO in exhaust gas, the catalyst-filled portion of NOx such as NO 2 was filled with a catalyst for absorbing N 2 O 5 oxidized to N 2 O 5 (1), the catalyst packed section (1 ), An ozonizer (2) connected to the upstream side of (1), and an alkali agent charging section (3) connected to the downstream side of the catalyst charging section (1).
JP2074936A 1990-03-23 1990-03-23 Exhaust gas purification method and device Expired - Lifetime JPH0616818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074936A JPH0616818B2 (en) 1990-03-23 1990-03-23 Exhaust gas purification method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074936A JPH0616818B2 (en) 1990-03-23 1990-03-23 Exhaust gas purification method and device

Publications (2)

Publication Number Publication Date
JPH03275126A JPH03275126A (en) 1991-12-05
JPH0616818B2 true JPH0616818B2 (en) 1994-03-09

Family

ID=13561738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074936A Expired - Lifetime JPH0616818B2 (en) 1990-03-23 1990-03-23 Exhaust gas purification method and device

Country Status (1)

Country Link
JP (1) JPH0616818B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081737A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081739A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081735A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081734A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081738A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9017134D0 (en) * 1990-08-04 1990-09-19 Secr Defence Process of and apparatus for preparing dinitrogen pentoxide
DE69423257T2 (en) * 1993-05-28 2000-07-06 Matsushita Electric Ind Co Ltd Denitrification system
JPH0788327A (en) * 1993-09-22 1995-04-04 Matsushita Electric Ind Co Ltd Nox purging device
JP3339204B2 (en) * 1994-09-02 2002-10-28 堺化学工業株式会社 Nitrogen oxide oxidation adsorbent and nitrogen oxide removal method
JP2940855B2 (en) * 1995-08-21 1999-08-25 共栄工業株式会社 Desulfurization and denitration equipment using fresh concrete sludge and construction waste
CN102341128A (en) * 2009-03-04 2012-02-01 株式会社赛安 Steriliser with exhaust gas cleaning system for decomposing nox with ozone
CN104475084A (en) * 2014-12-02 2015-04-01 南开大学 Preparation method of low-temperature high-efficiency denitrification catalyst MnO2
CN106031841B (en) 2015-03-20 2020-01-07 北京博源恒升高科技有限公司 Gas denitration process and equipment
EP3216510A1 (en) * 2016-03-07 2017-09-13 Omya International AG A particulate earth alkali carbonate-comprising material for nox uptake
US11441464B2 (en) 2021-02-02 2022-09-13 Saudi Arabian Oil Company Use of ozone with LNT and MnO2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion
CN113155561A (en) * 2021-03-31 2021-07-23 杭州谱育科技发展有限公司 Device and method for providing dinitrogen pentoxide standard gas
CN113145110B (en) * 2021-05-08 2023-03-17 贵州省材料产业技术研究院 Silica sol modified ozone catalytic oxidation material and preparation method thereof
CN113171796B (en) * 2021-05-08 2023-03-17 贵州省材料产业技术研究院 Titanium sol modified ozone catalytic oxidation material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081737A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081739A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081735A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081734A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
WO2008081738A1 (en) * 2006-12-28 2008-07-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
JP2008163897A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008163887A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008163871A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JPH03275126A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
JPH0616818B2 (en) Exhaust gas purification method and device
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
KR20010062242A (en) Process for the removal of nitrogen oxides from gas streams
EP0577149A1 (en) Method of purifying waste gases
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
JPH05192535A (en) Method and apparatus for purifying exhaust gas
JPH04367707A (en) Nitrogen oxides removal
JPH0747227A (en) Purification of exhaust gas containing nitrogen oxide in low concentration
JP3249181B2 (en) Regeneration method of nitrogen oxide adsorbent
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JP3014725B2 (en) Exhaust gas purification method and apparatus
JP2633511B2 (en) Exhaust gas purification method
CN111359412A (en) System and method for electronic beam and oxygen cooperative desulfurization and denitrification
JPH0673613B2 (en) Exhaust gas purification method
JPS63302923A (en) Method for purifying exhaust gas
JPH0687943B2 (en) Exhaust gas purification method
JPH0824579A (en) Treatment of low concentration nox containing gas
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
JPH0655032A (en) Method for purifying exhaust gas
CN113509820A (en) Method for preparing acid by concentrating nitrogen oxide by zeolite rotating wheel and washing and absorbing nitrogen oxide
JPH08215545A (en) Method for removing nitrogen monoxide
JP3545029B2 (en) Exhaust gas purification method
JPS5910244B2 (en) Nitrogen oxide decomposition method
JP3568244B2 (en) Automobile tunnel ventilation gas purification method
JPH0771614B2 (en) Exhaust gas purification method