JPH0655032A - Method for purifying exhaust gas - Google Patents

Method for purifying exhaust gas

Info

Publication number
JPH0655032A
JPH0655032A JP4226441A JP22644192A JPH0655032A JP H0655032 A JPH0655032 A JP H0655032A JP 4226441 A JP4226441 A JP 4226441A JP 22644192 A JP22644192 A JP 22644192A JP H0655032 A JPH0655032 A JP H0655032A
Authority
JP
Japan
Prior art keywords
oxide
exhaust gas
adsorbent
ozone
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4226441A
Other languages
Japanese (ja)
Inventor
Yukio Kubo
幸雄 久保
Shoichi Takao
彰一 高尾
Motoko Higuchi
素子 樋口
Kazuo Masuyama
一夫 増山
Yoshiyasu Matsuo
吉庸 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4226441A priority Critical patent/JPH0655032A/en
Publication of JPH0655032A publication Critical patent/JPH0655032A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently remove exhaust gas incorporating NOx such as NO and NO2 in a low concentration, etc., like ventilation gas from a tunnel on a road. CONSTITUTION:Ozone is admixed with the exhaust gas in a range of 1.5-10.0 of the O3/NOmol ratio and the mixed gas is made pass through an adsorbent layer consisting essentially of aluminum oxide. Since the excess of ozone is decomposed with the adsorbent, when Mn oxide, active carbon and, besides, trace amounts of CaO, MgO, Na2O and K2O are incorporated to the adsorbent consisting essentially of aluminium oxide, the purifying method is more effective.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、道路トンネ
ル、道路シェルター等からの換気排ガス等のように、低
濃度の一酸化窒素(NO)、二酸化窒素(NO2 )等の
窒素酸化物(NOx)を含有する排ガスの浄化方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention is mainly applied to low-concentration nitrogen oxides (NO), nitrogen dioxide (NO 2 ) and the like, such as ventilation exhaust gas from road tunnels and road shelters. The present invention relates to a method for purifying exhaust gas containing NOx).

【0002】ここでいう低濃度とは、50ppm 程度以下
のものを言う。通常の火力発電所での排ガス処理の場
合、排ガス中に含まれるNOx濃度は数百ppm であり、
これを脱硝触媒を用いアンモニア、炭化水素等の還元剤
を添加する選択接触還元法(selective ca
talytic reduction法(SCR法))
により数十ppm に減少させる。これに対し、本発明の方
法は、SCRの処理ガスに含まれるNOxの濃度レベル
より、さらにNOx濃度を低下させる場合が対象とな
る。また、道路トンネル、道路シェルターからの換気排
ガスの脱硝以外の応用としては、地下駐車場や立体駐車
場の換気排ガスの浄化、あるいはディーゼル排ガスをS
CR法により処理した後の処理ガスを、さらに高度に脱
硝する場合等がある。この場合、NOxを一旦吸着した
吸着剤を再生する際に脱離する高濃度のNOxは、再び
SCR反応器の前に戻し処理する。
The low concentration referred to here means a substance having a concentration of about 50 ppm or less. In the case of exhaust gas treatment at an ordinary thermal power plant, the NOx concentration contained in the exhaust gas is several hundred ppm,
A selective catalytic reduction method (selective ca) in which a reducing agent such as ammonia or hydrocarbon is added using a denitration catalyst
(talylic reduction method (SCR method))
To decrease to several tens of ppm. On the other hand, the method of the present invention is applicable to the case where the NOx concentration is further reduced below the concentration level of NOx contained in the SCR process gas. Also, as applications other than denitration of ventilation exhaust gas from road tunnels and road shelters, purification of ventilation exhaust gas in underground parking lots and multilevel parking lots, or diesel exhaust gas
There is a case where the treated gas after being treated by the CR method is further denitrated. In this case, the high-concentration NOx desorbed when the adsorbent that once adsorbed NOx is regenerated is returned to the front of the SCR reactor.

【0003】[0003]

【従来の技術】都市部の道路は、用地確保や沿道公害の
問題等から、一部トンネル化又はシェルター化を採用す
る傾向にある。トンネルやシェルター内には、自動車の
排気ガスが滞留し易いので、トンネル又はシェルター内
環境を維持するための換気が必要となる。この場合、換
気排ガス中に煤塵の他に低濃度ではあるがNOxが含ま
れているため、浄化処理することが望まれている。ボイ
ラー排ガスのように、高温で比較的高濃度(数百ppm )
のNOxを含むガスに対するNOx除去技術は、既に確
立されているが、トンネル換気排ガスのように数ppm 程
度の低濃度のNOxを含むガスから、NOxを効率的に
除去する技術はまだ確立されていない。
2. Description of the Related Art Roads in urban areas tend to be partially tunneled or sheltered due to problems such as land acquisition and roadside pollution. Exhaust gas from automobiles tends to stay in the tunnel or shelter, so ventilation is required to maintain the environment inside the tunnel or shelter. In this case, the exhaust gas contains NOx, which is a low concentration, in addition to soot and dust, so that purification treatment is desired. Relatively high concentration (several hundred ppm) at high temperature like boiler exhaust gas
Although the NOx removal technology for NOx-containing gas has already been established, the technology for efficiently removing NOx from a gas containing a low concentration of NOx such as several ppm like tunnel exhaust gas has not yet been established. Absent.

【0004】従来、道路トンネルから排出される空気中
の低濃度の窒素酸化物を吸着剤によって吸着・除去する
方法等が検討されている。主な吸着剤としては、活性炭
及びゼオライトが知られている。例えば、特開昭54−
161582号公報には、NOxを含むガスを、アルカ
リ金属の硝酸塩、亜硝酸塩、炭酸塩、水酸化物のうちの
一種または二種以上を含浸させた炭素を主成分とする物
質に接触させ、ガス中のNOxを除去する方法が記載さ
れている。また、特開平1−155934号公報には、
シリカゲル系脱湿剤で道路トンネル換気ガス中の水分を
吸湿処理した後、ゼオライト系吸着剤で乾式処理してN
Oxを吸着除去する方法が記載されている。
Conventionally, a method of adsorbing and removing low-concentration nitrogen oxides in the air discharged from a road tunnel with an adsorbent has been studied. Activated carbon and zeolite are known as main adsorbents. For example, Japanese Patent Laid-Open No. 54-
No. 161582 discloses that a gas containing NOx is brought into contact with a substance containing carbon as a main component, which is impregnated with one or more of alkali metal nitrates, nitrites, carbonates, and hydroxides. A method of removing NOx therein is described. Further, in Japanese Patent Laid-Open No. 1-155934,
After the moisture in the ventilation gas of the road tunnel is absorbed with a silica gel-based dehumidifying agent, dry treatment is performed with a zeolite-based adsorbent to obtain N
A method for adsorbing and removing Ox is described.

【0005】また、特開平3−275126号公報に
は、窒素酸化物を含む排ガスに、窒素酸化物に対して過
剰のオゾンを添加し、この混合ガスを二酸化マンガン、
酸化ニッケル、二酸化珪素、二酸化チタン、酸化銅、活
性炭からなる群より選ばれた触媒物質を主成分とする触
媒層を通過させることにより、NOxを五酸化二窒素
(N2 5 )に酸化すると同時に未反応オゾンを分解
し、NOx、N2 5 を触媒層に吸収させて除去する方
法が記載されている。さらに、本出願人は、吸着剤A成
分として、鉄、銅、マンガン、コバルト、ニッケルから
なる群より選ばれた少なくとも一種の元素の酸化物0.
5〜70重量%と、吸着剤B成分として、アルミニウ
ム、珪素、チタン、ジルコニウムからなる群より選ばれ
た少なくとも一種の元素の酸化物99.5〜30重量%
とからなる窒素酸化物の吸着除去剤を開発し、既に特許
出願している(特開平4−176335号公報参照)。
Further, in Japanese Patent Application Laid-Open No. 3-275126, an excess amount of ozone with respect to nitrogen oxides is added to an exhaust gas containing nitrogen oxides, and this mixed gas is mixed with manganese dioxide,
When NOx is oxidized to dinitrogen pentoxide (N 2 O 5 ) by passing through a catalyst layer containing a catalyst substance selected from the group consisting of nickel oxide, silicon dioxide, titanium dioxide, copper oxide and activated carbon as a main component. At the same time, a method is described in which unreacted ozone is decomposed and NOx and N 2 O 5 are absorbed in the catalyst layer to be removed. Further, the present applicant has found that as the adsorbent A component, an oxide of at least one element selected from the group consisting of iron, copper, manganese, cobalt, and nickel.
5 to 70% by weight and, as an adsorbent B component, an oxide of at least one element selected from the group consisting of aluminum, silicon, titanium and zirconium 99.5 to 30% by weight
A nitrogen oxide adsorption remover consisting of and has been developed and a patent has already been applied for (see Japanese Patent Laid-Open No. 4-176335).

【0006】[0006]

【発明が解決しようとする課題】前記の特開昭54−1
61582号公報記載の方法においては、NOxの活性
炭への吸着量が小さく、また、分解速度も遅いため、活
性炭の必要量が多くなり経済的ではない。また、前記の
特開平1−155934号公報記載の方法においては、
ゼオライト系吸着剤で乾式処理するために、脱湿過程が
必要であり、この脱湿過程で多くのエネルギーを消費す
る。また、前記の特開平3−275126号公報は、本
出願人の先願に係るものであるが、この公報に示す触媒
では、換気ガス中の湿度が高い場合、NOx除去容量が
低下した。このため、本発明者らは、比較的高い湿度の
換気ガスに対しても、除湿なしで高いNOx除去容量を
有する除去剤を探索した結果、酸化アルミニウムが除去
剤の主成分として適していることを知見した。さらに、
酸化アルミニウムにオゾン分解能力を有する酸化マンガ
ンあるいは活性炭などを加えることによって、処理後の
ガス中に未反応オゾンが含まれないことを確認した。な
お、前記の特開平4−176335号公報には、排ガス
に過剰のオゾンを添加・混合することについては、何も
開示されていない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method described in Japanese Patent No. 61582, the amount of NOx adsorbed on the activated carbon is small and the decomposition rate is slow, so that the amount of activated carbon required is large and it is not economical. Further, in the method described in the above-mentioned JP-A-1-155934,
A dehumidification process is required for the dry treatment with the zeolite adsorbent, and a large amount of energy is consumed in this dehumidification process. Further, the above-mentioned Japanese Patent Application Laid-Open No. 3-275126 relates to the prior application of the present applicant, but in the catalyst shown in this publication, the NOx removal capacity decreased when the humidity in the ventilation gas was high. Therefore, the inventors of the present invention searched for a scavenger having a high NOx removal capacity without dehumidification even for a ventilation gas having a relatively high humidity, and found that aluminum oxide was suitable as the main component of the scavenger. I found out. further,
It was confirmed that unreacted ozone was not contained in the treated gas by adding manganese oxide or activated carbon having an ozone decomposing ability to aluminum oxide. It should be noted that the above-mentioned Japanese Patent Laid-Open No. 4-176335 does not disclose anything about adding / mixing excess ozone to the exhaust gas.

【0007】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は高湿度下でも優れた除去性能を得る
ことができる排ガス浄化方法を提供することにある。ま
た、本発明の他の目的は、過剰に添加された処理ガス中
の未反応オゾンを分解する排ガス浄化方法を提供するこ
とにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide an exhaust gas purification method capable of obtaining excellent removal performance even under high humidity. Another object of the present invention is to provide an exhaust gas purification method for decomposing unreacted ozone in the process gas added excessively.

【0008】[0008]

【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明の排ガス浄化方法は、一酸化窒素
(NO)、二酸化窒素(NO2 )等の窒素酸化物(NO
x)を含む排ガスにオゾンをO3 /NOモル比1.5〜
10.0の範囲で添加・混合し、この混合ガスを酸化ア
ルミニウムを主成分とする吸着剤層を通過させることに
より、この混合ガス中の窒素酸化物を前記吸着剤層に吸
収させて除去することを特徴としている。また、上記の
排ガス浄化方法において、酸化アルミニウムを主成分と
する吸着剤に酸化マンガン、活性炭等のオゾン分解能力
を有する成分を含有させることによって、未反応オゾン
を分解するように構成するのが望ましい。さらに、酸化
マンガン、活性炭等のオゾン分解能力を有る成分に、酸
化カルシウム、酸化マグネシウム、酸化ナトリウム、酸
化カリウムからなる群より選ばれた少なくとも一種を微
量含有させるのが望ましい。
In order to achieve the above object, the exhaust gas purifying method of the present invention uses a nitrogen oxide (NO) such as nitric oxide (NO) or nitrogen dioxide (NO 2 ).
x) ozone is added to the exhaust gas containing O 3 / NO molar ratio of 1.5 to
By adding and mixing in the range of 10.0, and passing this mixed gas through the adsorbent layer containing aluminum oxide as a main component, nitrogen oxides in this mixed gas are absorbed by the adsorbent layer and removed. It is characterized by that. Further, in the above exhaust gas purification method, it is desirable that the adsorbent containing aluminum oxide as a main component contains manganese oxide, a component having an ozone decomposing ability such as activated carbon, and the like to decompose unreacted ozone. . Further, it is desirable that a small amount of at least one selected from the group consisting of calcium oxide, magnesium oxide, sodium oxide, and potassium oxide is contained in components having an ozone decomposing ability such as manganese oxide and activated carbon.

【0009】吸着剤中の酸化マンガン、活性炭等のオゾ
ン分解能力を有する成分の含有量は、添加されるオゾン
量によって異なるが、一般的には0.5〜70重量%で
ある。また、酸化カルシウム、酸化マグネシウム、酸化
ナトリウム、酸化カリウムの一種以上を添加する場合
は、吸着剤中の酸化カルシウム、酸化マグネシウム、酸
化ナトリウム、酸化カリウムの含有量は、0.3〜40
重量%である。トンネル換気ガス中の一酸化窒素に対し
て1.5〜10.0倍(モル比)、望ましくは2.5〜
8.0倍(モル比)、さらに望ましくは3〜5倍(モル
比)のオゾンを添加混合した後、酸化アルミニウムを主
成分として少量の酸化マンガン、望ましくは微量の酸化
カルシウムを含む吸着剤(一例としてハニカム型)を通
過させて窒素酸化物を硝酸水および一部アルミニウム、
マンガン、カルシウムの硝酸塩の形態で固定化し、吸収
除去することによって浄化する。この際、除湿は不要で
有り、また長期間窒素酸化物を吸収したハニカム吸着剤
は、加熱空気を通すことによって再び酸化物に戻すこと
ができ再生使用できる。
The content of components having ozone decomposing ability such as manganese oxide and activated carbon in the adsorbent varies depending on the amount of ozone added, but is generally 0.5 to 70% by weight. When one or more of calcium oxide, magnesium oxide, sodium oxide and potassium oxide is added, the content of calcium oxide, magnesium oxide, sodium oxide and potassium oxide in the adsorbent is 0.3 to 40.
% By weight. 1.5 to 10.0 times (molar ratio) of nitric oxide in tunnel ventilation gas, preferably 2.5 to
After admixing 8.0 times (molar ratio), more preferably 3 to 5 times (molar ratio) ozone, an adsorbent containing aluminum oxide as a main component and a small amount of manganese oxide, preferably a slight amount of calcium oxide ( As an example, a honeycomb type) is used to pass nitrogen oxides into nitric acid water and a part of aluminum,
It is purified by immobilizing it in the form of nitrate of manganese and calcium and absorbing and removing it. At this time, dehumidification is not necessary, and the honeycomb adsorbent that has absorbed nitrogen oxides for a long period of time can be returned to the oxides again by passing heated air and can be recycled.

【0010】O3 /NOモル比が1.5未満の場合は、
高い脱硝率を維持する時間が短くなるので、脱硝性能が
悪くなり、一方、O3 /NOモル比が10.0を越える
場合は、未反応オゾンが吸着剤層出口側の排ガス中に含
まれるので、二次公害を起こす。また、多量のオゾンを
必要とするので、運転費が多くなるので好ましくない。
When the O 3 / NO molar ratio is less than 1.5,
Since the time for maintaining a high denitrification rate becomes short, the denitrification performance deteriorates. On the other hand, when the O 3 / NO molar ratio exceeds 10.0, unreacted ozone is contained in the exhaust gas at the adsorbent layer outlet side. So cause secondary pollution. Moreover, since a large amount of ozone is required, the operating cost increases, which is not preferable.

【0011】[0011]

【実施例】以下、本発明の実施例及び比較例を挙げる。 実施例1、比較例1 酸化マンガン−酸化チタン−酸化珪素の3成分からなる
触媒、疎水性ゼオライトおよび本発明による活性アルミ
ナの3種類の吸着剤を用いて、3ppm のNOを含む空気
の浄化試験を行った結果を図1に示す。図より分かるよ
うにNOxの除去性能は、酸化アルミニウム>酸化マン
ガン−酸化チタン−酸化珪素>疎水性ゼオライトの序列
となり、活性アルミナが最も優れていた。 (試験条件) 吸着剤 :酸化アルミニウム(Al2 3 ) 1〜2
mm球状 ,72ml 15wt%MnO2 −40wt%SiO2 −45wt%TiO
2 1〜2mm球状 ,72ml 疎水性ゼオライト 1〜2mm球状
,72ml 処理ガス:NO 3ppm −O3 12ppm −Air, 3
/NOモル比=4,12l /min 相対湿度 80%(25℃) SV :10,000h -1 吸着剤層温度:30℃
EXAMPLES Examples and comparative examples of the present invention will be described below. Example 1, Comparative Example 1 Purification test of air containing 3 ppm of NO using three kinds of adsorbents, a catalyst composed of three components of manganese oxide-titanium oxide-silicon oxide, a hydrophobic zeolite and activated alumina according to the present invention. The results of the above are shown in FIG. As can be seen from the figure, the NOx removal performance was in the order of aluminum oxide> manganese oxide-titanium oxide-silicon oxide> hydrophobic zeolite, and activated alumina was the best. (Test Conditions) adsorbent: aluminum oxide (Al 2 O 3) 1 to 2
mm spherical, 72 ml 15 wt% MnO 2 -40 wt% SiO 2 -45 wt% TiO
2 1-2mm spherical, 72ml hydrophobic zeolite 1-2mm spherical
, 72 ml processing gas: NO 3ppm -O 3 12ppm -Air, O 3
/ NO molar ratio = 4,12 l / min Relative humidity 80% (25 ° C.) SV: 10,000 h −1 Adsorbent layer temperature: 30 ° C.

【0012】実施例2、比較例2 吸着除去剤として、(1)酸化マンガンを15wt%含有
する酸化アルミニウム、(2)酸化アルミニウム、
(3)酸化マンガン−酸化チタン−二酸化珪素三成分系
吸着剤、(4)酸化マンガン含有活性炭の4種類の吸着
剤を用いて、NO含有空気の浄化試験を行い比較した結
果を図2に示す。図よりNOxの除去性能は、活性アル
ミナを主成分とする吸着剤が優れていた。なお、出口ガ
ス中にはオゾンは検出されなかった(0.001ppm 以
下) 。 (試験条件) 吸着剤:15wt%Mn3 4 −85wt%Al2 3 1〜
2mm球状 ,72ml Al2 3 1〜2mm球状 , 72
ml 5wt%Mn2 3 −45wt%TiO2 −40wt%SiO
2 1〜2mm球状 , 72ml 3wt%Mn3 4 −97wt%活性炭 1〜2mm球状
, 72ml 処理ガス:NO 2ppm −O3 7ppm −Air, 3
NOモル比=3.5,12l /min 相対湿度 80%(25℃) SV :10,000h -1 吸着剤層温度:35℃
Example 2 and Comparative Example 2 As adsorption removal agents, (1) aluminum oxide containing 15 wt% of manganese oxide, (2) aluminum oxide,
FIG. 2 shows the results of a comparison test conducted by purifying NO-containing air using four types of adsorbents, (3) manganese oxide-titanium oxide-silicon dioxide ternary adsorbent and (4) manganese oxide-containing activated carbon. . From the figure, the adsorbent containing activated alumina as the main component was excellent in the NOx removal performance. No ozone was detected in the outlet gas (0.001 ppm or less). (Test conditions) Adsorbent: 15 wt% Mn 3 O 4 -85 wt% Al 2 O 3 1-
2mm spherical, 72ml Al 2 O 3 1-2mm spherical , 72
ml 5 wt% Mn 2 O 3 -45 wt% TiO 2 -40 wt% SiO
2 1-2 mm spherical , 72 ml 3 wt% Mn 3 O 4 -97 wt% activated carbon 1-2 mm spherical
, 72 ml processing gas: NO 2ppm -O 3 7ppm -Air, O 3 /
NO molar ratio = 3.5, 12 l / min Relative humidity 80% (25 ° C.) SV: 10,000 h −1 Adsorbent layer temperature: 35 ° C.

【0013】実施例3、比較例3 吸着除去剤として、15wt%の酸化マンガン及び1wt%
のCaOを含有するハニカム型活性アルミナ吸着剤を用
いて、ディーゼルエンジン希釈排ガスの浄化試験を行っ
た。その結果を図3に示す。図より分かるように、NO
xの除去性能は、オゾン添加量によって大幅に変化し、
オゾンを排ガス中の窒素酸化物に対するモル比が大きい
ほど良好な脱硝性能を示した。 (試験条件) 吸着剤:14wt%Mn3 4 −1wt%CaO−85wt%
Al2 3 ハニカム型吸着剤 15mm□,4セル×4セル,長さ2700mm 処理ガス: ディーゼルエンジン 排ガス−O3
ppm −Air,42l /min ディーゼルエンジン 排ガス−O3 9ppm −Ai
r,42l /min ディーゼルエンジン 排ガス−O3 15ppm −A
ir,42l /min 上記ガス中のNOx濃度はいずれも3ppm に調整してお
り、また、相対湿度は70%(25℃) SV :4,000h -1 吸着剤層温度:30℃
Example 3 and Comparative Example 3 As an adsorption remover, 15 wt% manganese oxide and 1 wt%
Using a honeycomb-type activated alumina adsorbent containing CaO, a purification test of diesel engine diluted exhaust gas was performed. The result is shown in FIG. As you can see from the figure, NO
The removal performance of x greatly changes depending on the amount of ozone added,
The higher the molar ratio of ozone to nitrogen oxide in the exhaust gas, the better the denitration performance. (Test conditions) Adsorbent: 14 wt% Mn 3 O 4 -1 wt% CaO-85 wt%
Al 2 O 3 Honeycomb type adsorbent 15 mm □, 4 cells × 4 cells, length 2700 mm Treatment gas: Diesel engine Exhaust gas-O 3 3
ppm -Air, 42l / min diesel engine exhaust -O 3 9 ppm -ai
r, 42l / min diesel engine exhaust gas -O 3 15ppm -A
ir, 42 l / min The NOx concentration in each of the above gases was adjusted to 3 ppm, and the relative humidity was 70% (25 ° C) SV: 4,000 h -1 adsorbent layer temperature: 30 ° C

【0014】[0014]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 排ガスに過剰オゾンを混合することによって、
NOxを硝酸として酸化アルミニウムを主成分とする吸
着剤層に吸着させるとともに、吸着剤自身を一部硝酸塩
にしてNOxを吸収する。このため、吸着剤単位重量あ
たりのNOx除去量が飛躍的に増加する。 (2) 酸化アルミニウムを主成分とする吸着剤を用い
ると、高湿度下でも優れたNOx除去性能を示す。 (3) 酸化アルミニウムを主成分とする吸着剤に酸化
マンガン、活性炭、さらには微量の酸化カルシウム、酸
化マグネシウム、酸化ナトリウム、酸化カリウムを含有
させる場合は、過剰に添加されたオゾンを効率よく分解
することができ、排ガスの二次公害を防止することがで
きる。
Since the present invention is configured as described above, it has the following effects. (1) By mixing excess ozone with exhaust gas,
NOx is used as nitric acid to be adsorbed on the adsorbent layer containing aluminum oxide as a main component, and the adsorbent itself is partially converted to nitrate to absorb NOx. Therefore, the amount of NOx removed per unit weight of adsorbent increases dramatically. (2) When an adsorbent containing aluminum oxide as a main component is used, excellent NOx removal performance is exhibited even under high humidity. (3) When manganese oxide, activated carbon, and a trace amount of calcium oxide, magnesium oxide, sodium oxide, and potassium oxide are contained in the adsorbent containing aluminum oxide as a main component, the ozone added in excess is decomposed efficiently. It is possible to prevent secondary pollution of exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び比較例1の結果を示し、通ガス時
間と脱硝率との関係を示すグラフである。
FIG. 1 is a graph showing the results of Example 1 and Comparative Example 1, showing the relationship between the gas passage time and the denitration rate.

【図2】実施例2及び比較例2の結果を示し、通ガス時
間と脱硝率との関係を示すグラフである。
FIG. 2 is a graph showing the results of Example 2 and Comparative Example 2, showing the relationship between the gas passage time and the denitration rate.

【図3】実施例3及び比較例3の結果を示し、通ガス時
間と脱硝率との関係を示すグラフである。
FIG. 3 is a graph showing the results of Example 3 and Comparative Example 3, showing the relationship between the gas passage time and the denitration rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 素子 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 増山 一夫 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 松尾 吉庸 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoko Higuchi 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries Ltd. Akashi factory (72) Inventor Kazuo Masuyama 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe No. 1 Kawasaki Heavy Industries, Ltd. Kobe factory (72) Inventor Yoshinori Matsuo 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries Ltd., Kobe factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一酸化窒素(NO)、二酸化窒素(NO
2 )等の窒素酸化物(NOx)を含む排ガスにオゾンを
3 /NOモル比1.5〜10.0の範囲で添加・混合
し、この混合ガスを酸化アルミニウムを主成分とする吸
着剤層を通過させることにより、この混合ガス中の窒素
酸化物を前記吸着剤層に吸収させて除去することを特徴
とする排ガス浄化方法。
1. Nitric oxide (NO), nitrogen dioxide (NO)
2 ) Ozone is added to and mixed with exhaust gas containing nitrogen oxides (NOx) in the range of O 3 / NO molar ratio of 1.5 to 10.0, and the mixed gas is an adsorbent containing aluminum oxide as a main component. A method for purifying exhaust gas, wherein nitrogen oxide in the mixed gas is absorbed by the adsorbent layer and removed by passing through the layer.
【請求項2】 酸化アルミニウムを主成分とする吸着剤
に酸化マンガン、活性炭等のオゾン分解能力を有する成
分を含有させることによって、未反応オゾンを分解する
ことを特徴とする請求項1記載の排ガス浄化方法。
2. The exhaust gas according to claim 1, wherein unreacted ozone is decomposed by adding a component having an ozone decomposing ability such as manganese oxide or activated carbon to an adsorbent containing aluminum oxide as a main component. Purification method.
【請求項3】 オゾン分解能力を有する成分に、さらに
酸化カルシウム、酸化マグネシウム、酸化ナトリウム、
酸化カリウムからなる群より選ばれた少なくとも一種を
含有させることを特徴とする請求項2記載の排ガス浄化
方法。
3. A component having an ozone decomposing ability, further comprising calcium oxide, magnesium oxide, sodium oxide,
The exhaust gas purifying method according to claim 2, wherein at least one selected from the group consisting of potassium oxide is contained.
JP4226441A 1992-08-03 1992-08-03 Method for purifying exhaust gas Pending JPH0655032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4226441A JPH0655032A (en) 1992-08-03 1992-08-03 Method for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4226441A JPH0655032A (en) 1992-08-03 1992-08-03 Method for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH0655032A true JPH0655032A (en) 1994-03-01

Family

ID=16845159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4226441A Pending JPH0655032A (en) 1992-08-03 1992-08-03 Method for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH0655032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441464B2 (en) 2021-02-02 2022-09-13 Saudi Arabian Oil Company Use of ozone with LNT and MnO2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441464B2 (en) 2021-02-02 2022-09-13 Saudi Arabian Oil Company Use of ozone with LNT and MnO2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion

Similar Documents

Publication Publication Date Title
US7585477B2 (en) Catalyst and method for catalytic reduction of nitrogen oxides
JP5314276B2 (en) Nitrogen oxide removal catalyst, denitration method and denitration apparatus
JPH0616818B2 (en) Exhaust gas purification method and device
EP0408772B1 (en) Exhaust gas cleaning method
JPH05192535A (en) Method and apparatus for purifying exhaust gas
EP0540428B1 (en) Adsorbents for removing low-concentration nitrogen oxides
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
JPH04367707A (en) Nitrogen oxides removal
JPS6219243A (en) Catalyst reducing nitrogen oxide content of combustion exhaust gas
KR100668926B1 (en) Method of regenerating scr catalyst
CA2045128A1 (en) A catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
JPH0655032A (en) Method for purifying exhaust gas
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JP2006231171A (en) Nitrogen-oxide removing catalyst, denitrification method and denitrification apparatus
JP3249181B2 (en) Regeneration method of nitrogen oxide adsorbent
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
JP3014725B2 (en) Exhaust gas purification method and apparatus
EP1514599A1 (en) Catalyst and method for clarifying exhaust gas
JPH10118486A (en) Concentration of dilute nitrogen oxide
JP2563861B2 (en) Adsorption remover for low concentration nitrogen oxides
JP3545029B2 (en) Exhaust gas purification method
JPH08299756A (en) Method for removing low-concentration nitrogen oxide
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides