JP2743043B2 - Adsorption remover for low concentration nitrogen oxides - Google Patents

Adsorption remover for low concentration nitrogen oxides

Info

Publication number
JP2743043B2
JP2743043B2 JP4010312A JP1031292A JP2743043B2 JP 2743043 B2 JP2743043 B2 JP 2743043B2 JP 4010312 A JP4010312 A JP 4010312A JP 1031292 A JP1031292 A JP 1031292A JP 2743043 B2 JP2743043 B2 JP 2743043B2
Authority
JP
Japan
Prior art keywords
adsorbent
nox
weight
concentration
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4010312A
Other languages
Japanese (ja)
Other versions
JPH05200281A (en
Inventor
正義 市来
近 稲住
高延 渡辺
厚 福寿
正樹 秋山
友紀 西良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4010312A priority Critical patent/JP2743043B2/en
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to DE69216764T priority patent/DE69216764T2/en
Priority to DE69224082T priority patent/DE69224082T2/en
Priority to CA002081814A priority patent/CA2081814C/en
Priority to EP92402953A priority patent/EP0540428B1/en
Priority to EP95105171A priority patent/EP0668099B1/en
Publication of JPH05200281A publication Critical patent/JPH05200281A/en
Priority to US08/288,763 priority patent/US5439868A/en
Priority to US08/429,768 priority patent/US5612276A/en
Application granted granted Critical
Publication of JP2743043B2 publication Critical patent/JP2743043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種道路トンネル、山
岳トンネル、海底トンネル、地下道路、シェルター付道
路等の各種トンネルにおける換気ガス中に含有される低
濃度の窒素酸化物(NOx)を効率よく除去する吸着除
去剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to efficiently reduce low-concentration nitrogen oxides (NOx) contained in ventilation gas in various tunnels such as various road tunnels, mountain tunnels, submarine tunnels, underground roads, shelter roads and the like. It relates to an adsorptive removal agent that removes well.

【0002】[0002]

【発明の背景】各種道路トンネル、山岳トンネル、地下
道路、シェルター付道路等(本明細書では、これらのト
ンネルを総称して「道路トンネル等」と呼ぶこととす
る)において、特に長大で自動車交通量の多いものにつ
いては、通行者の健康保護や明視距離の改善を目的に相
当量の換気を行う必要がある。また、比較的短距離のト
ンネルでも都市部あるいはその近郊では、出入口部に集
中する一酸化炭素(CO)、NOx等による大気汚染を
防止する方法として、トンネル内の空気を吸引排気(換
気)する方法がある。
BACKGROUND OF THE INVENTION In various road tunnels, mountain tunnels, underground roads, shelter roads, and the like (in the present specification, these tunnels are collectively referred to as "road tunnels"), especially in a large-sized automobile traffic. For large volumes, substantial ventilation needs to be provided to protect the health of passersby and improve the visibility distance. Also, even in a relatively short tunnel, in an urban area or in a suburban area, air in the tunnel is suctioned and exhausted (ventilated) as a method of preventing air pollution due to carbon monoxide (CO), NOx, etc. concentrated at the entrance. There is a way.

【0003】しかしながら、換気ガスをそのまま周囲に
放散したのでは、地域的な環境改善にはならず、特に自
動車排ガスによる汚染が平面的に拡がっている都市部あ
るいはその近郊では高度の汚染地域を拡大させることに
なりかねない。既設道路の公害対策としてトンネル化、
シェルター設置を図る場合も、前述の事情は全く同じで
ある。
However, if the ventilation gas is directly radiated to the surroundings, it does not improve the local environment. In particular, a highly contaminated area is expanded in or near an urban area where the pollution caused by automobile exhaust gas is spread flatly. It can be made to do. Tunneling as an anti-pollution measure for existing roads,
The same is true when installing a shelter.

【0004】本発明は、このような道路トンネル等の換
気ガス中に含有される低濃度のNOxを効率よく除去す
る吸着除去剤に関するものである。
The present invention relates to an adsorbent for efficiently removing low-concentration NOx contained in such a ventilation gas as a road tunnel.

【0005】[0005]

【従来の技術】各種トンネルの換気ガスは、その中に含
有されるNOxの濃度が約5ppm と低く、ガス温度は常
温で、ガス量は交通量に従って大きく変動することで特
徴付けられる。
2. Description of the Related Art Ventilation gases in various tunnels are characterized by a low NOx concentration of about 5 ppm, a gas temperature at room temperature, and a large fluctuation in gas flow according to traffic volume.

【0006】従来より各種ボイラー燃焼排ガスの浄化を
目的に検討されてきた、固定発生源からのNOxの除去
方法は、次の3つに大別される。
[0006] Methods of removing NOx from stationary sources, which have been studied for the purpose of purifying various types of boiler combustion exhaust gas, are roughly classified into the following three methods.

【0007】(1) 接触還元法 これは、アンモニアを還元剤とし排ガス中のNOxを選
択的に還元して無害な窒素と水蒸気にするもので、ボイ
ラー排ガスの脱硝法として最も一般的な方法である。し
かしながら、この方法は、処理ガス温度を200℃以上
にする必要があるため、道路トンネル等の換気ガスのよ
うに常温でガス量が多い場合には、処理ガスの昇温に多
大のエネルギーを要するため、経済的な処理方法ではな
い。
(1) Catalytic reduction method This is a method in which ammonia is used as a reducing agent and NOx in exhaust gas is selectively reduced to harmless nitrogen and water vapor, and is the most common method for denitrification of boiler exhaust gas. is there. However, in this method, since the processing gas temperature needs to be 200 ° C. or more, when the gas amount is large at room temperature, such as a ventilation gas for a road tunnel, a large amount of energy is required to raise the temperature of the processing gas. Therefore, it is not an economical processing method.

【0008】(2) 湿式吸収法 これは、二酸化窒素(NO2 )や三酸化窒素(N
2 3 )が水やアルカリ水溶液に吸収されることを利用
したもので、酸化触媒やオゾン注入により一酸化窒素
(NO)を酸化した後に吸収させたり、吸収液に酸化性
を付加する方法が知られている。しかしながら、これら
の方法ではNOxが硝酸塩や亜硝酸塩として吸収液に蓄
積されるため、吸収液の管理や後処理が必要であり、プ
ロセスが複雑となる。また酸化剤のモル当りの単価は接
触還元法で用いられるアンモニアと比べ高価であり、プ
ロセスの経済性に問題がある。
(2) Wet absorption method This method uses nitrogen dioxide (NO 2 ) or nitrogen trioxide (N
This method utilizes the fact that 2 O 3 ) is absorbed by water or an aqueous alkaline solution. It is possible to oxidize nitrogen monoxide (NO) by injecting an oxidation catalyst or ozone and then absorb it, or to add oxidizing properties to the absorbing solution. Are known. However, in these methods, since NOx is accumulated in the absorbing solution as nitrate or nitrite, management and post-treatment of the absorbing solution are required, and the process becomes complicated. Further, the unit price per mole of the oxidizing agent is higher than that of ammonia used in the catalytic reduction method, and there is a problem in the economics of the process.

【0009】(3) 乾式吸着法 これは、適当な吸着剤を用いて排ガス中のNOxを吸着
除去する方法で、ボイラー排ガスの脱硝法として接触還
元法が定着するまでは数例検討された。しかしながら、
ボイラー排ガスは(ア)NOxの濃度が高い、(イ)ガ
ス温度が高い、(ウ)水分濃度が高いために、乾式吸着
法は接触還元法と比べ経済性において見劣りし、現在ま
で実用化されていない。
(3) Dry adsorption method This is a method of adsorbing and removing NOx in exhaust gas using an appropriate adsorbent, and several studies have been conducted until the catalytic reduction method is established as a denitrification method of boiler exhaust gas. However,
Since boiler exhaust gas has (a) a high NOx concentration, (b) a high gas temperature, and (c) a high water concentration, the dry adsorption method is inferior in economic efficiency to the catalytic reduction method and has been put into practical use until now. Not.

【0010】ところが、道路トンネル等の換気ガスの浄
化方法として乾式吸着法を評価すれば、ボイラー排ガス
の場合とは全く異なり、プロセスが簡単となり経済的な
方法であることが判明した。
However, when the dry adsorption method was evaluated as a method for purifying ventilation gas in a road tunnel or the like, it was found that the process was simple and economical, completely different from the case of boiler exhaust gas.

【0011】[0011]

【発明が解決しようとする課題】低濃度NOxの吸着除
去剤として、本願発明者らは、先に、5ppm という低濃
度のNOxを効率よく吸着除去することを企図した吸着
剤として、天然または合成ゼオライトに、塩化銅、塩化
銅の複塩および塩化銅のアンミン錯塩から選択される少
なくとも1種の銅塩を担持させて成る、低濃度NOxの
吸着除去剤(特開平1−299642号公報参照)、お
よびアナターゼ型のチタニアより成る担体にバナジウム
を担持させて成る吸着除去剤(特願平2−340627
号明細書参照)をそれぞれ提案した。
SUMMARY OF THE INVENTION As an adsorbent for low-concentration NOx, the present inventors have previously used natural or synthetic adsorbents intended to efficiently adsorb and remove NOx at a low concentration of 5 ppm. A low-concentration NOx adsorption / removal agent in which zeolite carries at least one copper salt selected from copper chloride, a double salt of copper chloride and an ammine complex salt of copper chloride (see Japanese Patent Application Laid-Open No. 1-299624). And adsorbent for removing vanadium from a carrier comprising anatase type titania (Japanese Patent Application No. 2-340627).
No.), respectively.

【0012】しかし、これらの吸着剤は、水分(または
湿分)濃度が高くなると吸着性能の低下(劣化現象)を
来たすという問題を有していた。
However, these adsorbents have a problem that when the water (or moisture) concentration is high, the adsorption performance is deteriorated (deterioration phenomenon).

【0013】そのため、これら吸着剤では、良好な吸着
性能を発揮させるには、湿分濃度を露点で約−35℃以
下(約200ppm 以下)にする必要があり、NOx除去
プロセスとしてNOx吸着除去の前段に脱湿工程を設
け、処理すべきガスを脱湿(除湿)する必要があった。
Therefore, these adsorbents must have a moisture concentration of about -35 ° C. or less (about 200 ppm or less) at a dew point in order to exhibit good adsorption performance. It is necessary to provide a dehumidification step in the first stage and dehumidify (dehumidify) the gas to be treated.

【0014】湿分の影響を受けない吸着除去剤が開発さ
れれば、NOx除去装置の小型化、省エネルギー化が図
られ、その経済的効果が高いので、湿分の影響を受けな
い吸着除去剤が切望されている。
If an adsorbent removing agent not affected by moisture is developed, the NOx removing device can be reduced in size and energy saving, and its economical effect is high. Is eagerly awaited.

【0015】本発明者らは、こうした高湿分下でも機能
する吸着剤として、γ−アルミナより成る担体にルテニ
ウムを担持させて成る吸着除去剤を提案した(特願平3
−194513号明細書参照)。
The present inventors have proposed, as an adsorbent that functions even under such high humidity, an adsorbent removing agent in which ruthenium is supported on a carrier made of γ-alumina (Japanese Patent Application No. Hei.
194513).

【0016】しかし、この吸着除去剤は、処理ガス中に
含まれる硫黄酸化物(SOx)により、担体であるアル
ミナ(酸化アルミニウム;Al2 3 )が硫酸塩化され
るために、担体の硫酸塩化の程度に応じて吸着性能が低
下するという難点を有している。
However, since the carrier (alumina oxide; Al 2 O 3 ) is sulfated by the sulfur oxide (SOx) contained in the processing gas, the adsorption / removal agent requires the carrier to be sulfated. Has the disadvantage that the adsorption performance is reduced depending on the degree of

【0017】本発明者らは、この対策として、アナター
ゼ型チタニアを保持したセラミックペーパー担体にルテ
ニウムが担持されていることを特徴とする吸着除去剤を
提案した(特願平3−286277号明細書参照)。
As a countermeasure, the present inventors have proposed an adsorption remover characterized in that ruthenium is supported on a ceramic paper carrier holding anatase type titania (Japanese Patent Application No. 3-286277). reference).

【0018】しかし、この吸着除去剤は、初期性能が非
常に優れている反面、250℃以上の高温排気ガスに長
時間晒されると性能がかなり劣化する難点を有してい
る。この活性低下の原因は、高温条件では活性成分であ
るルテニウムのハロゲン化物からハロゲンが脱離し、そ
の結果生成したRuO2 が乏しい活性しか有しないため
と考えられる。
[0018] However, this adsorbent remover has a very good initial performance, but has a disadvantage that its performance is considerably deteriorated when exposed to a high temperature exhaust gas of 250 ° C or more for a long time. It is considered that the reason for this decrease in activity is that under high temperature conditions, halogen is eliminated from the ruthenium halide as an active component, and the resulting RuO 2 has only a poor activity.

【0019】本発明は、高温条件でもルテニウムのハロ
ゲン化物からハロゲンが脱離せず、高い活性を長期間維
持できる吸着除去剤を提供し、もってNOx除去装置の
小型化、省エネルギー化に資することを目的としたもの
である。
An object of the present invention is to provide an adsorptive / removing agent capable of maintaining high activity for a long period of time without releasing halogen from ruthenium halide even under high temperature conditions, thereby contributing to miniaturization and energy saving of the NOx removing device. It is what it was.

【0020】[0020]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々検討した結果、低濃度のNOxを含有
するガスを、特定の形状を有するアナターゼ型チタニア
担体に、ルテニウムのハロゲン化物と特定金属のハロゲ
ン化物とを共担持することにより、高温条件でもルテニ
ウムのハロゲン化物からハロゲンが脱離しないことを見
出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted various studies to achieve the above object, and as a result, have found that a gas containing a low concentration of NOx can be transferred onto an anatase-type titania carrier having a specific shape by using a ruthenium halogen. By co-supporting a halide and a halide of a specific metal, it has been found that halogen is not eliminated from a ruthenium halide even under high temperature conditions, and the present invention has been completed.

【0021】すなわち、本発明による低濃度NOxの吸
着除去剤(以下単に吸着剤という)は、アナターゼ型チ
タニアを保持したセラミックペーパー担体に、ルテニウ
ムのハロゲン化物と、カリウム、ナトリウム、マグネシ
ウム、カルシウム、マンガン、銅、亜鉛、ルビジウム、
ジルコニウム、バリウム、セリウム、モリブデンより成
る群から選ばれた少なくとも1つの金属のハロゲン化物
とが共担持されていることを特徴とするものである。
That is, the low concentration NOx adsorption / removal agent (hereinafter simply referred to as an adsorbent) according to the present invention comprises a ruthenium halide, potassium, sodium, magnesium, calcium and manganese on a ceramic paper carrier holding anatase titania. , Copper, zinc, rubidium,
At least one metal halide selected from the group consisting of zirconium, barium, cerium, and molybdenum is co-supported.

【0022】本発明による低濃度NOxの吸着除去剤を
製造するには、セラミックペーパーにアナターゼ型チタ
ニアゾルを含浸させて乾燥ないし焼成して担体を得、つ
いでこの担体にルテニウムのハロゲン化物と、カリウ
ム、ナトリウム、マグネシウム、カルシウム、マンガ
ン、銅、亜鉛、ルビジウム、ジルコニウム、バリウム、
セリウム、モリブデンより成る群から選ばれた少なくと
も1つの金属のハロゲン化物(以下、金属ハロゲン化物
という)とを含浸担持して乾燥ないし焼成する。
In order to produce the low concentration NOx adsorption / removal agent of the present invention, ceramic paper is impregnated with anatase-type titania sol and dried or calcined to obtain a carrier. Then, the carrier is coated with a ruthenium halide, potassium, Sodium, magnesium, calcium, manganese, copper, zinc, rubidium, zirconium, barium,
It is impregnated with at least one metal halide selected from the group consisting of cerium and molybdenum (hereinafter, referred to as metal halide) and dried or fired.

【0023】セラミックペーパーは、セラミックスファ
イバーの抄紙によって製造される。セラミックペーパー
の市販品を使用することもできる。
The ceramic paper is produced by making ceramic fibers. Commercially available ceramic paper can also be used.

【0024】アナターゼ型のチタニアゾルとしては、た
とえば、硫酸法チタニア製造時の中間品である水和チタ
ニア(チタン酸スラリー)やチタン酸スラリーを解膠・
安定化したものが使用される。
As anatase type titania sol, for example, hydrated titania (titanate slurry) or titanate slurry, which is an intermediate product during the production of titania by a sulfuric acid method, is peptized.
A stabilized one is used.

【0025】アナターゼ型のチタニアはその保持量が多
くなるほどNOx吸着性能が高くなる傾向を示す。アナ
ターゼ型のチタニアの保持量が20g/m2 以下では、
NOx吸着性能が急激に低下するため、同保持量として
は20g/m2 以上が好ましい。
The anatase-type titania tends to have a higher NOx adsorption performance as its retention amount increases. When the retained amount of anatase-type titania is 20 g / m 2 or less,
Since the NOx adsorption performance drops rapidly, the retention amount is preferably 20 g / m 2 or more.

【0026】つぎに、上記担体にルテニウムのハロゲン
化物と金属ハロゲン化物とを共担持する。
Next, a ruthenium halide and a metal halide are co-supported on the carrier.

【0027】ルテニウムの担持量については、ルテニウ
ム金属として最終吸着剤の約0.01重量%以上が好ま
しく、さらには約0.1〜5重量%が好ましい。金属ハ
ロゲン化物の担持量については、金属として最終吸着剤
の約0.1重量%以上が好ましく、さらには約1〜10
重量%が好ましい。ルテニウムのハロゲン化物と金属ハ
ロゲン化物との共担持は、一般には、塩化ルテニウム
(RuCl3 )等のルテニウムのハロゲン化物と、上記
金属の塩化物等の金属ハロゲン化物とを適当な溶媒に溶
解させた混合物溶液に、上記担体を浸漬することにより
行う。ただし、この方法は限定的なものではない。
The loading of ruthenium is preferably about 0.01% by weight or more, more preferably about 0.1 to 5% by weight of the final adsorbent as ruthenium metal. The metal halide is preferably carried in an amount of about 0.1% by weight or more of the final adsorbent as a metal, and more preferably about 1 to 10% by weight.
% By weight is preferred. The co-supporting of a ruthenium halide and a metal halide is generally performed by dissolving a ruthenium halide such as ruthenium chloride (RuCl 3 ) and a metal halide such as the above-mentioned metal chloride in an appropriate solvent. This is performed by immersing the carrier in a mixture solution. However, this method is not limited.

【0028】浸漬後、吸着剤を混合物溶液から分離し、
水洗後、空気中にて約100〜120℃で乾燥する。ま
た、乾燥品は必要に応じて約300〜500℃で焼成す
る。なお、吸着、脱着、再生等の繰り返しによる連続使
用の際には、吸着剤の使用最高温度より若干高い温度で
の処理が必要な場合もある。
After immersion, the adsorbent is separated from the mixture solution,
After washing with water, it is dried at about 100 to 120 ° C. in the air. The dried product is fired at about 300 to 500 ° C. as necessary. In the case of continuous use by repeated adsorption, desorption, regeneration, etc., treatment at a temperature slightly higher than the maximum use temperature of the adsorbent may be necessary.

【0029】担体に共担持されたルテニウムのハロゲン
化物と金属ハロゲン化物とは、複合化されているか、ま
たは安定な塩を形成しているものと考えられる。
It is considered that the ruthenium halide and the metal halide co-supported on the carrier are complexed or form a stable salt.

【0030】吸着剤に吸着したNOxは加熱により容易
に脱着する。そのため吸着剤の再生は簡便になし得る。
したがって、本発明による吸着剤は、NOxの吸着と脱
着(再生)を連続的に繰り返す回転式のNOx吸着ロー
ターの吸着剤として好適に利用可能である。
NOx adsorbed on the adsorbent is easily desorbed by heating. Therefore, regeneration of the adsorbent can be easily performed.
Therefore, the adsorbent according to the present invention can be suitably used as an adsorbent for a rotary NOx adsorption rotor that continuously repeats adsorption and desorption (regeneration) of NOx.

【0031】道路トンネル等からの換気ガスのように、
大量のガスを処理する場合においては、流通抵抗が少な
く圧力損失を極力小さくする必要がある。そのため、平
板状のアナターゼ型チタニア保持セラミックペーパーと
波板状のアナターゼ型チタニア保持セラミックペーパー
を1枚置きに配して成る平板・波板多層構造の吸着剤担
体にルテニウムのハロゲン化物と金属ハロゲン化物とが
共担持されているハニカム状の吸着剤が望ましい。
Like ventilation gas from a road tunnel or the like,
When processing a large amount of gas, it is necessary to reduce the flow resistance and the pressure loss as much as possible. Therefore, a ruthenium halide and a metal halide are deposited on an adsorbent carrier having a multilayer structure of a flat plate and a corrugated plate in which a flat anatase-type titania holding ceramic paper and a corrugated anatase-type titania holding ceramic paper are alternately arranged. Is desirably a honeycomb-shaped adsorbent in which is co-supported.

【0032】[0032]

【実施例】つぎに、本発明の実施例およびこれと比較す
べき比較例をそれぞれいくつか挙げる。
EXAMPLES Examples of the present invention and some comparative examples to be compared with the examples will be described below.

【0033】実施例1 市販のセラミックペーパー(日本無機(株)製、成分;
シリカ:アルミナ=50:50、厚さ;0.25mm、坪
量;46g/m2 )を所定の寸法に切断し、アナターゼ
型のチタニアゾル(TiO2 含有量;約30重量%)に
室温で浸漬した。浸漬後、直ちにこのセラミックペーパ
ーを平板上に取り出し、ローラー等により余分なチタニ
アゾルを落とし均一な厚さとすると同時に、熱風により
乾燥した。こうして成形した平板状チタニアゾル含浸セ
ラミックペーパーを電気炉に入れ、空気中400℃で3
時間焼成して、平板状のチタニア保持セラミックペーパ
ー担体を得た。
Example 1 Commercially available ceramic paper (manufactured by Nippon Inorganic Co., Ltd., components:
Silica: alumina = 50: 50, thickness: 0.25 mm, basis weight: 46 g / m 2 ) were cut into predetermined dimensions and immersed in anatase-type titania sol (TiO 2 content: about 30% by weight) at room temperature. did. Immediately after immersion, the ceramic paper was taken out on a flat plate, excess titania sol was dropped by a roller or the like to obtain a uniform thickness, and dried with hot air. The thus formed flat-plated titania sol-impregnated ceramic paper was placed in an electric furnace, and was placed in air at 400 ° C. for 3 hours.
After sintering for a time, a plate-like titania-supporting ceramic paper carrier was obtained.

【0034】また、上記アナターゼ型チタニアゾル浸漬
後のセラミックペーパーを波板上に取り出し、それ以後
は上記と同じ操作を行うことにより、波板状のチタニア
保持セラミックペーパー担体を得た。
Further, the ceramic paper having been immersed in the anatase-type titania sol was taken out on a corrugated sheet, and thereafter the same operation as above was performed to obtain a corrugated titania-supporting ceramic paper carrier.

【0035】チタニアゾル含浸前の重量と焼成後の重量
との差により、TiO2 担持量を求めた結果、85g/
2 のTiO2 が保持されていた。
From the difference between the weight before the impregnation with the titania sol and the weight after the calcination, the amount of TiO 2 carried was determined.
m 2 of TiO 2 was retained.

【0036】上記操作により幅の異なる複数の平板状の
チタニア保持セラミックペーパー担体と、やはり幅の異
なる複数の波板状のチタニア保持セラミックペーパー担
体とをそれぞれ製作した。ついで、図1に示すように、
所要幅の平板(1) と波板(2)を1枚置きに積重ねて円柱
状の積重ね体を形成し、これをセラミックペーパー製の
バンドで仮結束し、平板・波板多層構造の吸着剤担体
(外寸;径22mm×長さ50mm、幾何表面積;0.03
85m2 、重量;4.3g(TiO2 含有量;3.3
g)を得た。
By the above operation, a plurality of plate-like titania-supporting ceramic paper carriers having different widths and a plurality of corrugated plate-like titania-holding ceramic paper carriers also having different widths were produced. Then, as shown in FIG.
A flat plate (1) and corrugated plate (2) of required width are stacked alternately to form a columnar stacked body, which is temporarily bound with a ceramic paper band, and an adsorbent with a flat plate / corrugated plate multilayer structure Carrier (external dimensions; diameter 22 mm x length 50 mm, geometric surface area: 0.03
85 m 2 , weight; 4.3 g (TiO 2 content: 3.3
g) was obtained.

【0037】この平板・波板多層構造の吸着剤担体を塩
化ルテニウム(RuCl3 )と塩化マンガン(MnCl
2 )とを含む混合物水溶液(Ru濃度;0.38重量
%、Mn濃度;2.07重量%)100mlに室温で30
分間浸漬した。ついでこれを水洗した後、約110℃で
2時間乾燥してハニカム状のRu・Mn共担持チタニア
吸着剤(Ru担持量;0.55重量%、Mn担持量;
3.00重量%)を得た。
The adsorbent carrier having a multilayer structure of flat plate and corrugated plate is composed of ruthenium chloride (RuCl 3 ) and manganese chloride (MnCl).
2 ) in 100 ml of an aqueous solution (Ru concentration; 0.38% by weight, Mn concentration; 2.07% by weight) containing
Soak for minutes. Then, after washing with water, it is dried at about 110 ° C. for 2 hours, and dried in a honeycomb form with a Ru—Mn co-supported titania adsorbent (Ru supported amount: 0.55% by weight, Mn supported amount;
3.00% by weight).

【0038】この吸着剤を内径22mmのステンレス製反
応管(3) に充填すると共に、仮結束用バンドを取外し
た。ついでこの吸着剤を約300℃の乾燥空気(湿分濃
度;約50ppm )流通中(2.5NL/分)で1時間処理
した後、室温まで放冷した。放冷後、乾燥空気の流通を
一旦止め、吸着剤層に3.5ppm のNOxを含む湿分濃
度500ppm の調湿空気(2.5NL/分)を導入し、導
入直後から反応管の出口ガス中のNOx濃度を化学発光
式分析計で測定した。出口ガス中のNOx濃度の経時変
化を図2に実施例1(熱処理前)として示す。なお、図
2中の縦軸には、出口ガス中のNOx濃度を入口ガス中
のNOx濃度で除した値(「破過率」と呼ぶ)が目盛っ
てある。
The adsorbent was filled in a stainless steel reaction tube (3) having an inner diameter of 22 mm, and the band for temporary binding was removed. Then, the adsorbent was treated for 1 hour in a stream of dry air (moisture concentration: about 50 ppm) at about 300 ° C. (2.5 NL / min), and then allowed to cool to room temperature. After cooling, the flow of dry air was temporarily stopped, and humidified air (2.5 NL / min) with a moisture concentration of 500 ppm containing 3.5 ppm of NOx was introduced into the adsorbent layer. The NOx concentration in the sample was measured with a chemiluminescence analyzer. FIG. 2 shows the change over time in the NOx concentration in the outlet gas as Example 1 (before heat treatment). It should be noted that the vertical axis in FIG. 2 shows a value obtained by dividing the NOx concentration in the outlet gas by the NOx concentration in the inlet gas (referred to as “breakthrough rate”).

【0039】同図中の実施例1(熱処理前)の曲線から
明らかなように、出口ガス中のNOx濃度が入口濃度の
5%(破過率;0.05)、すなわち0.175ppm に
到達するまでの時間(「破過時間」と呼ぶ)は、33.
0分であった。
As is clear from the curve of Example 1 (before heat treatment) in the figure, the NOx concentration in the outlet gas reached 5% of the inlet concentration (breakthrough rate: 0.05), that is, 0.175 ppm. The time required to do so (called “breakthrough time”) is 33.
It was 0 minutes.

【0040】つぎに、この吸着剤を大気中で250℃で
100時間熱処理し、その後上記と同じ手法で同じ条件
でNOx吸収特性を測定した。出口ガス中のNOx濃度
の経時変化を図2に実施例1(熱処理後)として示す。
実施例1(熱処理後)の曲線より明らかなように、破過
率が0.05になるときの破過時間は27分であった。
Next, this adsorbent was heat-treated in the air at 250 ° C. for 100 hours, and then the NOx absorption characteristics were measured by the same method and under the same conditions. FIG. 2 shows the change over time in the NOx concentration in the outlet gas as Example 1 (after the heat treatment).
As is clear from the curve of Example 1 (after the heat treatment), the breakthrough time when the breakthrough rate became 0.05 was 27 minutes.

【0041】比較例1 浸漬液として、塩化ルテニウム(RuCl3 )水溶液
(Ru濃度;0.38重量%)100mlを用いる以外
は、実施例1と同じ操作を行い、Ru担持チタニア吸着
剤(Ru担持量;0.55重量%)を調製した。
[0041] As Comparative Example 1 immersion liquid, ruthenium chloride (RuCl 3) water; except using (Ru concentration 0.38 wt%) 100 ml, performs the same operation as in Example 1, Ru supported titania adsorbent (Ru supported 0.55% by weight).

【0042】この吸着剤について、実施例1と同じ手法
で同じ条件でNOx吸収特性を測定した。出口ガス中の
NOx濃度の経時変化を図2に比較例1として示す。比
較例1の曲線より明らかなように、破過率が0.05に
なるときの破過時間は40分であった。
The NOx absorption characteristics of this adsorbent were measured in the same manner as in Example 1 under the same conditions. The change with time of the NOx concentration in the outlet gas is shown as Comparative Example 1 in FIG. As is clear from the curve of Comparative Example 1, the breakthrough time when the breakthrough rate became 0.05 was 40 minutes.

【0043】つぎに、この吸着剤を実施例1と同じ条件
で熱処理し、その後実施例1と同じ手法で同じ条件でN
Ox吸収特性を測定した。出口ガス中のNOx濃度の経
時変化を図2に比較例1(熱処理後)として示す。比較
例1(熱処理後)の曲線より明らかなように、破過率が
0.05になるときの破過時間は5分であった。
Next, this adsorbent is heat-treated under the same conditions as in Example 1, and then N is applied under the same conditions and under the same conditions as in Example 1.
Ox absorption characteristics were measured. FIG. 2 shows the change over time of the NOx concentration in the outlet gas as Comparative Example 1 (after heat treatment). As is clear from the curve of Comparative Example 1 (after the heat treatment), the breakthrough time when the breakthrough rate became 0.05 was 5 minutes.

【0044】実施例2 浸漬液として、塩化ルテニウム(RuCl3 )と塩化セ
リウム(CeCl3 )とを含む混合物水溶液(Ru濃
度;0.38重量%、Ce濃度;5.32重量%)10
0mlを用いる以外は、実施例1と同じ操作を行い、Ru
・Ce共担持チタニア吸着剤(Ru担持量;0.55重
量%、Ce担持量;7.70重量%)を調製した。
Example 2 As an immersion liquid, a mixed aqueous solution containing ruthenium chloride (RuCl 3 ) and cerium chloride (CeCl 3 ) (Ru concentration: 0.38% by weight, Ce concentration: 5.32% by weight) 10
The same operation as in Example 1 was performed except that 0 ml was used, and Ru was used.
A Ce co-supported titania adsorbent (Ru supported amount: 0.55% by weight, Ce supported amount: 7.70% by weight) was prepared.

【0045】この吸着剤について、実施例1と同じ手法
で同じ条件でNOx吸収特性を測定した。出口ガス中の
NOx濃度の経時変化を図3に実施例2(熱処理前)と
して示す。実施例2(熱処理前)の曲線より明らかなよ
うに、破過率が0.05になるときの破過時間は14分
であった。
The NOx absorption characteristics of this adsorbent were measured in the same manner as in Example 1 under the same conditions. FIG. 3 shows the change with time of the NOx concentration in the outlet gas as Example 2 (before heat treatment). As is clear from the curve of Example 2 (before heat treatment), the breakthrough time when the breakthrough rate became 0.05 was 14 minutes.

【0046】つぎに、この吸着剤を実施例1と同じ条件
で熱処理し、その後上記と同じ手法で同じ条件でNOx
吸収特性を測定した。出口ガス中のNOx濃度の経時変
化を図3に実施例2(熱処理後)として示す。実施例2
(熱処理後)の曲線より明らかなように、破過率が0.
05になるときの破過時間は35分であった。
Next, this adsorbent is heat-treated under the same conditions as in Example 1, and then NOx is produced under the same conditions and under the same conditions as described above.
The absorption characteristics were measured. FIG. 3 shows the change over time in the NOx concentration in the outlet gas as Example 2 (after the heat treatment). Example 2
As is clear from the curve (after the heat treatment), the breakthrough rate was 0.1%.
The breakthrough time when it reached 05 was 35 minutes.

【0047】実施例3 浸漬液として、塩化ルテニウム(RuCl3 )と塩化カ
リウム(KCl)とを含む混合物水溶液(Ru濃度;
0.38重量%、K濃度;0.29重量%)100mlを
用いる以外は、実施例1と同じ操作を行い、Ru・K共
担持チタニア吸着剤(Ru担持量;0.55重量%、K
担持量;0.42重量%)を調製した。
Example 3 As an immersion liquid, a mixture aqueous solution containing ruthenium chloride (RuCl 3 ) and potassium chloride (KCl) (Ru concentration;
The same operation as in Example 1 was performed except that 100 ml of 0.38% by weight, K concentration; 0.29% by weight) was used, and the Ru / K co-supported titania adsorbent (Ru supported amount; 0.55% by weight, K
(Supporting amount: 0.42% by weight).

【0048】この吸着剤について、実施例1と同じ手法
で同じ条件でNOx吸収特性を測定した。出口ガス中の
NOx濃度の経時変化を図4に実施例3(熱処理前)と
して示す。実施例3(熱処理前)の曲線より明らかなよ
うに、破過率が0.05になるときの破過時間は14分
であった。
The NOx absorption characteristics of this adsorbent were measured in the same manner as in Example 1 under the same conditions. FIG. 4 shows the change with time of the NOx concentration in the outlet gas as Example 3 (before heat treatment). As is clear from the curve of Example 3 (before heat treatment), the breakthrough time when the breakthrough rate became 0.05 was 14 minutes.

【0049】つぎに、この吸着剤を実施例1と同じ条件
で熱処理し、その後上記と同じ手法で同じ条件でNOx
吸収特性を測定した。出口ガス中のNOx濃度の経時変
化を図4に実施例3(熱処理後)として示す。実施例3
(熱処理後)の曲線より明らかなように、破過率が0.
05になるときの破過時間は20分であった。
Next, this adsorbent is heat-treated under the same conditions as in Example 1, and then NOx is applied under the same conditions and under the same conditions as described above.
The absorption characteristics were measured. FIG. 4 shows the change with time of the NOx concentration in the outlet gas as Example 3 (after heat treatment). Example 3
As is clear from the curve (after the heat treatment), the breakthrough rate was 0.1%.
The breakthrough time when it reached 05 was 20 minutes.

【0050】実施例4〜12 実施例4では、浸漬液として、塩化ルテニウム(RuC
3 )と塩化ナトリウム(NaCl)とを含む混合物水
溶液を用いる以外は、実施例1と同じ操作を行い、Ru
・Na共担持チタニア吸着剤(Ru担持量;0.55重
量%、Na担持量;1.25重量%)を調製した。
Examples 4 to 12 In Example 4, ruthenium chloride (RuC) was used as the immersion liquid.
l 3 ) and sodium chloride (NaCl), except that an aqueous mixture was used.
-Na co-supported titania adsorbent (Ru supported amount: 0.55% by weight, Na supported amount: 1.25% by weight) was prepared.

【0051】実施例5では、浸漬液として、塩化ルテニ
ウム(RuCl3 )と塩化マグネシウム(MgCl2
とを含む混合物水溶液を用いる以外は、実施例1と同じ
操作を行い、Ru・Mg共担持チタニア吸着剤(Ru担
持量;0.55重量%、Mg担持量;1.32重量%)
を調製した。
In Example 5, ruthenium chloride (RuCl 3 ) and magnesium chloride (MgCl 2 ) were used as immersion liquids.
The same operation as in Example 1 was performed except that a mixture aqueous solution containing the following was used, and a Ru / Mg co-supported titania adsorbent (Ru supported amount: 0.55% by weight, Mg supported amount: 1.32% by weight)
Was prepared.

【0052】実施例6では、浸漬液として、塩化ルテニ
ウム(RuCl3 )と塩化カルシウム(CaCl2 )と
を含む混合物水溶液を用いる以外は、実施例1と同じ操
作を行い、Ru・Ca共担持チタニア吸着剤(Ru担持
量;0.55重量%、Ca担持量;2.18重量%)を
調製した。
In Example 6, the same operation as in Example 1 was carried out except that an aqueous mixture containing ruthenium chloride (RuCl 3 ) and calcium chloride (CaCl 2 ) was used as the immersion liquid. An adsorbent (Ru loading: 0.55% by weight, Ca loading: 2.18% by weight) was prepared.

【0053】実施例7では、浸漬液として、塩化ルテニ
ウム(RuCl3 )と塩化銅(CuCl2 )とを含む混
合物水溶液を用いる以外は、実施例1と同じ操作を行
い、Ru・Cu共担持チタニア吸着剤(Ru担持量;
0.55重量%、Cu担持量;3.46重量%)を調製
した。
In Example 7, the same operation as in Example 1 was carried out except that an aqueous mixture containing ruthenium chloride (RuCl 3 ) and copper chloride (CuCl 2 ) was used as the immersion liquid. Adsorbent (Ru supported amount;
0.55% by weight, Cu loading: 3.46% by weight).

【0054】実施例8では、浸漬液として、塩化ルテニ
ウム(RuCl3 )と塩化亜鉛(ZnCl2 )とを含む
混合物水溶液を用いる以外は、実施例1と同じ操作を行
い、Ru・Zn共担持チタニア吸着剤(Ru担持量;
0.55重量%、Zn担持量;3.56重量%)を調製
した。
In Example 8, the same operation as in Example 1 was carried out except that an aqueous mixture containing ruthenium chloride (RuCl 3 ) and zinc chloride (ZnCl 2 ) was used as the immersion liquid. Adsorbent (Ru supported amount;
0.55% by weight, Zn loading: 3.56% by weight).

【0055】実施例9では、浸漬液として、塩化ルテニ
ウム(RuCl3 )と塩化ルビジウム(RbCl)とを
含む混合物水溶液を用いる以外は、実施例1と同じ操作
を行い、Ru・Rb共担持チタニア吸着剤(Ru担持
量;0.55重量%、Rb担持量;4.66重量%)を
調製した。
In Example 9, the same operation as in Example 1 was carried out except that an aqueous mixture containing ruthenium chloride (RuCl 3 ) and rubidium chloride (RbCl) was used as the immersion liquid. An agent (Ru loading: 0.55% by weight, Rb loading: 4.66% by weight) was prepared.

【0056】実施例10では、浸漬液として、塩化ルテ
ニウム(RuCl3 )と塩化ジルコニウム(ZrC
4 )とを含む混合物水溶液を用いる以外は、実施例1
と同じ操作を行い、Ru・Zr共担持チタニア吸着剤
(Ru担持量;0.55重量%、Zr担持量;4.97
重量%)を調製した。
In Example 10, ruthenium chloride (RuCl 3 ) and zirconium chloride (ZrC
except that a mixture aqueous solution containing l 4) and is, in Example 1
The same operation as described above was carried out, and the Ru / Zr co-loaded titania adsorbent (Ru loading: 0.55% by weight, Zr loading: 4.97)
% By weight).

【0057】実施例11では、浸漬液として、塩化ルテ
ニウム(RuCl3 )と塩化バリウム(BaCl2 )と
を含む混合物水溶液を用いる以外は、実施例1と同じ操
作を行い、Ru・Ba共担持チタニア吸着剤(Ru担持
量;0.55重量%、Ba担持量;7.48重量%)を
調製した。
In Example 11, the same operation as in Example 1 was carried out except that an aqueous mixture containing ruthenium chloride (RuCl 3 ) and barium chloride (BaCl 2 ) was used as the immersion liquid. An adsorbent (Ru loading: 0.55% by weight, Ba loading: 7.48% by weight) was prepared.

【0058】実施例12では、浸漬液として、塩化ルテ
ニウム(RuCl3 )と塩化モリブデン(MoCl5
とを含む混合物水溶液を用いる以外は、実施例1と同じ
操作を行い、Ru・Mo共担持チタニア吸着剤(Ru担
持量;0.55重量%、Mo担持量;5.22重量%)
を調製した。
In Example 12, ruthenium chloride (RuCl 3 ) and molybdenum chloride (MoCl 5 ) were used as immersion liquids.
The same operation as in Example 1 was performed except that a mixture aqueous solution containing the following was used: Ru / Mo co-supported titania adsorbent (Ru supported amount: 0.55% by weight, Mo supported amount: 5.22% by weight)
Was prepared.

【0059】これらの吸着剤について、実施例1と同じ
手法で同じ条件でNOx吸収特性を測定した。各吸着剤
について、破過率が0.05になるときの破過時間は表
1中の熱処理前の欄に示すとおりであった。
The NOx absorption characteristics of these adsorbents were measured in the same manner as in Example 1 under the same conditions. For each adsorbent, the breakthrough time when the breakthrough rate became 0.05 was as shown in the column before heat treatment in Table 1.

【0060】つぎに、これらの吸着剤を実施例1と同じ
条件で熱処理し、その後上記と同じ手法で同じ条件でN
Ox吸収特性を測定した。各吸着剤について、破過率が
0.05になるときの破過時間は表1中の熱処理後の欄
に示すとおりであった。
Next, these adsorbents were heat-treated under the same conditions as in Example 1, and then N2 was applied under the same conditions and under the same conditions as described above.
Ox absorption characteristics were measured. For each adsorbent, the breakthrough time when the breakthrough rate became 0.05 was as shown in the column after heat treatment in Table 1.

【0061】比較例2〜4 比較例2では、浸漬液として、塩化ルテニウム(RuC
3 )と塩化ビスマス(BiCl3 )とを含む混合物水
溶液を用いる以外は、実施例1と同じ操作を行い、Ru
・Bi共担持チタニア吸着剤(Ru担持量;0.55重
量%、Bi担持量;11.38重量%)を調製した。
Comparative Examples 2 to 4 In Comparative Example 2, ruthenium chloride (RuC) was used as the immersion liquid.
l 3 ) and bismuth chloride (BiCl 3 ), except that an aqueous mixture was used.
A Bi-supported titania adsorbent (Ru loading: 0.55% by weight, Bi loading: 11.38% by weight) was prepared.

【0062】比較例3では、浸漬液として、塩化ルテニ
ウム(RuCl3 )と塩化錫(SnCl2 )とを含む混
合物水溶液を用いる以外は、実施例1と同じ操作を行
い、Ru・Sn共担持チタニア吸着剤(Ru担持量;
0.55重量%、Sn担持量;6.46重量%)を調製
した。
In Comparative Example 3, the same operation as in Example 1 was carried out, except that a mixed aqueous solution containing ruthenium chloride (RuCl 3 ) and tin chloride (SnCl 2 ) was used as the immersion liquid, and the Ru—Sn co-supported titania was used. Adsorbent (Ru supported amount;
0.55% by weight, Sn loading: 6.46% by weight).

【0063】比較例4では、浸漬液として、塩化ルテニ
ウム(RuCl3 )と塩化アンチモン(SbCl5 )と
を含む混合物水溶液を用いる以外は、実施例1と同じ操
作を行い、Ru・Sb共担持チタニア吸着剤(Ru担持
量;0.55重量%、Sb担持量;6.63重量%)を
調製した。
In Comparative Example 4, the same operation as in Example 1 was carried out except that an aqueous mixture containing ruthenium chloride (RuCl 3 ) and antimony chloride (SbCl 5 ) was used as the immersion liquid. An adsorbent (Ru loading: 0.55% by weight, Sb loading: 6.63% by weight) was prepared.

【0064】これらの吸着剤について、実施例1と同じ
手法で同じ条件でNOx吸収特性を測定した。各吸着剤
について、破過率が0.05になるときの破過時間は表
1中の熱処理前の欄に示すとおりであった。
The NOx absorption characteristics of these adsorbents were measured in the same manner as in Example 1 under the same conditions. For each adsorbent, the breakthrough time when the breakthrough rate became 0.05 was as shown in the column before heat treatment in Table 1.

【0065】つぎに、これらの吸着剤を実施例1と同じ
条件で熱処理し、その後上記と同じ手法で同じ条件でN
Ox吸収特性を測定した。各吸着剤について、破過率が
0.05になるときの破過時間は表1中の熱処理後の欄
に示すとおりであった。
Next, these adsorbents were heat-treated under the same conditions as in Example 1 and then N 2 was applied under the same conditions and under the same conditions as described above.
Ox absorption characteristics were measured. For each adsorbent, the breakthrough time when the breakthrough rate became 0.05 was as shown in the column after heat treatment in Table 1.

【0066】性能評価 Performance evaluation

【表1】 各吸着剤のNOx吸着特性を示す図2〜4および表1か
ら明らかなように、実施例の各吸着剤はいずれも、25
0℃で100時間の高温雰囲気に晒されても、十分な活
性を維持することができる。したがって、これらの吸着
剤は、吸着と再生の繰り返しにより連続的に使用できる
ことが示唆される。
[Table 1] As is clear from FIGS. 2 to 4 showing the NOx adsorption characteristics of each adsorbent and Table 1, each of the adsorbents of the Examples was 25%.
Even when exposed to a high-temperature atmosphere at 0 ° C. for 100 hours, sufficient activity can be maintained. Therefore, it is suggested that these adsorbents can be used continuously by repeating adsorption and regeneration.

【0067】これに対し、比較例の各吸着剤は、初期性
能の点では実施例の吸着剤と遜色がないが、250℃で
100時間の高温雰囲気に晒されると、著しい性能低下
を示した。
On the other hand, each of the adsorbents of the comparative example is not inferior to the adsorbent of the example in terms of initial performance, but shows a remarkable decrease in performance when exposed to a high-temperature atmosphere at 250 ° C. for 100 hours. .

【0068】吸着NOxの脱着再生温度 実施例1に従ってNOxの吸着除去を行った後、反応管
に、湿分濃度500ppm に調整した空気を2.5NL/
分で流通させながら吸着剤の温度を昇温した。この場合
の反応管出口ガス中のNOx濃度の変化を図5に示す。
Desorption regeneration temperature of adsorbed NOx After adsorbing and removing NOx according to Example 1, air adjusted to a moisture concentration of 500 ppm was added to the reaction tube at 2.5 NL / hour.
The temperature of the adsorbent was raised while flowing in minutes. FIG. 5 shows the change in the NOx concentration in the gas at the outlet of the reaction tube in this case.

【0069】同図に見られるとおり、吸着剤の温度が高
くなるにつれて、脱着するNOx量が増加し、その結果
として出口NOx濃度が急激に高くなる。
As can be seen from the figure, as the temperature of the adsorbent increases, the amount of desorbed NOx increases, and as a result, the outlet NOx concentration sharply increases.

【0070】一方、脱着により、吸着剤中に残存するN
Ox量が減るのに伴って、脱着NOx量が低下し出口N
Ox濃度も低くなる。このため出口NOx濃度はピーク
(脱着ピークと呼ぶ)を持つ曲線となる。実施例1の吸
着剤を用いたNOx吸着除去後の場合、脱着ピークは約
190℃であった。
On the other hand, the N remaining in the adsorbent due to desorption
As the amount of Ox decreases, the amount of desorbed NOx decreases and the outlet N
The Ox concentration also decreases. Therefore, the outlet NOx concentration becomes a curve having a peak (called a desorption peak). In the case after NOx adsorption removal using the adsorbent of Example 1, the desorption peak was about 190 ° C.

【0071】これに対して、比較例1の吸着剤を用いた
NOx吸着除去後、この吸着剤を上記と同じ操作で脱着
処理した場合、図6に示すように、脱着ピークは約24
0℃であった。
On the other hand, when NOx was adsorbed and removed using the adsorbent of Comparative Example 1 and this adsorbent was desorbed by the same operation as described above, the desorption peak was about 24 as shown in FIG.
It was 0 ° C.

【0072】このことにより、実施例1の吸着剤の方
が、比較例1の吸着剤と比べて、吸着NOxの脱着をよ
り低温で行うことができ、吸着剤の再生が容易であるこ
とが判る。
As a result, the adsorbent of Example 1 can desorb adsorbed NOx at a lower temperature and can regenerate the adsorbent more easily than the adsorbent of Comparative Example 1. I understand.

【0073】実施例13(湿分濃度の影響) 実施例1と同様の方法で調製したRu担持チタニア吸着
剤を実施例と同様に反応管に充填し、同じ条件で乾燥つ
いで放冷した後、乾燥空気の流通を一旦止め、吸着剤層
に反応ガスとして3.5ppm のNOxを含む調湿空気
(湿分濃度;約22,000ppm 、温度;26.0℃、
相対湿度;51%)を2.5NL/分でを導入し、反応
管出口ガス中のNOx濃度を測定した。この濃度の経時
変化を図7に実施例13として示す。また、同図に実施
例1(湿分濃度;約500ppm )の結果も示す。
Example 13 (Effect of Moisture Concentration) A Ru-supported titania adsorbent prepared in the same manner as in Example 1 was charged into a reaction tube in the same manner as in Example 1, dried under the same conditions, and allowed to cool. The flow of the dry air is stopped once, and the conditioned air containing 3.5 ppm of NOx as a reactive gas in the adsorbent layer (moisture concentration: about 22,000 ppm, temperature: 26.0 ° C.,
(Relative humidity; 51%) at a rate of 2.5 NL / min, and the NOx concentration in the reaction tube outlet gas was measured. The change over time in this concentration is shown in FIG. FIG. 3 also shows the results of Example 1 (moisture concentration; about 500 ppm).

【0074】図7において、湿分濃度の異なる2つの曲
線の比較より明らかなように、湿分濃度が高くなっても
NOx吸着性能は低下せず、大気空気の湿分濃度でも効
率よくNOxを吸着除去できることが判る。
In FIG. 7, as is clear from the comparison of the two curves having different moisture concentrations, the NOx adsorption performance does not decrease even if the moisture concentration increases, and NOx can be efficiently removed even when the moisture concentration in the atmospheric air is high. It turns out that adsorption removal is possible.

【0075】Ru担持量 実施例1と同様の操作で平板・波板積層構造の吸着剤担
体を調製した。この吸着剤担体を所定濃度の塩化ルテニ
ウムと塩化マンガンとを含む混合物水溶液(Ru濃度;
0.2〜0.3重量%、Mn濃度;2.07重量%)に
室温で所要時間浸漬し、これを水洗ついで乾燥してRu
担持量の異なる吸着剤を得た。
Ru carrying amount An adsorbent carrier having a laminated structure of a flat plate and a corrugated plate was prepared in the same manner as in Example 1. This adsorbent carrier is mixed with an aqueous solution mixture containing a predetermined concentration of ruthenium chloride and manganese chloride (Ru concentration;
(0.2-0.3% by weight, Mn concentration: 2.07% by weight) at room temperature for a required time, washed with water, dried, and Ru
Adsorbents with different loading amounts were obtained.

【0076】これらの吸着剤を実施例1と同様に反応管
に充填し、同様の条件で出口ガス中のNOx濃度を測定
し、10%破過時間(出口ガス中のNOx濃度が入口濃
度の10%に到達するまでの時間)を求めた。Ru担持
量と10%破過時間の関係を図8に示す。
These adsorbents were filled in a reaction tube in the same manner as in Example 1, the NOx concentration in the outlet gas was measured under the same conditions, and the 10% breakthrough time (when the NOx concentration in the outlet gas was less than the inlet concentration) (Time to reach 10%). FIG. 8 shows the relationship between the amount of Ru supported and the 10% breakthrough time.

【0077】同図に見られるとおり、Ru担持量が増加
するにつれて10%破過時間が長くなり、すなわちNO
x吸着性能が良くなるが、Ru担持量が約2重量%以上
では10%破過時間がほぼ一定になることが判る。
As can be seen from the figure, the 10% breakthrough time increases as the amount of loaded Ru increases, that is, NO
Although x adsorption performance is improved, it can be seen that the 10% breakthrough time becomes almost constant when the amount of supported Ru is about 2% by weight or more.

【0078】[0078]

【発明の効果】本発明による吸着剤は、アナターゼ型チ
タニアを保持したセラミックペーパー担体に、ルテニウ
ムのハロゲン化物と、カリウム、ナトリウム、マグネシ
ウム、カルシウム、マンガン、銅、亜鉛、ルビジウム、
ジルコニウム、バリウム、セリウム、モリブデンより成
る群から選ばれた少なくとも1つの金属のハロゲン化物
とが共担持されているものであるので、250℃で10
0時間の高温雰囲気に晒されても、十分な活性を維持す
ることができる。したがって、この吸着剤は、吸着と再
生の繰り返しにより連続的に使用するのに好適である。
The adsorbent according to the present invention comprises a ceramic paper carrier holding anatase titania, a ruthenium halide, potassium, sodium, magnesium, calcium, manganese, copper, zinc, rubidium,
Since it is co-supported with a halide of at least one metal selected from the group consisting of zirconium, barium, cerium, and molybdenum, 10 ° C. at 250 ° C.
Even when exposed to a high-temperature atmosphere for 0 hours, sufficient activity can be maintained. Therefore, this adsorbent is suitable for continuous use by repeating adsorption and regeneration.

【0079】またこの吸着剤は、ルテニウム単独担持吸
着剤と比べて、TiO2 重量当たりのNOx吸着性能お
よびRu担持量当りのNOx吸着性能がいずれも高く、
さらに吸着NOxの脱着をより低温で行うことができ、
吸着剤の再生が容易である点で、優れた吸着剤である。
Further, this adsorbent has a higher NOx adsorbing performance per TiO 2 weight and a higher NOx adsorbing performance per Ru supported amount as compared with the ruthenium-only adsorbent.
Furthermore, desorption of adsorbed NOx can be performed at lower temperature,
It is an excellent adsorbent in that the regeneration of the adsorbent is easy.

【0080】またこの吸着剤は、ルテニウム単独担持吸
着剤と同様に、湿分の影響を受けないため、NOx吸着
除去の前段で必要とした脱湿工程が省略あるいは軽減で
きる。そのため脱湿工程で必要とする多大なエネルギー
が軽減でき、しかも脱湿装置が不要あるいは簡素化でき
る。したがって、従来プロセスと比べて大幅な省エネル
ギーおよび省スペース(小型化)が図れ、経済的効果が
きわめて高い。
Since the adsorbent is not affected by moisture like the adsorbent supporting ruthenium alone, the dehumidification step required in the preceding stage of NOx adsorption and removal can be omitted or reduced. Therefore, a large amount of energy required in the dehumidifying step can be reduced, and a dehumidifying device can be eliminated or simplified. Therefore, significant energy saving and space saving (miniaturization) can be achieved as compared with the conventional process, and the economic effect is extremely high.

【0081】また、吸着剤に吸着したNOxは加熱によ
り容易に脱着するため、吸着剤の再生が簡便になし得
る。したがって、本発明による吸着剤は、NOxの吸着
と脱着(再生)を連続的に繰り返す回転式のNOx吸着
ローターの吸着剤として好適に利用可能である。
Further, NOx adsorbed on the adsorbent is easily desorbed by heating, so that the adsorbent can be easily regenerated. Therefore, the adsorbent according to the present invention can be suitably used as an adsorbent for a rotary NOx adsorption rotor that continuously repeats adsorption and desorption (regeneration) of NOx.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平板・波板多層構造の吸着剤示す斜視図であ
る。
FIG. 1 is a perspective view showing an adsorbent having a multilayer structure of a flat plate and a corrugated plate.

【図2】時間と破過率の関係を示すグラフである。FIG. 2 is a graph showing a relationship between time and a breakthrough rate.

【図3】時間と破過率の関係を示すグラフである。FIG. 3 is a graph showing the relationship between time and breakthrough rate.

【図4】時間と破過率の関係を示すグラフである。FIG. 4 is a graph showing a relationship between time and a breakthrough rate.

【図5】時間とNOx濃度および温度の関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between time, NOx concentration, and temperature.

【図6】時間とNOx濃度および温度の関係を示すグラ
フである。
FIG. 6 is a graph showing the relationship between time, NOx concentration, and temperature.

【図7】時間と破過率の関係を示すグラフである。FIG. 7 is a graph showing a relationship between time and a breakthrough rate.

【図8】Ru担持量と10%破過時間の関係を示すグラ
フである。
FIG. 8 is a graph showing the relationship between the amount of Ru supported and the 10% breakthrough time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 高延 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 福寿 厚 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 秋山 正樹 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 西良 友紀 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takanobu Watanabe, 5-28 Nishikujo, Konohana-ku, Osaka-shi Inside Tachibana Shipbuilding Co., Ltd. (72) Atsushi Fukuju, 5-3-1 Nishikujo, Konohana-ku, Osaka-shi No. 28 Inside Tate Shipbuilding Co., Ltd. (72) Inventor Masaki Akiyama 5-3-28 Nishikujo, Konohana-ku, Osaka-shi Inside Nachidate Shipbuilding Co., Ltd. Yuki Nishira 5-3-1 Nishikujo, Konohana-ku, Osaka-shi No. 28 Sun Tachibai Shipbuilding Co., Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アナターゼ型チタニアを保持したセラミ
ックペーパー担体に、ルテニウムのハロゲン化物と、カ
リウム、ナトリウム、マグネシウム、カルシウム、マン
ガン、銅、亜鉛、ルビジウム、ジルコニウム、バリウ
ム、セリウム、モリブデンより成る群から選ばれた少な
くとも1つの金属のハロゲン化物とが共担持されている
ことを特徴とする、低濃度窒素酸化物の吸着除去剤。
1. A ceramic paper carrier holding anatase titania is selected from the group consisting of ruthenium halides, potassium, sodium, magnesium, calcium, manganese, copper, zinc, rubidium, zirconium, barium, cerium and molybdenum. A low-concentration nitrogen oxide adsorption / removal agent, wherein the at least one metal halide is co-supported.
JP4010312A 1991-10-31 1992-01-23 Adsorption remover for low concentration nitrogen oxides Expired - Fee Related JP2743043B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP4010312A JP2743043B2 (en) 1992-01-23 1992-01-23 Adsorption remover for low concentration nitrogen oxides
DE69224082T DE69224082T2 (en) 1991-10-31 1992-10-30 Adsorbent for the removal of low concentration nitrogen oxides
CA002081814A CA2081814C (en) 1991-10-31 1992-10-30 Absorbents for removing low-concentration nitrogen oxides
EP92402953A EP0540428B1 (en) 1991-10-31 1992-10-30 Adsorbents for removing low-concentration nitrogen oxides
DE69216764T DE69216764T2 (en) 1991-10-31 1992-10-30 Adsorbent for the removal of low-concentration nitrogen oxides
EP95105171A EP0668099B1 (en) 1991-10-31 1992-10-30 Adsorbents for removing low-concentration nitrogen oxides
US08/288,763 US5439868A (en) 1991-10-31 1994-08-11 Absorbents for removing low-concentration nitrogen oxides
US08/429,768 US5612276A (en) 1991-10-31 1995-04-27 Adsorbents for removing low-concentration nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4010312A JP2743043B2 (en) 1992-01-23 1992-01-23 Adsorption remover for low concentration nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH05200281A JPH05200281A (en) 1993-08-10
JP2743043B2 true JP2743043B2 (en) 1998-04-22

Family

ID=11746729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4010312A Expired - Fee Related JP2743043B2 (en) 1991-10-31 1992-01-23 Adsorption remover for low concentration nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2743043B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579275B2 (en) * 1993-08-24 1997-02-05 日立造船株式会社 Method for producing low concentration nitrogen oxide adsorption remover

Also Published As

Publication number Publication date
JPH05200281A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
JP2557307B2 (en) NOx adsorption removal method
US5612276A (en) Adsorbents for removing low-concentration nitrogen oxides
JPH0741142B2 (en) Method for removing low-concentration nitrogen oxides in road tunnel ventilation gas
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JP5163955B2 (en) Exhaust gas purification catalyst
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2002248348A (en) Adsorbing agent for nitrogen oxide and/or sulfur oxide
JP2563862B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH05337363A (en) Adsorbing material for carbon monoxide in inert gas
JP2563861B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2003275583A (en) Nitrogen dioxide absorbent
JPH07275695A (en) So2 adsorbent
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JP2000325780A (en) Nitrogen oxide and/or sulfur oxide adsorbent
JPH10118486A (en) Concentration of dilute nitrogen oxide
JPH0798150B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH1176827A (en) Apparatus for cleaning exhaust gas
JPH06319943A (en) Method for removing nox by adsorption
JP3074343B2 (en) Method for producing NOx adsorbent
JP2563861C (en)
JP2001038200A (en) Adsorbent for nitrogen oxide or the like, its production and method for removing nitrogen oxide or the like
JP2559337B2 (en) NOx adsorbent
JPH05200283A (en) Simultaneously adsorbing and removing agent for low-concentration nox and sox and method for simultaneously removing them
JP2000167394A (en) Regeneration of adsorbent for nitrogen oxide and the like

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees