JPH07275695A - So2 adsorbent - Google Patents

So2 adsorbent

Info

Publication number
JPH07275695A
JPH07275695A JP6068489A JP6848994A JPH07275695A JP H07275695 A JPH07275695 A JP H07275695A JP 6068489 A JP6068489 A JP 6068489A JP 6848994 A JP6848994 A JP 6848994A JP H07275695 A JPH07275695 A JP H07275695A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
nox
carrier
anatase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6068489A
Other languages
Japanese (ja)
Inventor
Masayoshi Ichiki
正義 市来
Akio Iwamoto
皓夫 岩本
Hideji Kobayashi
秀次 小林
Takanobu Watanabe
高延 渡辺
Atsushi Fukuju
厚 福寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP6068489A priority Critical patent/JPH07275695A/en
Publication of JPH07275695A publication Critical patent/JPH07275695A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To obtain an SO2 adsorbent capable of being repeatedly regenerated and used by supporting cerium on a carrier composed of anatase type titania. CONSTITUTION:Cerium is supported on a carrier composed of anatase type titania or Ce and at least one addition metal selected from a group consisting of Pt, Pd, Rh, Ag, V, Mn, Fe, Co, Cu, Mo and Bi are together supported on the carrier to obtain the objective SO2 adsorbent. This SO2 adsorbent adsorbs SO2 reversibly and can be regenerated and reused. Therefore, by packing the front part of an NOx adsorbent packed bed with this SO2 adsorbent, the poisoning (lowering of capacity) of the NOx adsorbent caused by SO2 is reduced and the life of the NOx adsorbent can be extended and a more practical NOx adsorbing and removing system can be constructed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、各種道路トン
ネル、山岳トンネル、海底トンネル、地下道路、シェル
ター付道路等の各種トンネル(総称して「道路トンネル
等」と呼ぶ)における換気ガス中に含有される低濃度の
窒素酸化物(NOx)を効率よく除去する技術に関し、
より詳細には、NOx吸着剤充填層の前流に充填するこ
とにより、SO2 を可逆吸着し、繰り返し再生使用をな
し得るSO2 吸着剤に関するものである。
BACKGROUND OF THE INVENTION The present invention is applicable to ventilation gas in various tunnels such as various road tunnels, mountain tunnels, undersea tunnels, underground roads, and roads with shelter (collectively referred to as "road tunnels"). Regarding the technology for efficiently removing the contained low-concentration nitrogen oxides (NOx),
More specifically, by filling in the upstream of the NOx adsorbent filling layer, reversibly adsorb SO 2, relates to SO 2 sorbents may make repeated reuse.

【0002】[0002]

【発明の背景】道路トンネル等において、特に長大で自
動車交通量の多いものについては、通行者の健康保護や
明視距離の改善を目的に相当量の換気を行う必要があ
る。また、比較的短距離のトンネルでも都市部あるいは
その近郊では、出入口部に集中する一酸化炭素(C
O)、NOx等による大気汚染を防止する方法として、
トンネル内の空気を吸引排気(換気)する方法がある。
BACKGROUND OF THE INVENTION In a road tunnel or the like, which is particularly long and has a large amount of automobile traffic, it is necessary to provide a considerable amount of ventilation for the purpose of protecting the health of passersby and improving the visual distance. Even in a relatively short-distance tunnel, carbon monoxide (C
O), as a method of preventing air pollution due to NOx, etc.
There is a method to suck and exhaust (ventilate) the air in the tunnel.

【0003】しかしながら、換気ガスをそのまま周囲に
放散したのでは、地域的な環境改善にはならず、特に自
動車排ガスによる汚染が平面的に拡がっている都市部あ
るいはその近郊では高度の汚染地域を拡大させることに
なりかねない。
However, if the ventilation gas is diffused to the surroundings as it is, it does not improve the local environment, and in particular, the highly contaminated area is expanded in the urban area where the exhaust gas pollution is spreading in the plane or its suburbs. It could lead to.

【0004】道路トンネル等の換気ガス中のNOxは一
般に10ppm以下の濃度であり、その大半がNOで少
量のNO2 ならびにN2 Oなどが含まれている。さらに
数%の湿分と0.1%以下のCO2 、1ppm以下のS
2 、ならびに数ppmの炭化水素類が共存している。
NOx in the ventilation gas of a road tunnel or the like generally has a concentration of 10 ppm or less, and most of it is NO and contains a small amount of NO 2 and N 2 O. Moisture content of several%, CO 2 of 0.1% or less, S of 1 ppm or less
O 2 and several ppm of hydrocarbons coexist.

【0005】[0005]

【従来の技術】本発明者らは、先に、道路トンネル等の
換気ガスの浄化装置として、TiO2にRu、Ceなど
を担持させた板状吸着剤からなるハニカム構造体のNO
x吸着剤ロータを主体とする回転式NOx吸着(除去)
装置を提案した(特開平3−258324号)。
2. Description of the Related Art The present inventors have previously proposed, as a device for purifying ventilation gas for road tunnels, etc., a NO of a honeycomb structure composed of a plate-shaped adsorbent in which TiO 2 carries Ru, Ce, or the like.
x adsorbent Rotational NOx adsorption (removal) mainly composed of rotor
A device was proposed (Japanese Patent Laid-Open No. 3-258324).

【0006】しかし、回転式NOx吸着装置には、種々
の問題があり、これらを解決するために、NOx吸着器
をガス流れ方向に複数のゾーンに分割したことを特徴と
する固定床式のNOx吸着装置を提案した(特願平5−
209680)。
However, the rotary NOx adsorber has various problems, and in order to solve these problems, the fixed bed NOx is characterized in that the NOx adsorber is divided into a plurality of zones in the gas flow direction. Proposed adsorption device (Japanese Patent Application No. 5-
209680).

【0007】[0007]

【発明が解決しようとする課題】固定床式NOx吸着装
置において使用されるNOx吸着剤は、実験により処理
ガス中の50ppmのSO2 により被毒されることが判
明している。したがって、実際の使用条件下(SO2
1ppm以下)でもNOx吸着(除去)性能が徐々に低
下することが予想される。
The NOx adsorbent used in a fixed bed NOx adsorber has been experimentally found to be poisoned by 50 ppm SO 2 in the process gas. Therefore, under actual use conditions (SO 2 :
Even at 1 ppm or less), NOx adsorption (removal) performance is expected to gradually decrease.

【0008】NOx吸着(除去)性能の低下速度は処理
ガス中のSO2 濃度の影響を受け、SO2 濃度が低いほ
ど性能低下速度は遅くなることが期待される。
The rate of decrease in NOx adsorption (removal) performance is affected by the SO 2 concentration in the processing gas, and it is expected that the lower the SO 2 concentration, the slower the rate of performance decrease.

【0009】そのため、NOx吸着の前にSO2 濃度を
低減させることにより、NOx吸着剤の寿命を延ばすこ
とが望まれる。
Therefore, it is desired to extend the life of the NOx adsorbent by reducing the SO 2 concentration before NOx adsorption.

【0010】処理ガス中のSO2 を除去する手段として
は、いくつかの排煙脱硫方法が知られている。
Several flue gas desulfurization methods are known as means for removing SO 2 in the treated gas.

【0011】排煙脱硫法は湿式法と乾式法に大別され
る。
The flue gas desulfurization method is roughly classified into a wet method and a dry method.

【0012】湿式法としては、水洗浄、アルカリ洗浄
(アンモニア、カセイソーダなどを含む水溶液)あるい
は亜硫酸ソーダ(Na2 SO3 )溶液への吸収などのプ
ロセスがある。
As the wet method, there are processes such as water washing, alkali washing (aqueous solution containing ammonia, caustic soda, etc.) or absorption in a sodium sulfite (Na 2 SO 3 ) solution.

【0013】湿式法では、廃液処理設備を必要とするた
め、高濃度のSO2 を回収する目的以外では経済的にプ
ロセスが成り立たない。
Since the wet method requires a waste liquid treatment facility, the process cannot be economically performed except for the purpose of recovering a high concentration of SO 2 .

【0014】特に、NOx吸着装置においては、NOx
吸着剤のNOx吸着(除去)性能が処理ガス中の湿度の
影響を受け、水洗浄等で液と接触させることにより処理
ガスが加湿されることは、NOx吸着装置においては好
ましくない。
Particularly, in the NOx adsorption device, NOx
It is not preferable in the NOx adsorption device that the NOx adsorption (removal) performance of the adsorbent is affected by the humidity in the processing gas and that the processing gas is humidified by bringing it into contact with a liquid such as water washing.

【0015】乾式法としては、活性炭や消石灰(Ca
(OH)2 )、炭酸カルシウム(CaCO3 )などに吸
収させるプロセスが知られている。
The dry method includes activated carbon and slaked lime (Ca
A process for absorbing (OH) 2 ) and calcium carbonate (CaCO 3 ) is known.

【0016】これらのSO2 吸収剤は、通常、再生使用
できないため、使い捨てされる。したがって、大量のガ
ス(トンネル換気ガス等)を処理する場合には、SO2
吸収剤の消費量が多量になり、経済的に好ましくない。
Since these SO 2 absorbents cannot normally be reused, they are thrown away. Therefore, when processing a large amount of gas (such as tunnel ventilation gas), SO 2
The consumption of the absorbent becomes large, which is not economically preferable.

【0017】本発明の目的は、上記の諸問題をすべて解
決することができるSO2 吸着剤を提供することにあ
る。
An object of the present invention is to provide an SO 2 adsorbent which can solve all of the above problems.

【0018】[0018]

【課題を解決するための手段】上記の問題は、SO2
可逆吸着し、繰り返し再生使用をなし得るSO2 吸着剤
が見い出せれば、このSO2 吸着剤をNOx吸着剤充填
層の前流に充填することにより、解決できる。
SUMMARY OF THE INVENTION The above problem is reversibly adsorb SO 2, if Re Miidase is SO 2 adsorbent may make repeated reuse, the upstream of the SO 2 adsorbent NOx adsorbent filling layer Can be solved by filling the

【0019】本発明者らは、上述の課題を解決するため
に鋭意、検討した結果、SO2 を可逆吸着する吸着剤を
見い出し、本発明を完成するに至った。
As a result of earnest studies to solve the above problems, the present inventors have found an adsorbent capable of reversibly adsorbing SO 2 , and completed the present invention.

【0020】すなわち、本発明によるSO吸着剤は、
アナターゼ型チタニアから成る担体に、セリウムが担持
されているものである。
That is, the SO 2 adsorbent according to the present invention is
Cerium is supported on a carrier composed of anatase-type titania.

【0021】本発明によるSO吸着剤は、好ましく
は、アナターゼ型チタニアから成る担体に、セリウムと
付加金属とが共担持されたものである。この付加金属
は、白金、パラジウム、ロジウム、銀、バナジウム、マ
ンガン、鉄、コバルト、銅、モリブデン、ビスマスより
成る群から選ばれた少なくとも1つである。
The SO 2 adsorbent according to the present invention is preferably a carrier composed of anatase-type titania in which cerium and an additional metal are co-supported. The additional metal is at least one selected from the group consisting of platinum, palladium, rhodium, silver, vanadium, manganese, iron, cobalt, copper, molybdenum and bismuth.

【0022】本発明の好適な実施態様では、アナターゼ
型チタニアから成る担体はセラミックペーパーに保持さ
れている。
In a preferred embodiment of the present invention, the carrier consisting of anatase titania is held on ceramic paper.

【0023】本発明の好適なSO2 の吸着剤は、アナタ
ーゼ型チタニアから成る担体を保持した平板状のセラミ
ックペーパーとアナターゼ型チタニアから成る担体を保
持した波板状のセラミックペーパーとが1枚置きに配さ
れて断面ハニカム状の平板・波板多層構造物が構成さ
れ、上記担体にセリウムが担持されているものである。
The preferred SO 2 adsorbent of the present invention is a flat plate-shaped ceramic paper holding a carrier made of anatase-type titania and a corrugated plate-shaped ceramic paper holding a carrier made of anatase-type titania. To form a flat plate / corrugated plate multilayer structure having a honeycomb shape in cross section, and cerium is carried on the carrier.

【0024】[0024]

【実施例】【Example】

実施例1 市販のセラミックペーパー(成分;シリカ:アルミナ=
50:50、厚さ;0.25mm、坪量;46g/
2 )を所定の寸法に切断し、アナターゼ型のチタニア
ゾル(TiO2 含有量;約30重量%)に室温で浸漬し
た。
Example 1 Commercially available ceramic paper (component: silica: alumina =
50:50, thickness; 0.25 mm, basis weight; 46 g /
m 2 ) was cut into a predetermined size and immersed in anatase-type titania sol (TiO 2 content; about 30% by weight) at room temperature.

【0025】浸漬後、直ちにこのセラミックペーパーを
平板上に取り出し、ローラー等により余分なチタニアゾ
ルを落とし、均一な厚さとすると同時に、同ペーパーを
熱風により乾燥した。
Immediately after the immersion, this ceramic paper was taken out on a flat plate, and excess titania sol was dropped by a roller or the like to obtain a uniform thickness, and at the same time, the paper was dried with hot air.

【0026】こうして成形した平板状チタニアゾル含浸
セラミックペーパーを電気炉に入れ、空気中500℃で
3時間焼成して、平板状のチタニア保持セラミックペー
パーを得た。
The plate-shaped titania sol-impregnated ceramic paper thus molded was placed in an electric furnace and fired in air at 500 ° C. for 3 hours to obtain a plate-shaped titania-holding ceramic paper.

【0027】チタニアゾル含浸前の重量と焼成後の重量
との差より、TiO2 保持量を求めた結果、101g/
2 のTiO2 が保持されていた。
From the difference between the weight before impregnation of the titania sol and the weight after firing, the TiO 2 retention was determined to be 101 g /
m 2 of TiO 2 was retained.

【0028】ついで、平板状チタニア保持セラミックペ
ーパーを塩化セリウム(CeCl3)水溶液(Ce濃
度;17重量%)に室温で浸漬した。
Then, the plate-shaped titania-supporting ceramic paper was immersed in a cerium chloride (CeCl 3 ) aqueous solution (Ce concentration; 17% by weight) at room temperature.

【0029】浸漬後、これを約110℃で乾燥後電気炉
に入れ、空気中500℃で3時間焼成してCe担持チタ
ニア保持セラミックペーパーから成るSO2 吸着剤(C
e担持量:30.4重量%)を得た。
After the immersion, this was dried at about 110 ° C. and then placed in an electric furnace and calcined in air at 500 ° C. for 3 hours to obtain an SO 2 adsorbent (C) carrying a Ce-supported titania-supported ceramic paper.
e supported amount: 30.4% by weight) was obtained.

【0030】性能試験 この平板状SO2 吸着剤を小片(長さ;50mm、幅;
21mm)に切り、8枚の試験片(吸着剤幾何表面積;
0.0168m2 )を得、これらを内寸22mm角のス
テンレス製反応管に充填した。
[0030] Performance Test The tabular SO 2 sorbent pieces (length: 50 mm, width;
21 mm) and cut into 8 test pieces (adsorbent geometric surface area;
0.0168 m 2 ) was obtained, and these were filled in a stainless steel reaction tube having an inner dimension of 22 mm square.

【0031】次に、この吸着剤充填層の一端から他端に
向かって調湿空気(湿分;5000ppm)を流通しな
がら(2.8Nリットル/分)、吸着剤を約130℃で
10分間処理した(「予熱操作」と呼ぶ)後、引き続き
約300℃で30分間処理した(「再生操作」と呼
ぶ)。再生操作後、上記とは逆に吸着剤充填層の他端よ
り一端に向かって調湿空気(湿分;5000ppm)を
吸着剤を通して45分間流通(2.8Nリットル/1
分)させて冷却した(「冷却操作」と呼ぶ)。
Next, while flowing the conditioned air (moisture: 5000 ppm) from one end to the other end of the adsorbent-packed bed (2.8 N liter / min), the adsorbent was heated at about 130 ° C. for 10 minutes. After the treatment (referred to as "preheating operation"), the treatment was continued at about 300 ° C for 30 minutes (referred to as "regeneration operation"). After the regenerating operation, contrary to the above, the conditioned air (moisture: 5000 ppm) was passed through the adsorbent from the other end of the adsorbent packed bed toward one end through the adsorbent for 45 minutes (2.8 N liter / 1.
Min) and allowed to cool (referred to as "cooling operation").

【0032】放冷後、冷却操作と同じガス流れ方向で、
吸着剤充填層に50ppmのSO2を含む調湿空気(湿
分;5000ppm)を流通した(「吸着操作」と呼
ぶ)。この1回目の吸着操作において、SO2 含有ガス
の流通直後から反応管出口ガス中のSO2 濃度を赤外線
式分析計で測定した。出口ガス中のSO2 濃度の経時変
化を図1に示す。図1中の縦軸には出口ガス中のSO2
濃度を入口ガス中のSO2 濃度で除した値(「破過率」
と呼ぶ)が目盛ってある。
After cooling down, in the same gas flow direction as the cooling operation,
Humidified air (moisture content: 5000 ppm) containing 50 ppm of SO 2 was passed through the adsorbent packed bed (referred to as “adsorption operation”). In the first adsorption operation, the SO 2 concentration in the outlet gas of the reaction tube was measured with an infrared analyzer immediately after the flow of the SO 2 containing gas. FIG. 1 shows the change with time of the SO 2 concentration in the outlet gas. The vertical axis in FIG. 1 indicates the SO 2 in the outlet gas.
Value obtained by dividing the concentration by the SO 2 concentration in the inlet gas (“breakthrough rate”
Is called).

【0033】初期性能(1回目吸着)について見ると、
破過率が0.2に到達するまでの時間は50分であっ
た。
Looking at the initial performance (first adsorption),
The time required for the breakthrough rate to reach 0.2 was 50 minutes.

【0034】吸着操作に引き続き、再び予熱操作および
再生操作により、吸着剤に吸着したSO2 を脱離させた
後、冷却操作を行った。冷却操作後、1回目と同様にし
て2回目の吸着操作を行った。
Subsequent to the adsorption operation, SO 2 adsorbed on the adsorbent was desorbed by preheating operation and regeneration operation again, and then cooling operation was performed. After the cooling operation, the second adsorption operation was performed in the same manner as the first adsorption operation.

【0035】2回目の吸着性能について見ると、破過率
が0.2に到達するまでの時間は33分であった。
As for the second adsorption performance, the time required for the breakthrough rate to reach 0.2 was 33 minutes.

【0036】このように、吸着操作、予熱操作、再生操
作および冷却操作から成る1サイクルの操作を17回繰
り返した。
In this way, one cycle of the adsorption operation, the preheating operation, the regeneration operation and the cooling operation was repeated 17 times.

【0037】この間、6回目の吸着性能について見る
と、破過率が0.2に到達するまでの時間は20分であ
り、10回目の吸着では17分、その後はそれほど変化
せず、18回目の吸着では15分であった。
In the meantime, regarding the adsorption performance of the 6th time, the time until the breakthrough rate reaches 0.2 is 20 minutes, the adsorption time of the 10th time is 17 minutes, and it does not change so much after that, and the 18th time. The adsorption time was 15 minutes.

【0038】つぎに、反応管入口ガス中のSO2 濃度を
20.0ppmに変更して19回目の吸着を行い、同濃
度を4.8ppmに変更して20回目の吸着を行った。
なお、予熱操作、再生操作および冷却操作は、1回目の
操作と同様にして行った。
Next, the SO 2 concentration in the gas at the inlet of the reaction tube was changed to 20.0 ppm for the 19th adsorption, and the same concentration was changed to 4.8 ppm for the 20th adsorption.
The preheating operation, the regeneration operation and the cooling operation were performed in the same manner as the first operation.

【0039】測定した破過率を図2に示す。19回目の
吸着操作では破過率が0.2に到達するまでの時間は3
9分であり、20回目の吸着操作では157分であっ
た。
The measured breakthrough rate is shown in FIG. In the 19th adsorption operation, the time until the breakthrough rate reaches 0.2 is 3
It was 9 minutes, and it was 157 minutes in the 20th adsorption operation.

【0040】図3に、18回目から20回目のSO2
着における、反応管入口ガス中のSO2 濃度と、破過率
が0.2に到達するまでに吸着剤に吸着したSO2 吸着
量との関係を示す。
[0040] Figure 3, in 20 th SO 2 adsorbed from 18 th, and SO 2 concentration in the reaction tube inlet gas, SO 2 adsorption amount adsorbed by the adsorbent before breakthrough rate reaches 0.2 Shows the relationship with.

【0041】図3に見られるとおり、SO2 吸着剤への
SO2 吸着量は吸着剤に供給するSO2 濃度に依存しな
いことが判る。
[0041] As seen in FIG. 3, SO 2 adsorption amount of the SO 2 sorbent seen to be independent of the SO 2 concentration is supplied to the adsorbent.

【0042】図2と図3より、このSO2 吸着剤は、吸
着・再生を繰り返した後においても、また低濃度のSO
2 であっても良好な吸着性能を発揮することが判る。
From FIG. 2 and FIG. 3, this SO 2 adsorbent shows that the SO 2 adsorbent has a low concentration of SO even after repeated adsorption and regeneration.
It can be seen that even with 2 , excellent adsorption performance is exhibited.

【0043】比較例1 実施例1と同様にして得た、平板状チタニア保持セラミ
ックペーパーを平板状吸着剤とし、実施例1と同様に小
片に切断した後、得られた試験片をステンレス製反応管
に充填し、実施例1と同様の操作(予熱、再生、冷却の
各操作)を行った後、50ppmのSO2 を含む調湿空
気(湿分;5000ppm)を吸着剤充填層に流通し、
吸着操作を行った。
Comparative Example 1 A plate-shaped titania-supporting ceramic paper obtained in the same manner as in Example 1 was used as a plate-shaped adsorbent and cut into small pieces in the same manner as in Example 1, and the obtained test piece was made of a stainless steel reaction product. After filling the tube and performing the same operations as in Example 1 (preheating, regeneration, and cooling operations), conditioned air containing 50 ppm SO 2 (moisture; 5000 ppm) was passed through the adsorbent packed bed. ,
Adsorption operation was performed.

【0044】この吸着剤の初期吸着性能を図4に示す。
なお、図4には比較のために実施例1の1回目吸着時の
結果も合わせて示してある。
The initial adsorption performance of this adsorbent is shown in FIG.
For comparison, FIG. 4 also shows the result of the first adsorption of Example 1.

【0045】図4から明らかなように、(アナターゼ型
の)チタニア単独では充分な吸着性能は発揮されず、セ
リウムの担持が有効であることが判る。
As is apparent from FIG. 4, it is clear that the titania (of anatase type) alone does not exhibit sufficient adsorption performance, and that cerium is effectively supported.

【0046】本発明のSO2 吸着剤においては、吸着し
たSO2 が吸着剤表面で酸化された後、セリウム硫酸塩
の形態で吸着剤に保持されているものと思われる。
In the SO 2 adsorbent of the present invention, it is considered that the adsorbed SO 2 is retained on the adsorbent in the form of cerium sulfate after being oxidized on the surface of the adsorbent.

【0047】したがって、SO2 をSO3 に酸化する機
能を有する貴金属等を添加することにより、SO2 吸着
速度を高める効果が期待される。
Therefore, the effect of increasing the SO 2 adsorption rate is expected by adding a noble metal having a function of oxidizing SO 2 to SO 3 .

【0048】また、容易に熱分解する硫酸塩を形成する
金属(V、Feなど)を添加することにより、吸着容量
の増加とSO2 を脱離し、吸着剤を再生し易くする効果
が期待される。
Further, by adding a metal (V, Fe, etc.) which forms a sulfate which is easily pyrolyzed, it is expected that the adsorption capacity is increased and SO 2 is desorbed so that the adsorbent can be easily regenerated. It

【0049】そこで、上記観点より付加金属の添加効果
について検討を行った。
Therefore, the effect of adding the additional metal was examined from the above viewpoint.

【0050】実施例2 実施例1と同様にして得たチタニア保持セラミックペー
パーを塩化セリウム水溶液に室温で浸漬し、乾燥後、空
気中500℃で3時間焼成して、Ce担持チタニア保持
セラミックペーパーから成るSO2 吸着剤(Ce担持
量:約30重量%)を準備した。
Example 2 The titania-supporting ceramic paper obtained in the same manner as in Example 1 was immersed in an aqueous cerium chloride solution at room temperature, dried and then calcined in air at 500 ° C. for 3 hours to obtain a Ce-supported titania-supporting ceramic paper. An SO 2 adsorbent (amount of Ce carried: about 30% by weight) was prepared.

【0051】この平板状SO2 吸着剤を、白金塩が白金
(Pt)金属として吸着剤中に1重量%担持されるよう
に濃度調整した塩化白金水溶液に室温で浸漬し、乾燥
後、空気中500℃で1時間焼成して、Pt添加Ce担
持チタニア保持セラミックペーパーから成るSO2 吸着
剤(「Ce(30)+Pt(1) /TiO2 」と表わす)を得
た。
This tabular SO 2 adsorbent was immersed at room temperature in a platinum chloride aqueous solution whose concentration was adjusted so that a platinum salt was supported as platinum (Pt) metal in the adsorbent at 1% by weight. Firing at 500 ° C. for 1 hour gave an SO 2 adsorbent (denoted as “Ce (30) + Pt (1) / TiO 2 ”) consisting of Pt-added Ce-supporting titania-supporting ceramic paper.

【0052】この平板状の白金添加吸着剤を実施例1と
同様にしてステンレス製反応管に充填し、実施例1と同
様の操作により吸着、再生を繰り返し、10回目の吸着
における20%破過時間(破過率が0.2に到達するま
での時間)を測定した。この測定結果を表1に示す。こ
のSO2 吸着剤の破過時間は25分であり、白金の添加
効果が認められる。
This flat plate-shaped platinum-containing adsorbent was filled in a stainless steel reaction tube in the same manner as in Example 1, and adsorption and regeneration were repeated by the same operation as in Example 1 to achieve a 20% breakthrough in the 10th adsorption. The time (time until the breakthrough rate reaches 0.2) was measured. The results of this measurement are shown in Table 1. The breakthrough time of this SO 2 adsorbent is 25 minutes, and the effect of adding platinum is recognized.

【0053】実施例3、4 実施例2と同様、Ce担持チタニア保持セラミックペー
パーから成るSO2 吸着剤を、パラジウム(Pd)塩が
Pd金属として吸着剤に1重量%担持されるように濃度
調整した塩化パラジウム水溶液に室温で浸漬する以外
は、実施例2と同様にして、Pd添加Ce担持チタニア
保持セラミックペーパーから成るSO2 吸着剤(「Ce
(30)+Pd(1) /TiO2 」と表わす)を得た(実施例
3)。同様にして、塩化ロジウム水溶液を用いてRh添
加Ce担持チタニア保持セラミックペーパーから成るS
2 吸着剤(「Ce(30)+Rh(1) /TiO2 )と表わ
す)を得た(実施例4)。
Examples 3, 4 As in Example 2, the concentration of the SO 2 adsorbent consisting of Ce-supporting titania-supporting ceramic paper was adjusted so that 1% by weight of palladium (Pd) salt was supported on the adsorbent as Pd metal. except that immersion at room temperature palladium chloride aqueous solution, in the same manner as in example 2, consisting of Pd added Ce supported titania holding ceramic paper SO 2 sorbent ( "Ce
(Denoted as (30) + Pd (1) / TiO 2 )) was obtained (Example 3). Similarly, S consisting of Rh-added Ce-supported titania-supporting ceramic paper using an aqueous rhodium chloride solution.
An O 2 adsorbent (denoted as “Ce (30) + Rh (1) / TiO 2 )” was obtained (Example 4).

【0054】実施例5〜12 貴金属(Pt、Pd、Ph)以外の付加金属(Ag、
V、Mn、Fe、Co、Cu、MoおよびBi)につい
ては、金属塩が金属として吸着剤に3重量%担持される
ように濃度調整した表1に示す金属塩溶液に、Ce担持
チタニア保持セラミックペーパーから成るSO2 吸着剤
を浸漬する以外は、実施例2と同様にして、実施例5〜
12の吸着剤を得た。
Examples 5 to 12 Additional metals other than noble metals (Pt, Pd, Ph) (Ag,
V, Mn, Fe, Co, Cu, Mo, and Bi) were added to a metal salt solution shown in Table 1 whose concentration was adjusted so that the metal salt was supported on the adsorbent as a metal in an amount of 3% by weight. Examples 5 to 5 were carried out in the same manner as in Example 2 except that the SO 2 adsorbent consisting of paper was immersed.
12 adsorbents were obtained.

【0055】表1に、実施例3〜12の吸着剤につい
て、実施例1と同様の操作により得た。10回目吸着時
の20%破過時間を示す。
In Table 1, the adsorbents of Examples 3 to 12 were obtained by the same operation as in Example 1. The 20% breakthrough time at the 10th adsorption is shown.

【0056】いずれの吸着剤も実施例1のCe(30) /
TiO2 と比べ吸着性能の向上が認められる。
All the adsorbents were Ce (30) / of Example 1
An improvement in adsorption performance is recognized as compared with TiO 2 .

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【発明の効果】本発明によるSO2 吸着剤は、SO2
可逆吸着し、再生使用が可能なものであるので、このS
2 吸着剤を、NOx吸着剤の充填層の前流に充填する
ことにより、NOx吸着剤のSO2 による被毒(性能低
下)を軽減し、NOx吸着剤の寿命を延ばすことが可能
となり、より実用的なNOx吸着除去システムが構築で
きる。
The SO 2 adsorbent according to the present invention is capable of reversibly adsorbing SO 2 and reusable.
By packing the O 2 adsorbent in the upstream of the packed bed of the NOx adsorbent, it is possible to reduce the poisoning (performance deterioration) of the NOx adsorbent due to SO 2 and extend the life of the NOx adsorbent, A more practical NOx adsorption removal system can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸着時間と破過率の関係を示すグラフである。FIG. 1 is a graph showing the relationship between adsorption time and breakthrough rate.

【図2】吸着時間と破過率の関係を示すグラフである。FIG. 2 is a graph showing the relationship between adsorption time and breakthrough rate.

【図3】入口SO2 濃度とNOx吸着量との関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the inlet SO 2 concentration and the NOx adsorption amount.

【図4】吸着時間と破過率の関係を示すグラフである。FIG. 4 is a graph showing the relationship between adsorption time and breakthrough rate.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/50 53/81 (72)発明者 渡辺 高延 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 福寿 厚 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical indication location B01D 53/50 53/81 (72) Inventor Takanobu Watanabe Takashi Watanabe Nishikujo 5-chome 3-28, Konohana-ku, Osaka Hitachi Shipbuilding Co., Ltd. (72) Inventor Atsushi Fukuju 5-3-28 Nishikujo, Konohana-ku, Osaka City Hitachi Shipbuilding Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アナターゼ型チタニアから成る担体に、
セリウムが担持されている、SO2 吸着剤。
1. A carrier comprising anatase-type titania,
An SO 2 adsorbent loaded with cerium.
【請求項2】 アナターゼ型チタニアから成る担体に、
セリウムと、白金、パラジウム、ロジウム、銀、バナジ
ウム、マンガン、鉄、コバルト、銅、モリブデン、ビス
マスより成る群から選ばれた少なくとも1つの付加金属
とが共担持されている、SO2 吸着剤。
2. A carrier comprising anatase-type titania,
An SO 2 adsorbent in which cerium is co-loaded with at least one additional metal selected from the group consisting of platinum, palladium, rhodium, silver, vanadium, manganese, iron, cobalt, copper, molybdenum, and bismuth.
【請求項3】 アナターゼ型チタニアから成る担体がセ
ラミックペーパーに保持されている、請求項1または2
記載のSO2 吸着剤。
3. A carrier made of anatase-type titania is held on ceramic paper.
The described SO 2 adsorbent.
【請求項4】 アナターゼ型チタニアから成る担体を保
持した平板状のセラミックペーパーとアナターゼ型チタ
ニアから成る担体を保持した波板状のセラミックペーパ
ーとが1枚置きに配されて断面ハニカム状の平板・波板
多層構造物が構成され、上記担体にセリウムが担持され
ている、SO2 の吸着剤。
4. A flat plate having a honeycomb-shaped cross section in which flat plate-shaped ceramic paper holding a carrier made of anatase-type titania and corrugated plate-shaped ceramic paper holding a carrier made of anatase-type titania are arranged every other sheet. An adsorbent for SO 2 in which a corrugated plate multilayer structure is formed and cerium is carried on the carrier.
JP6068489A 1994-04-06 1994-04-06 So2 adsorbent Withdrawn JPH07275695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068489A JPH07275695A (en) 1994-04-06 1994-04-06 So2 adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6068489A JPH07275695A (en) 1994-04-06 1994-04-06 So2 adsorbent

Publications (1)

Publication Number Publication Date
JPH07275695A true JPH07275695A (en) 1995-10-24

Family

ID=13375165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068489A Withdrawn JPH07275695A (en) 1994-04-06 1994-04-06 So2 adsorbent

Country Status (1)

Country Link
JP (1) JPH07275695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1115471A1 (en) * 1998-07-10 2001-07-18 Goal Line Environmental Technologies Llc Process and catalyst/sorber for treating sulfur compound containing effluent
WO2009157434A1 (en) * 2008-06-23 2009-12-30 日揮株式会社 Method for purifying carbon dioxide off-gas, combustion catalyst for purification of carbon dioxide off-gas, and process for producing natural gas
CN114849469A (en) * 2022-06-10 2022-08-05 德州职业技术学院(德州市技师学院) Flue gas denitration preposed module and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1115471A1 (en) * 1998-07-10 2001-07-18 Goal Line Environmental Technologies Llc Process and catalyst/sorber for treating sulfur compound containing effluent
JP2002520136A (en) * 1998-07-10 2002-07-09 ゴール ライン エンビロンメンタル テクノロジーズ エルエルシー Method and catalyst / adsorbent for treating exhaust gas containing sulfur compounds
EP1115471A4 (en) * 1998-07-10 2003-02-05 Goal Line Environmental Tech Process and catalyst/sorber for treating sulfur compound containing effluent
JP2011131213A (en) * 1998-07-10 2011-07-07 Emerachem Llc Method and catalyst/adsorbent for treating exhaust gas containing sulfur compound
WO2009157434A1 (en) * 2008-06-23 2009-12-30 日揮株式会社 Method for purifying carbon dioxide off-gas, combustion catalyst for purification of carbon dioxide off-gas, and process for producing natural gas
CN114849469A (en) * 2022-06-10 2022-08-05 德州职业技术学院(德州市技师学院) Flue gas denitration preposed module and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2557307B2 (en) NOx adsorption removal method
JPS6297630A (en) Method for removing nitrogen oxide from nitrogen oxide-containing gas
EP0540428B1 (en) Adsorbents for removing low-concentration nitrogen oxides
WO2002022239A1 (en) Removal of sulfur oxides from exhaust gases of combustion processes
US5492684A (en) Graded-bed system for improved separations
JPH07275695A (en) So2 adsorbent
JP2002248348A (en) Adsorbing agent for nitrogen oxide and/or sulfur oxide
JPH07256054A (en) Apparatus and method for adsorbing and removing nox
JP2743044B2 (en) Simultaneous adsorption removal agent for low concentration NOx and SOx, and method for simultaneous removal of these
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2002079099A (en) Gas removing material
JPH06327967A (en) Honeycomb adsorbing body
JP2563861B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2563862B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JPH1157399A (en) Method of removing nitrogen dioxide
JPH0824579A (en) Treatment of low concentration nox containing gas
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH119957A (en) Method for removing nitrogen oxide in atmospheric air
JPH06319943A (en) Method for removing nox by adsorption
JP3074343B2 (en) Method for producing NOx adsorbent
JP3277630B2 (en) Air cleaner
JPH11207176A (en) Adsorbing, reducing and removing agent for nitrogen dioxide and removing method of nitrogen dioxide
JP2003103133A (en) Method of removing nitrogen oxide and/or sulfur oxide
JP2001046866A (en) Removing material and removing method of nitrogen oxide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703