JPH0798150B2 - Adsorption remover for low concentration nitrogen oxides - Google Patents

Adsorption remover for low concentration nitrogen oxides

Info

Publication number
JPH0798150B2
JPH0798150B2 JP2340627A JP34062790A JPH0798150B2 JP H0798150 B2 JPH0798150 B2 JP H0798150B2 JP 2340627 A JP2340627 A JP 2340627A JP 34062790 A JP34062790 A JP 34062790A JP H0798150 B2 JPH0798150 B2 JP H0798150B2
Authority
JP
Japan
Prior art keywords
adsorbent
concentration
gas
nitrogen oxides
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2340627A
Other languages
Japanese (ja)
Other versions
JPH04200741A (en
Inventor
重則 鬼塚
正義 市来
高延 渡辺
厚 福寿
秀次 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2340627A priority Critical patent/JPH0798150B2/en
Publication of JPH04200741A publication Critical patent/JPH04200741A/en
Publication of JPH0798150B2 publication Critical patent/JPH0798150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種道路トンネル、山岳トンネル、海底トン
ネル、地下道路、シェルター付道路等の各種トンネルに
おける換気ガス中に含有される低濃度の窒素酸化物を効
率よく除去する吸着除去剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a low concentration of nitrogen contained in ventilation gas in various tunnels such as various road tunnels, mountain tunnels, seabed tunnels, underground roads, roads with shelters, etc. The present invention relates to an adsorption / removal agent that efficiently removes oxides.

[発明の背景] 各種道路トンネル、山岳トンネル、地下道路、シェルタ
ー付道路等(本明細書では、これらのトンネルを総称し
て「道路トンネル等」と呼ぶこととする)において、特
に長大で自動車交通量の多いものについては、通行者の
健康保護や明視距離の改善を目的に相当量の換気を行な
う必要がある。また、比較的単距離のトンネルでも都市
部あるいはその近郊では、出入口部に集中する一酸化炭
素(CO)、窒素酸化物(NOx)等による大気汚染を防止
する方法として、トンネル内の空気を吸引排気(換気)
する方法がある。
BACKGROUND OF THE INVENTION In various road tunnels, mountain tunnels, underground roads, roads with shelters, etc. (in this specification, these tunnels are generically referred to as "road tunnels etc.") For large quantities, it is necessary to provide adequate ventilation for the purpose of protecting the health of passersby and improving the visual distance. In addition, even in a relatively short-distance tunnel, in urban areas or in the suburbs, as a method of preventing air pollution due to carbon monoxide (CO), nitrogen oxides (NOx), etc. concentrated in the entrances and exits, the air in the tunnel is sucked in. Exhaust (ventilation)
There is a way to do it.

しかしながら、換気ガスをそのまま周囲に放散したので
は、地域的な環境改善にはならず、特に自動車排ガスに
よる汚染が平面的に拡がっている都市部あるいはその近
郊では高度の汚染地域を拡大させることになりかねな
い。既設道路の公害対策としてトンネル化、シェルター
設置を図る場合も、前述の事情は全く同じである。
However, if ventilation gas is diffused to the surroundings as it is, it will not improve the local environment, and it will be necessary to expand highly contaminated areas, especially in urban areas where automobile exhaust gas pollution is spreading or in the suburbs. It can happen. The above-mentioned situation is exactly the same when a tunnel or a shelter is installed as a measure against pollution of the existing road.

本発明は、このような道路トンネル等の換気ガス中に含
有される低濃度の窒素酸化物を効率よく除去する吸着除
去剤に関するものである。
The present invention relates to an adsorption / removal agent that efficiently removes low-concentration nitrogen oxides contained in ventilation gas for such road tunnels.

[従来の技術] 各種トンネルの換気ガスは、その中に含有される窒素酸
化物の濃度が約5ppmと低く、ガス温度は常温で、ガス量
は交通量に従って大きく変動することで特徴付けられ
る。
[Prior Art] Ventilation gas for various tunnels is characterized in that the concentration of nitrogen oxides contained therein is as low as about 5 ppm, the gas temperature is room temperature, and the gas volume fluctuates greatly according to the traffic volume.

従来より各種ボイラー燃焼排ガスの浄化を目的に検討さ
れてきた、固定発生源からの窒素酸化物の除去方法は、
次の3つに大別される。
Conventionally, the method of removing nitrogen oxides from a fixed source has been investigated for the purpose of purifying various boiler combustion exhaust gases,
There are three main categories.

(1)接触還元法 これは、アンモニアを還元剤とし排ガス中の窒素酸化物
を選択的に還元して無害な窒素と水蒸気にするもので、
ボイラー排ガスの脱硝法として最も一般的な方法であ
る。しかしながら、この方法は、処理ガス温度を200℃
以上にする必要があるため、道路トンネル等の換気ガス
のように常温でガス量が多い場合には、処理ガスの昇温
に多大のエネルギーを要するため、経済的な処理方法で
はない。
(1) Catalytic reduction method This method uses ammonia as a reducing agent to selectively reduce nitrogen oxides in exhaust gas into harmless nitrogen and water vapor.
It is the most general method for denitration of boiler exhaust gas. However, this method requires a process gas temperature of 200 ° C.
Since it is necessary to set the above, when the amount of gas is large at room temperature such as ventilation gas for road tunnels, a large amount of energy is required to raise the temperature of the processing gas, which is not an economical processing method.

(2)湿式吸収法 これは、二酸化窒素(NO2)や三酸化窒素(N2O3)が水
やアルカリ水溶液に吸収されることを利用したもので、
酸化触媒やオゾン注入により一酸化窒素(NO)を酸化し
た後に吸収させたり、吸収液に酸化性を付加する方法が
知られている。しかしながら、これらの方法では窒素酸
化物(NOx)が硝酸塩や亜硝酸塩として吸収液に蓄積さ
れるため、吸収液の管理や後処理が必要であり、プロセ
スが複雑となる。また酸化剤のモル当りの単価は接触還
元法で用いられるアンモニアと比べ高価であり、プロセ
スの経済性に問題がある。
(2) Wet absorption method This utilizes the fact that nitrogen dioxide (NO 2 ) and nitrogen trioxide (N 2 O 3 ) are absorbed by water and alkaline aqueous solutions.
A method is known in which nitric oxide (NO) is oxidized and then absorbed by an oxidation catalyst or ozone injection, or an oxidizing property is added to the absorbing liquid. However, in these methods, nitrogen oxides (NOx) are accumulated in the absorbing solution as nitrates or nitrites, and therefore the absorbing solution needs to be managed and post-treated, which complicates the process. Further, the unit price per mol of the oxidizing agent is more expensive than ammonia used in the catalytic reduction method, and there is a problem in the economical efficiency of the process.

(3)乾式吸着法 これは、適当な吸着剤を用いて排ガス中の窒素酸化物を
吸着除去する方法で、ボイラー排ガスの脱硝法として接
触還元法が定着するまでは数例検討された。しかしなが
ら、ボイラー排ガスは(ア)窒素酸化物の濃度が高い、
(イ)ガス温度が高い、(ウ)水分濃度が高いために、
乾式吸着法は接触還元法と比べ経済性において見劣り
し、現在まで実用化されていない。
(3) Dry adsorption method This is a method of adsorbing and removing nitrogen oxides in exhaust gas using an appropriate adsorbent, and several cases were studied until the catalytic reduction method was established as a denitration method of boiler exhaust gas. However, the boiler exhaust gas has a high concentration of (a) nitrogen oxides,
(A) Gas temperature is high, and (c) Water concentration is high,
The dry adsorption method is inferior in economic efficiency to the catalytic reduction method, and has not been put to practical use until now.

ところが、道路トンネル等の換気ガスの浄化方法として
乾式吸着法を評価すれば、ボイラー排ガスの場合とは全
く異なり、プロセスが簡単となり経済的な方法であるこ
とが判明した。
However, when the dry adsorption method was evaluated as a method for purifying ventilation gas for road tunnels, etc., it was found to be an economical method because the process is simple, which is completely different from the case of boiler exhaust gas.

[発明が解決しようとする課題] 吸着剤による窒素酸化物の吸着除去に関する研究の中
で、低濃度の窒素酸化物の吸着除去に関する研究として
は、(財)工業開発研究所の研究(「特殊な吸着、酸化
触媒を使用する新脱硝システムの開発に関する研究」、
昭和53年5月)がある。この中で、空気−H2−NO系の模
擬ガス(入口NO濃度:100〜120ppm、乾燥ガス(露点:−
17℃)、SV:3270Hr-1)による試験が行なわれ、吸着剤
としては天然擬灰岩に銅系金属(酸化物)を担持したも
のがよいことが報告されている。
[Problems to be Solved by the Invention] Among the research on the adsorption and removal of nitrogen oxides by an adsorbent, the research on the adsorption and removal of low-concentration nitrogen oxides is conducted by the Industrial Development Research Institute ("Special On development of new denitration system using various adsorption and oxidation catalysts ",
(May 1978). In this simulated gas (inlet NO concentration in the air -H 2 -NO system: 100~120Ppm, dry gas (dew point: -
Tests were conducted at 17 ° C) and SV: 3270Hr -1 ), and it has been reported that the adsorbent is preferably a natural pseudo-olivine loaded with a copper-based metal (oxide).

しかしながら、道路トンネル等の換気ガス中に含有され
る窒素酸化物の濃度は5ppm以下と想定されているが、上
述の研究(NOx濃度:約100ppm)で用いられている吸着
剤が、5ppmという低濃度の窒素酸化物を効率よく吸着す
るかどうかについては、その可能性も含め示唆されてい
ない。
However, the concentration of nitrogen oxides contained in the ventilation gas of road tunnels is assumed to be 5 ppm or less, but the adsorbent used in the above research (NOx concentration: about 100 ppm) is as low as 5 ppm. There is no suggestion as to whether or not it is possible to efficiently adsorb the concentration of nitrogen oxides, including the possibility.

本発明者らは、先に、5ppmという低濃度の窒素酸化物を
効率よく吸着除去することを企図した吸着剤として、天
然または合成ゼオライトに、塩化銅、塩化銅の複塩およ
び塩化銅のアンミン錯塩から選択される少なくとも1種
の銅塩を担持させて成る、低濃度窒素酸化物の吸着除去
剤を提案した(特開平1−299642号公報参照)。
The present inventors previously proposed that as an adsorbent intended to efficiently adsorb and remove nitrogen oxide at a low concentration of 5 ppm, copper chloride, double salt of copper chloride and ammine of copper chloride were added to natural or synthetic zeolite. We have proposed an adsorption remover for low-concentration nitrogen oxides, which is prepared by supporting at least one copper salt selected from complex salts (see JP-A-1-299642).

しかし、上記銅塩担持ゼオライトを脱硝触媒として使用
した場合、水分(または湿分)濃度が低くなると(約0.
1%以下)、NH3の酸化分解活性が生じるために、第6図
に示すように、触媒活性の低下(劣化現象)が認められ
た(第6図は、銅塩担持ゼオライトの脱硝触媒に対する
湿分濃度の影響を示しものであり、反応条件は、ガス組
成:10.8ppm NO+11.4ppm NH3+乾燥空気+湿分、空間速
度:40,000h-1である)。この場合、反応温度を高くする
と酸化活性が一層増大し、反応温度を低くすると充分な
脱硝活性が得られなくなる、このことは吸着剤の再生時
に必要なNH3量の増加を招き、場合によっては再生が不
十分になる可能性がある。
However, when the above copper salt-supported zeolite is used as a denitration catalyst, when the water (or moisture) concentration becomes low (about 0.
1% or less), NH 3 oxidative decomposition activity occurs, so that a decrease in catalytic activity (deterioration phenomenon) was observed as shown in FIG. 6 (FIG. 6 shows the denitration catalyst of the copper salt-supporting zeolite against the denitration catalyst). The reaction conditions are gas composition: 10.8 ppm NO + 11.4 ppm NH 3 + dry air + moisture, space velocity: 40,000 h -1 ). In this case, when the reaction temperature is raised, the oxidation activity is further increased, and when the reaction temperature is lowered, sufficient denitration activity cannot be obtained, which leads to an increase in the amount of NH 3 required for regeneration of the adsorbent, and in some cases, Playback may be inadequate.

またゼオライトは一般に炭酸ガスCO2を強く吸着するた
め、これを脱着させるには吸着剤を200℃前後に加熱す
る必要のあることが知られている。CO2は道路トンネル
等の換気ガス中には必ず含まれるものであるため、CO2
の吸着により、NOx吸着能の低下がもたらされる可能性
がある(これはCO2吸着によりNOx吸着容量の低下が原因
していると考えられる)。
Further, since zeolite generally strongly adsorbs carbon dioxide CO 2 , it is known that it is necessary to heat the adsorbent around 200 ° C. to desorb it. Since CO 2 is always contained in ventilation gas for road tunnels, etc., CO 2
Adsorption of NOx may result in a decrease in NOx adsorption capacity (this is probably due to a decrease in NOx adsorption capacity due to CO 2 adsorption).

また、脱硝触媒については、担持金属の銅塩はSO2によ
り徐々に硫酸塩化し、脱硝活性が低下することが知られ
ている。このため、換気ガス中に含まれるSO2がNOx吸着
能に影響を及ぼす可能性がある。
Further, regarding the denitration catalyst, it is known that the copper salt of the supported metal is gradually sulfated with SO 2 and the denitration activity is reduced. Therefore, SO 2 contained in the ventilation gas may affect the NOx adsorption capacity.

本発明の目的は、上記の点に鑑み、道路トンネル等の換
気ガス中に含有される低濃度の窒素酸化物を効率よく吸
着除去剤を提供するにある。
In view of the above points, an object of the present invention is to efficiently provide an adsorption / removal agent for low-concentration nitrogen oxides contained in ventilation gas for road tunnels and the like.

[課題を解決するための手段] 本発明者らは種々検討した結果、低濃度の窒素酸化物を
含有するガスを、脱硝活性成分を担持する担体としてア
ナターゼ型の酸化チタンが用いられている吸着剤に接触
させることにより、窒素酸化物を効率よく吸着除去でき
ることを見出し、本発明を完成するに至った。
[Means for Solving the Problem] As a result of various investigations by the present inventors, adsorption of anatase-type titanium oxide as a carrier for supporting a denitration active component on a gas containing a low concentration of nitrogen oxide The inventors have found that nitrogen oxides can be efficiently adsorbed and removed by bringing them into contact with an agent, and have completed the present invention.

すなわち、本発明による低濃度窒素酸化物の吸着除去剤
(以下単に吸着剤という)は、アナターゼ型の酸化チタ
ンより成る担体にバナジウムを担持させて成るものであ
る。
That is, the adsorbent / removal agent for low-concentration nitrogen oxides (hereinafter simply referred to as an adsorbent) according to the present invention comprises vanadium supported on an anatase-type titanium oxide carrier.

まず、本発明による吸着剤の第1の特徴は、担体として
アナターゼ型の酸化チタンを用いる点である。
First, the first feature of the adsorbent according to the present invention is that anatase type titanium oxide is used as a carrier.

アナターゼ型の酸化チタンとしては、市販の酸化チタン
担体、および硫酸法酸化チタン製造時の中間品である水
和酸化チタン(チタン酸スラリー)やチタン酸スラリー
を解膠・安定化したチタニアゾルより製造される酸化チ
タンのいずれも使用することができる。
Anatase-type titanium oxide is produced from commercially available titanium oxide carriers and titania sol obtained by deflocculating and stabilizing hydrated titanium oxide (titanic acid slurry) or titanic acid slurry, which is an intermediate product during the production of titanium oxide by the sulfuric acid method. Any of the titanium oxides mentioned above can be used.

吸着剤担体には、酸化チタン以外に、たとえばアルミナ
ゾル、アルミナ、シリカゾル、シリカ・アルミナ等の成
形助剤(バインダーまたは希釈剤として利用する)やセ
ラミック繊維等の繊維状物質が含まれることもある。
The adsorbent carrier may contain, in addition to titanium oxide, a forming aid (used as a binder or a diluent) such as alumina sol, alumina, silica sol, and silica / alumina, or a fibrous substance such as ceramic fiber.

吸着剤担体は、必要であればこれを成形助剤、繊維状物
質と共に混練した後、好ましい形状に成形し、乾燥およ
び焼成して得られる。
The adsorbent carrier can be obtained by kneading the adsorbent carrier with a molding aid and a fibrous substance, if necessary, molding the adsorbent carrier into a preferable shape, and drying and firing.

つぎに、本発明による吸着剤の第2の特徴は、上記担体
にバナジウムを担持する点である。
Next, the second characteristic of the adsorbent according to the present invention is that vanadium is supported on the carrier.

バナジウムの担持量については、バナジウム金属として
吸着剤の約0.5〜10重量%が好ましく、特に約2〜5重
量%が好ましい。
The amount of vanadium supported is preferably about 0.5 to 10% by weight of the adsorbent as vanadium metal, and more preferably about 2 to 5% by weight.

バナジウムの担持は、一般には、メタバナジン酸アンモ
ニウム(NH4VO3)等のバナジウム化合物を適当な溶媒に
溶解させた溶液に酸化チタン担体を浸漬することにより
行なうが、この方法に限定されない。
Loading of vanadium is generally carried out by immersing the titanium oxide support in a solution prepared by dissolving a vanadium compound such as ammonium metavanadate (NH 4 VO 3 ) in a suitable solvent, but not limited to this method.

バナジウムの担持量は、浸漬溶液中のバナジウムの濃
度、浸漬温度または浸漬時間等により調整する。浸漬
後、吸着剤を溶液から分離し、水洗後、空気中にて約10
0〜120℃で乾燥する。また、乾燥品を必要に応じて空気
中にて約300〜500℃で焼成する。さらに、吸着、脱着、
再生等の繰返しによる連続使用の際には、吸着剤の使用
最高温度より若干高い温度での処理を行なう。
The supported amount of vanadium is adjusted by the concentration of vanadium in the immersion solution, the immersion temperature, the immersion time, and the like. After soaking, separate the adsorbent from the solution, wash with water, and then about 10
Dry at 0-120 ° C. If necessary, the dried product is baked in air at about 300 to 500 ° C. In addition, adsorption, desorption,
During continuous use such as regeneration, the adsorbent is treated at a temperature slightly higher than the maximum temperature.

吸着剤の形状は、特に限定するものではなく、円柱状、
ラシヒリング状またはハニカム状等のように、接触面が
大きいてガス流通の容易なものであればよい。
The shape of the adsorbent is not particularly limited, and is a columnar shape,
Any material such as a Raschig ring shape or a honeycomb shape may be used as long as it has a large contact surface and facilitates gas flow.

道路トンネル等からの換気ガスのように、大量のガスを
処理する場合には、流通抵抗が少なく圧損を極力小さく
する必要がある。そのため、CP触媒(セラミックペーパ
ーにチタニアを含浸した後、バナジウムを担持したも
の)のようにハニカム状に成形することが望ましい。
When processing a large amount of gas such as ventilation gas from a road tunnel or the like, it is necessary to reduce the pressure loss as much as possible because the flow resistance is low. Therefore, it is desirable to form the honeycomb structure like a CP catalyst (ceramic paper impregnated with titania and then supporting vanadium).

[実施例] つぎに、本発明の実施例およびこれと比較すべき比較例
をそれぞれいくつか挙げる。
[Examples] Next, some examples of the present invention and comparative examples to be compared with the examples will be described.

実施例1 チタン酸スラリー(TiO2含有量:約30重量%)を空気中
にて400℃で5時間焼成して、アナターゼ型の酸化チタ
ンより成る担体(比表面積:136.3m2/g)を調製した。
Example 1 A titanate slurry (TiO 2 content: about 30% by weight) was calcined in air at 400 ° C. for 5 hours to obtain a carrier composed of anatase type titanium oxide (specific surface area: 136.3 m 2 / g). Prepared.

この担体を8〜14メッシュに破砕篩分した後、メタバナ
ジン酸アンモニウム(NH4VO3)の飽和水溶液(担体容積
の10倍容)に室温で16時間浸漬した。これを水洗後、約
110℃で2時間乾燥し、さらに400℃で1時間焼成して吸
着剤(バナジウム担持量:3.1重量%)を得た。
The carrier was crushed and sieved to 8 to 14 mesh, and then immersed in a saturated aqueous solution of ammonium metavanadate (NH 4 VO 3 ) (10 times the volume of the carrier) at room temperature for 16 hours. After washing this with water,
It was dried at 110 ° C. for 2 hours and further calcined at 400 ° C. for 1 hour to obtain an adsorbent (vanadium supported amount: 3.1% by weight).

この吸着剤7g(11.6cm3)を内径22mmのステンレス製反
応管に充填し、乾燥空気(湿分濃度:約60ppm)の流通
(5l/min)により温度約235℃で1時間乾燥した後、室
温まで放冷した。放冷後、乾燥空気の流通を一旦止め、
吸着剤層に4.42ppmの一酸化窒素(NO)を含む乾燥空気
(5l/min)を導入し、導入直後から反応管の出口ガス中
のNO濃度を化学発光式分析計で測定した。出口ガス中の
NOx濃度の経時変化を第1図に示す。なお、第1図の縦
軸には、出口ガス中のNOx濃度を入口ガス中のNOx濃度で
除した値(「破過率」と呼ぶ)が目盛ってある。
7 g (11.6 cm 3 ) of this adsorbent was filled in a stainless steel reaction tube having an inner diameter of 22 mm and dried at a temperature of about 235 ° C. for 1 hour by circulating dry air (moisture concentration: about 60 ppm) (5 l / min). It was left to cool to room temperature. After cooling down, stop the flow of dry air,
Dry air (5 l / min) containing 4.42 ppm of nitric oxide (NO) was introduced into the adsorbent layer, and immediately after the introduction, the NO concentration in the outlet gas of the reaction tube was measured by a chemiluminescence analyzer. In the outlet gas
FIG. 1 shows the change with time of NOx concentration. The vertical axis of FIG. 1 is a scale of the value obtained by dividing the NOx concentration in the outlet gas by the NOx concentration in the inlet gas (called “breakthrough rate”).

同図中の実施例1の曲線から明らかなように、出口ガス
中のNOx濃度が入口濃度の10%(破過率:0.1)、すなわ
ち0.44ppmに到達するまでの時間(「破過時間」と呼
ぶ)は、48.6分であった。
As is clear from the curve of Example 1 in the figure, the time until the NOx concentration in the outlet gas reaches 10% of the inlet concentration (breakthrough rate: 0.1), that is, 0.44 ppm (“breakthrough time”). Called) was 48.6 minutes.

比較例1 担体としてY型ゼオライトを用い、これに塩化第2銅
(CuCl2)を含浸担持して吸着剤を調製した。この吸着
剤を用い、実施例1と同様の条件で出口NOx濃度を測定
した。このNOx濃度の経時変化を第1図に示す。
Comparative Example 1 Y-type zeolite was used as a carrier, and cupric chloride (CuCl 2 ) was impregnated and carried on this to prepare an adsorbent. Using this adsorbent, the NOx concentration at the outlet was measured under the same conditions as in Example 1. The change with time of this NOx concentration is shown in FIG.

同図中の比較例1の曲線から明らかなように、この場合
の破過時間は49.7分であり、この吸着剤はバナジウム担
持酸化チタンより成る吸着剤(実施例1)と同等の性能
を有することが判かる。
As is clear from the curve of Comparative Example 1 in the figure, the breakthrough time in this case is 49.7 minutes, and this adsorbent has the same performance as the adsorbent composed of vanadium-supported titanium oxide (Example 1). I understand.

比較例2 実施例1で調製した担体を吸着剤として用い、入口NOx
濃度を4.49ppmとする点以外は実施例1と同様の条件で
出口NOx濃度を測定した。NOx濃度の経時変化を第1図に
示す。
Comparative Example 2 The carrier prepared in Example 1 was used as an adsorbent and the inlet NOx
The outlet NOx concentration was measured under the same conditions as in Example 1 except that the concentration was 4.49 ppm. FIG. 1 shows the change with time of NOx concentration.

同図中の比較例2の曲線から明らかなように、この場合
の破過時間は72.3分であり、酸化チタン担のみでも低濃
度のNOxが効率よく吸着されることが判る。
As is clear from the curve of Comparative Example 2 in the figure, the breakthrough time in this case is 72.3 minutes, and it can be seen that low-concentration NOx is efficiently adsorbed only by supporting titanium oxide.

比較例3〜7 実施例1で調製した担体(比較例3)、チタン酸スラリ
ー(TiO2含有量:約30重量%)を空気中にて450℃で5
時間焼成して得た担体(比表面積:112.7m2/g)(比較例
4)、チタン酸スラリーを空気中にて500℃で5時間焼
成して得た担体(比表面積:82.0m2/g)(比較例5)、
市販の酸化チタン担体(触媒化成、比表面積:144.4m2/
g)(比較例6)および市販の酸化チタン担体(仏ロー
ヌ・プーラン社、比表面積:71.0m2/g)をそれぞれ14〜2
0メッシュに破砕篩分して吸着剤を得た。この吸着剤10.
0cm3を内径22mmのステンレス製反応管に充填し、実施例
1と同様の方法で出口NOx濃度を測定した。このNOx濃度
の経時変化を第2図に示す。
Comparative Examples 3 to 7 The carrier prepared in Example 1 (Comparative Example 3) and the titanic acid slurry (TiO 2 content: about 30% by weight) in air at 450 ° C.
Carrier obtained by calcining for an hour (specific surface area: 112.7 m 2 / g) (Comparative Example 4), carrier obtained by calcining a titanic acid slurry in air at 500 ° C. for 5 hours (specific surface area: 82.0 m 2 / g) (Comparative Example 5),
Commercially available titanium oxide carrier (catalyst formation, specific surface area: 144.4 m 2 /
g) (Comparative Example 6) and a commercially available titanium oxide carrier (Rhone-Poulin, France, specific surface area: 71.0 m 2 / g), 14 to 2 respectively.
It was crushed and sieved to 0 mesh to obtain an adsorbent. This adsorbent 10.
0 cm 3 was filled in a stainless steel reaction tube having an inner diameter of 22 mm, and the outlet NOx concentration was measured by the same method as in Example 1. The change with time of this NOx concentration is shown in FIG.

同図に見られるとおり、酸化チタン担体の調製方法によ
り、NOx吸着性に差異が認められるが、いずれの酸化チ
タン担体より成る吸着剤もNOxを吸着することが判る。
As shown in the figure, although the NOx adsorbing properties differ depending on the method of preparing the titanium oxide carrier, it can be seen that the adsorbent composed of any titanium oxide carrier adsorbs NOx.

ただし後に述べる理由により、バナジウムを担持しない
TiO2担持のみの吸着剤では、NH3を含むガスでの再生が
充分に行なえず、これら吸着剤は実用に供することがで
きない。
However, vanadium is not supported for the reason described below.
With the adsorbents only supporting TiO 2 , regeneration with a gas containing NH 3 cannot be sufficiently performed, and these adsorbents cannot be put to practical use.

実施例2〜6 担体として比較例3、4、6および7で用いたものを用
いる以外は実施例1と同じ方法により担体にバナジウム
を担持して成る調製物(それぞれ実施例2、3、4およ
び5)、およびチタン酸スラリー(TiO2含有量:約30重
量%)100部とチタニアゾル(TiO2含有量:約30重量
%)40部を混練しながら蒸発乾固し、乾固物をさらに空
気中にて450℃で25.5時間焼成して得た担体(比表面積:
163.3m2/g)を用いる以外は実施例1と同じ方法により
担体にバナジウムを担持して成る調製物(実施例6)
を、それぞれ14〜20メッシュに破砕篩分して吸着剤を得
た。
Examples 2 to 6 Preparations comprising vanadium loaded on a carrier by the same method as in Example 1 except that the carrier used in Comparative Examples 3, 4, 6 and 7 was used (Examples 2, 3, 4 respectively). And 5), and 100 parts of titanic acid slurry (TiO 2 content: about 30% by weight) and 40 parts of titania sol (TiO 2 content: about 30% by weight) were evaporated to dryness while kneading, and the dry matter was further added. A carrier obtained by calcining in air at 450 ° C for 25.5 hours (specific surface area:
Preparation of vanadium on a carrier in the same manner as in Example 1 except that 163.3 m 2 / g) was used (Example 6)
Were crushed and sieved to 14 to 20 mesh to obtain an adsorbent.

この吸着剤10.0cm3を内径22mmのステンレス製反応管に
充填し、実施例1と同様の方法で出口NOx濃度を測定し
た。このNOx濃度の経時変化を第3図に示す。
The adsorbent 10.0 cm 3 was filled in a stainless steel reaction tube having an inner diameter of 22 mm, and the outlet NOx concentration was measured by the same method as in Example 1. The change with time of this NOx concentration is shown in FIG.

同図に見られるとおり、担体である酸化チタンの調製方
法により、NOx吸着性に差異が認められるが、いずれの
吸着剤もNOxを吸着することが判る。
As can be seen from the figure, although the NOx adsorbing properties differ depending on the method of preparing the titanium oxide that is the carrier, it can be seen that all adsorbents adsorb NOx.

また、酸化チタンにバナジウムを担持した吸着剤は、後
に述べるように、いずれも200℃以上で充分な脱硝活性
を有し、NH3を含むガスによる再生が可能である。
Further, as described later, all the adsorbents having vanadium supported on titanium oxide have sufficient denitration activity at 200 ° C. or higher and can be regenerated by a gas containing NH 3 .

実施例7および比較例8 実施例7では実施例1で用いた吸着剤10.0cm3を内径22m
mのステンレス製反応管に充填し、ガス組成:10.5ppm NO
+12.0ppm NH3+60ppm H2O+残り空気の反応ガス(5Nl/
min)を流通させ、反応温度を変動させながら反応管の
入口および出口NOx濃度を測定し、反応温度に対応する
脱硝率=((入口NOx濃度−出口NOx濃度)/入口NOx濃
度)×100%を求めた。
Example 7 and Comparative Example 8 In Example 7, 10.0 cm 3 of the adsorbent used in Example 1 was used and the inner diameter was 22 m.
Fill a stainless steel reaction tube of m, gas composition: 10.5ppm NO
+ 12.0ppm NH 3 + 60ppm H 2 O + remaining air in the reaction gas (5 Nl /
min), and measuring the NOx concentration at the inlet and outlet of the reaction tube while varying the reaction temperature, and denitration rate corresponding to the reaction temperature = ((inlet NOx concentration-outlet NOx concentration) / inlet NOx concentration) x 100% I asked.

比較例8では、比較例2の吸着剤(実施例1で用いたバ
ナジウム担持前の担体)を用いる以外、実施例7と同じ
方法で反応管の入口および出口NOx濃度を測定した。
In Comparative Example 8, the NOx concentration at the inlet and outlet of the reaction tube was measured by the same method as in Example 7 except that the adsorbent of Comparative Example 2 (the carrier used in Example 1 before supporting vanadium) was used.

実施例7と比較例8の反応温度と脱硝率の関係を第4図
に示す。
The relationship between the reaction temperature and the denitration rate in Example 7 and Comparative Example 8 is shown in FIG.

同図に見られるとおり、酸化チタンのみの吸着剤はほと
んど脱硝活性を示さない。これに対して酸化チタンにバ
ナジウムを担持して成る吸着剤は、200℃以上で脱硝率9
0%以上を示し、高い脱硝活性を有することが判る。
As seen in the figure, the adsorbent containing only titanium oxide shows almost no denitration activity. On the other hand, an adsorbent made by supporting vanadium on titanium oxide has a denitration rate of 9
It shows 0% or more, indicating that it has high denitration activity.

実施例8 実施例1で用いた担体(チタン酸スラリーを400℃で5
時間焼成して得た担体)を8〜14メッシュに破砕篩分し
た後、所定濃度のメタバナジン酸アンモニウム水溶液に
室温で16時間浸漬し、これを水洗ついで乾燥後、さらに
400℃で1時間焼成して、バナジウム担持量の異なる吸
着剤を調製した。
Example 8 The carrier used in Example 1 (the titanic acid slurry was added at 400 ° C.
After crushing and sieving the carrier obtained by calcination for 8 hours to 8 to 14 mesh, it is immersed in an aqueous solution of ammonium metavanadate at a predetermined concentration for 16 hours at room temperature, washed with water and dried,
It was calcined at 400 ° C. for 1 hour to prepare adsorbents having different vanadium loadings.

これらの吸着剤10.0cm3を内径22mmのステンレス製反応
管に充填し、ガス組成:10.5ppm NO+12.0ppm NH3+50〜
70ppm H2O+残り空気の反応ガスを反応管に流通させ(5
Nl/min)、225℃での脱硝率を測定した。
The adsorbent 10.0 cm 3 was filled in a stainless steel reaction tube with an inner diameter of 22 mm, and the gas composition: 10.5 ppm NO + 12.0 ppm NH 3 + 50 ~
Pass the reaction gas of 70ppm H 2 O + remaining air through the reaction tube (5
Nl / min), and the denitration rate at 225 ° C was measured.

バナジウム担持量と225℃での脱硝率の関係を第5図に
示す。
Fig. 5 shows the relationship between the amount of vanadium supported and the denitration rate at 225 ° C.

同図に見られるとおり、バナジウム担持量が増加するに
つれて脱硝率が高くなるが、バナジウム担持量約3wt%
以上では脱硝率はほぼ一定になることが判る。
As shown in the figure, the denitration rate increases as the vanadium loading increases, but the vanadium loading is about 3 wt%.
From the above, it can be seen that the denitration rate is almost constant.

【図面の簡単な説明】[Brief description of drawings]

第1図から第3図までは時間と破過率の関係を示すグラ
フ、第4図は反応温度と脱硝率の関係を示すグラフ、第
5図はバナジウム担持量と脱硝率の関係を示すグラフ、
第6図は従来の吸着剤について反応温度と脱硝率の関係
を示すグラフである。
1 to 3 are graphs showing the relationship between time and breakthrough rate, FIG. 4 is a graph showing the relationship between reaction temperature and denitration rate, and FIG. 5 is a graph showing the relationship between vanadium loading amount and denitration rate. ,
FIG. 6 is a graph showing the relationship between the reaction temperature and the denitration rate for the conventional adsorbent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 高延 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 福寿 厚 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 小林 秀次 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takanobu Watanabe 5-3-8 Nishikujo, Konohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Atsushi Fukuju 5 Nishikujo, Nishinoko-ku, Osaka City, Osaka Prefecture 3-28, Hitachi Shipbuilding Co., Ltd. (72) Inventor, Shuji Kobayashi 5-28, Nishikujo, Konohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アナターゼ型の酸化チタンより成る担体に
バナジウムが担持されていることを特徴とする、低濃度
窒素酸化物の吸着除去剤。
1. An adsorbent / removal agent for low-concentration nitrogen oxides, characterized in that vanadium is supported on a carrier composed of anatase-type titanium oxide.
JP2340627A 1990-11-30 1990-11-30 Adsorption remover for low concentration nitrogen oxides Expired - Fee Related JPH0798150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340627A JPH0798150B2 (en) 1990-11-30 1990-11-30 Adsorption remover for low concentration nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340627A JPH0798150B2 (en) 1990-11-30 1990-11-30 Adsorption remover for low concentration nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH04200741A JPH04200741A (en) 1992-07-21
JPH0798150B2 true JPH0798150B2 (en) 1995-10-25

Family

ID=18338788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340627A Expired - Fee Related JPH0798150B2 (en) 1990-11-30 1990-11-30 Adsorption remover for low concentration nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH0798150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352494B2 (en) 1993-03-25 2002-12-03 三井鉱山株式会社 Nitrogen oxide decomposition catalyst and denitration method using the same
CN113769534B (en) * 2021-10-18 2023-04-25 美埃(中国)环境科技股份有限公司 Activated carbon modification method for removing nitric oxide and nitrogen dioxide gas in air

Also Published As

Publication number Publication date
JPH04200741A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
EP0540428B1 (en) Adsorbents for removing low-concentration nitrogen oxides
EP0908230A2 (en) Nitrogen dioxide absorbent and its use for purifying ventilation gas
JPH0741142B2 (en) Method for removing low-concentration nitrogen oxides in road tunnel ventilation gas
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JPH0798150B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2563861B2 (en) Adsorption remover for low concentration nitrogen oxides
JP6345964B2 (en) NOx adsorbent and method for producing the same
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP2002248348A (en) Adsorbing agent for nitrogen oxide and/or sulfur oxide
JP3339204B2 (en) Nitrogen oxide oxidation adsorbent and nitrogen oxide removal method
JP2003275583A (en) Nitrogen dioxide absorbent
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH07743A (en) Adsorbent and removing method for nitrogen oxide using adsorbent
JP3474409B2 (en) Adsorbent for nitrogen oxides
JP2563862B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH0824579A (en) Treatment of low concentration nox containing gas
JP2000167394A (en) Regeneration of adsorbent for nitrogen oxide and the like
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JP2896912B2 (en) Catalyst regeneration method
JP3545029B2 (en) Exhaust gas purification method
JP2563861C (en)
JPH10216525A (en) Catalyst for reduction removal of dilute nitrogen oxide at normal temperature
JPH10244134A (en) Low temperature denox catalyst of dilute nox-containing gas and low temperature denox method using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees