JP2003275583A - Nitrogen dioxide absorbent - Google Patents

Nitrogen dioxide absorbent

Info

Publication number
JP2003275583A
JP2003275583A JP2002078165A JP2002078165A JP2003275583A JP 2003275583 A JP2003275583 A JP 2003275583A JP 2002078165 A JP2002078165 A JP 2002078165A JP 2002078165 A JP2002078165 A JP 2002078165A JP 2003275583 A JP2003275583 A JP 2003275583A
Authority
JP
Japan
Prior art keywords
nitrogen dioxide
absorbent
porous oxide
dioxide absorbent
organic amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002078165A
Other languages
Japanese (ja)
Inventor
Atsushi Fukuju
厚 福寿
Masayoshi Ichiki
正義 市来
Daisuke Fujita
大祐 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002078165A priority Critical patent/JP2003275583A/en
Publication of JP2003275583A publication Critical patent/JP2003275583A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrogen dioxide adsorbent which exhibits excellent nitrogen dioxide absorption performance. <P>SOLUTION: At least one component selected from Ru, Pt, Rh, Ir, and Pd and at least one component selected from Mn, Fe, Cu, Co, Ni, Ce, and Ca are combined and are carried on a porous oxide carrier and further a basic amino acid and/or organic amine compound is carried thereon. The basic amino acid is preferably alginine and the organic amine compound guanidine. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低濃度の窒素酸化
物(NOx)を含有する例えば道路トンネル換気ガスか
ら、二酸化窒素(NO)を吸収ないしは吸着して除
去する排ガス浄化装置に使用する二酸化窒素吸収ないし
は吸着剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an exhaust gas purifying apparatus for absorbing or adsorbing nitrogen dioxide (NO 2 ) from, for example, a road tunnel ventilation gas containing a low concentration of nitrogen oxides (NOx). It relates to nitrogen dioxide absorption or adsorbents.

【0002】[0002]

【従来の技術】道路トンネル換気ガス中のNO 濃度
は約0.1ppmと低濃度である。このような低濃度N
を除去するには、吸収法ないしは吸着法が有効で
ある。
2. Description of the Related Art The NO 2 concentration in a road tunnel ventilation gas is as low as about 0.1 ppm. Such low concentration N
An absorption method or an adsorption method is effective for removing O 2 .

【0003】NO は酸性ガスであり、アルカリ性の
物質と反応し易い。そこで、本発明者らは、上記のよう
な道路トンネル換気ガス中の低濃度NO を除去する
には、Mn−Ti表面改質チタニア担体にアルカリ金属
の水酸化物を含浸担持させた二酸化窒素吸収剤(特開平
10−211427号公報参照)、活性炭に第IA族ま
たは第IIA族の金属を担持してなる吸着剤(特開平11
−57463号公報参照)等を提案した。
NO 2 is an acidic gas and easily reacts with alkaline substances. Therefore, the present inventors have found that in order to remove the low-concentration NO 2 in the road tunnel ventilation gas as described above, nitrogen dioxide impregnated with an alkali metal hydroxide is carried on a Mn—Ti surface-modified titania carrier. Absorbent (see JP-A-10-211427), adsorbent comprising activated carbon carrying a Group IA or Group IIA metal (JP-A-11-11427).
No. 57463)) and the like.

【0004】さらに、本発明者らは研究を進め、上記の
吸収剤よりも一層高性能を示す、多孔質担体に塩基性ア
ミノ酸および/または有機アミン化合物を担持してなる
NO 吸収剤(特開平11−192415号公報参
照)、複合酸化物担体に塩基性アミノ酸および/または
有機アミン化合物を担持してなるNO 吸収剤(特開
2001−187340号公報参照)を提案した。
Further, the inventors of the present invention proceeded with research and
A basic carrier is used for the porous carrier, which has higher performance than the absorbent.
Carrying mino acid and / or organic amine compound
NO Two  Absorbent (see JP-A-11-192415)
), A basic amino acid and / or a complex oxide carrier
NO carrying organic amine compoundsTwo  Absorbent (JP
No. 2001-187340).

【0005】アルカリ金属担持吸収剤は、NO 吸収
容量が小さく、共存湿分の影響を受け易い。同吸収剤は
道路地下トンネルに設置されるため、NO 吸収容量
が小さいことは、吸収剤の再生頻度が増えることにな
り、好ましいことではない。また、吸収剤が共存湿分の
影響を受け易いことは、雨など湿分が高いときに性能低
下を来たすことになる。
The alkali metal-supported absorbent has a small NO 2 absorption capacity and is easily affected by coexisting moisture. Since the absorbent is installed in a road underground tunnel, a small NO 2 absorption capacity is not preferable because it increases the regeneration frequency of the absorbent. Further, the fact that the absorbent is easily affected by the coexisting moisture causes deterioration in performance when the moisture is high such as rain.

【0006】活性炭系吸収剤は、吸収容量は大きいが、
NO の吸収量の増加とともにNO が同時に排出
されるようになり、入口のNO濃度よりも出口のNO濃
度が上昇するようになるという問題を有する。環境基準
にはNOに関する限定はないが、NOの排出量を増大さ
せるのは、環境保護の面から好ましいことではない。
The activated carbon type absorbent has a large absorption capacity,
As the amount of NO 2 absorbed increases, NO 2 is discharged at the same time, which causes a problem that the NO concentration at the outlet becomes higher than the NO concentration at the inlet. Although there is no limitation on NO in the environmental standards, increasing NO emission is not preferable from the viewpoint of environmental protection.

【0007】そこで、本発明者らは、上記吸収剤の問題
点を解決すべく、多孔質担体に塩基性アミノ酸と有機ア
ミン化合物を担持してなる吸収剤を開発し、提案した。
[0007] Therefore, the present inventors have developed and proposed an absorbent in which a basic amino acid and an organic amine compound are supported on a porous carrier in order to solve the above problems of the absorbent.

【0008】さらに耐久性向上のために、多孔質酸化物
に、MnとFe、Cu、Co、Ni、CeおよびCaか
ら選ばれる少なくとも一成分の物質とを組み合わせて担
持し、複合酸化物を形成させた担体に塩基性アミノ酸と
有機アミン化合物を担持してなる吸収剤を提案した。
In order to further improve durability, Mn and at least one substance selected from Fe, Cu, Co, Ni, Ce and Ca are combined and supported on a porous oxide to form a composite oxide. We proposed an absorbent in which a basic amino acid and an organic amine compound are supported on the carrier.

【0009】本発明者らは、さらにこれらの担体に、R
u、Pt、Rh、IrおよびPdから選ばれる少なくと
も一成分の物質を必須成分として担持した担体に塩基性
アミノ酸と有機アミン化合物を担持した吸収剤が吸収性
能を向上させることを見出した。
The present inventors have further added to these carriers R
It has been found that an absorbent having a basic amino acid and an organic amine compound carried on a carrier carrying at least one substance selected from u, Pt, Rh, Ir and Pd as an essential component improves absorption performance.

【0010】本発明者が先に提案した上記特開平11−
192415号の発明は、多孔質担体に塩基性アミノ酸
および/または有機アミン化合物を担持してなるNO
吸収剤に関する。この吸収剤を用いるNOxの吸着は
下記のように行われる。
The above-mentioned Japanese Patent Laid-Open No. 11-
The invention of No. 192415 is a NO 2 prepared by supporting a basic amino acid and / or an organic amine compound on a porous carrier.
Regarding absorbent. Adsorption of NOx using this absorbent is performed as follows.

【0011】 気相のNO が活性点に吸着され、
そこでアルカリと反応し易い形態(N 、N
)に変化する。
Gas-phase NO 2 is adsorbed on the active sites,
Therefore, a form that easily reacts with alkali (N 2 O 3 , N 2
Change to O 4 ).

【0012】 この変性物は活性点近傍のアルカリと
迅速に反応し、硝酸塩、亜硝酸塩として安定的に保持さ
れる。触媒活性点は空席となるので、吸着−変性のサイ
クルを繰り返すことができる。
This modified product reacts rapidly with the alkali in the vicinity of the active site, and is stably retained as a nitrate or nitrite. Since the catalyst active site is vacant, the adsorption-denaturation cycle can be repeated.

【0013】 生成した硝酸塩、亜硝酸塩の陰イオン
(NO 、NO )は、活性点近傍から周辺へと拡
散し、同近傍にフリーなアルカリが再生され、活性点上
に生成する変性物との反応を繰り返す。
The produced nitrate and nitrite anions (NO 3 and NO 2 ) diffuse from the vicinity of the active site to the surroundings, and free alkali is regenerated in the vicinity to form a modified product on the active site. The reaction of is repeated.

【0014】従って、NO 吸収開始当初は活性点近
傍にアルカリが多量に存在するので、吸収速度はNO
の活性点への吸収速度が律速となり、NO 吸収量
の増大と共に活性点周辺への拡散速度が律速となる。
Therefore, since a large amount of alkali exists near the active point at the beginning of NO 2 absorption, the absorption rate is NO 2
The rate of absorption to the active point becomes rate-determining, and the rate of diffusion to the periphery of the active point becomes rate-determining as the amount of NO 2 absorbed increases.

【0015】本発明者らは、先に、のNO 変性触
媒作用を有する担体として、チタニア(TiO )に
マンガン(Mn)塩を含浸させ、乾燥・焼成してなる多
孔質担体を提案した(特開平8−192049号公報参
照)。さらに、マンガン(Mn)を必須成分とし、これ
にFe、Cu、Co、Ni、CeおよびCaから選ばれ
る少なくとも一成分の物質を組み合わせた複合酸化物担
体(特開2001−187340号公報参照)を提案し
た。
The present inventors have previously proposed a porous carrier obtained by impregnating titania (TiO 2 ) with a manganese (Mn) salt, followed by drying and firing, as the carrier having the NO 2 modification catalytic action. (See Japanese Patent Application Laid-Open No. 8-192049). Further, a composite oxide carrier (see JP 2001-187340 A) in which manganese (Mn) is an essential component and a substance of at least one component selected from Fe, Cu, Co, Ni, Ce and Ca is combined with the manganese (Mn) is disclosed. Proposed.

【0016】本発明者らは、上記多孔質担体および複合
酸化物担体にRu、Pt、Rh、IrおよびPdから選
ばれる少なくとも一成分を必須成分として担持すること
により、の作用をさらに促進させることができること
を見出した。さらに、この酸化物担体にアルカリとし
て、塩基性アミノ酸、特にアルギニン、ならびに有機ア
ミン化合物、特にグアニジンを担持したものが高性能な
NO 吸収性能を示すことを見出した。
The present inventors further promote the action of by supporting at least one component selected from Ru, Pt, Rh, Ir and Pd as an essential component on the above porous carrier and complex oxide carrier. I found that I can do it. Further, it has been found that a substance in which a basic amino acid, particularly arginine, and an organic amine compound, particularly guanidine, are carried as an alkali on the oxide carrier has a high NO 2 absorption performance.

【0017】上記構成のNO 吸収剤は、道路トンネ
ルの換気ガス中のNO を吸収除去するのに、十分実
用に耐えるものである。
The NO 2 absorbent having the above structure is sufficiently practical to absorb and remove NO 2 contained in the ventilation gas of the road tunnel.

【0018】[0018]

【発明の構成】本発明による二酸化窒素吸収剤は、多孔
質酸化物担体に、Ru、Pt、Rh、IrおよびPdか
ら選ばれる少なくとも一成分と、Mn、Fe、Cu、C
o、Ni、CeおよびCaから選ばれる少なくとも一成
分を組み合わせて担持し、さらに塩基性アミノ酸および
/または有機アミン化合物を担持してなるものである。
塩基性アミノ酸としてはアルギニン、有機アミン化合物
としてはグアニジンが好ましい。
The nitrogen dioxide absorbent according to the present invention comprises a porous oxide carrier, at least one component selected from Ru, Pt, Rh, Ir and Pd, and Mn, Fe, Cu, C.
At least one component selected from o, Ni, Ce and Ca is combined and supported, and further a basic amino acid and / or an organic amine compound is supported.
Arginine is preferred as the basic amino acid, and guanidine is preferred as the organic amine compound.

【0019】本発明による二酸化窒素吸収剤は、さらに
アルカリ水酸化物を担持してもよい。アルカリ水酸化物
としては、水酸化リチウム、水酸化カリウムおよび水酸
化ナトリウムからなる群から選ばれる物質またはこれら
の組合せが好ましい。
The nitrogen dioxide absorbent according to the present invention may further carry an alkali hydroxide. The alkali hydroxide is preferably a substance selected from the group consisting of lithium hydroxide, potassium hydroxide and sodium hydroxide, or a combination thereof.

【0020】好ましい多孔質酸化物は、チタニア、アル
ミナ、シリカ、シリカ・アルミナ、ジルコニアおよびゼ
オライトからなる群から選ばれる物質またはこれらの組
み合わせである。
The preferred porous oxide is a material selected from the group consisting of titania, alumina, silica, silica-alumina, zirconia and zeolite, or a combination thereof.

【0021】多孔質酸化物担体は、非晶質酸化物に必要
な金属成分の添加と焼成を行うことにより得られる複合
酸化物担体であってもよい。
The porous oxide carrier may be a composite oxide carrier obtained by adding a necessary metal component to an amorphous oxide and calcining it.

【0022】多孔質酸化物が、板状またはハニカム状の
プレフォーム体の繊維間の隙間に保持されているもので
あってもよい。
The porous oxide may be retained in the spaces between the fibers of the plate-shaped or honeycomb-shaped preform.

【0023】多孔質酸化物担体に、Ru、Pt、Rh、
IrおよびPdから選ばれる少なくとも一成分と、M
n、Fe、Cu、Co、Ni、CeおよびCaから選ば
れる少なくとも一成分を組み合わせて担持するには、こ
れら金属の単独またはこれらの組合せの、硫酸塩以外の
無機酸塩または有機酸塩の水溶液を多孔質酸化物に同時
または逐次に含浸させる。該水溶液の濃度は、Ru、P
t、Rh、IrおよびPdについては0.1〜100g
金属/リットル、好ましくは1〜10g金属/リット
ル、Mn、Fe、Cu、Co、Ni、CeおよびCaに
ついては0.1〜51モル/リットル、好ましくは0.
5〜3モル/リットルである。
Ru, Pt, Rh,
At least one component selected from Ir and Pd, and M
In order to support at least one component selected from n, Fe, Cu, Co, Ni, Ce and Ca in combination, an aqueous solution of an inorganic acid salt or an organic acid salt of these metals alone or in combination thereof other than sulfates. Are impregnated into the porous oxide simultaneously or sequentially. The concentration of the aqueous solution is Ru, P
0.1 to 100 g for t, Rh, Ir and Pd
Metal / liter, preferably 1-10 g metal / liter, 0.1-51 mol / liter for Mn, Fe, Cu, Co, Ni, Ce and Ca, preferably 0.
It is 5 to 3 mol / liter.

【0024】多孔質酸化物の比表面積は好ましくは30
〜500m/g、より好ましくは60〜120m
/gである。
The specific surface area of the porous oxide is preferably 30
~ 500 m 2 / g, more preferably 60-120 m
2 / g.

【0025】多孔質酸化物は、板状またはハニカム状の
プレフォーム体の繊維間の隙間に保持されていてもよ
い。
The porous oxide may be retained in the spaces between the fibers of the plate-shaped or honeycomb-shaped preform.

【0026】本発明による二酸化窒素吸収剤は、金属担
持前または後に、例えば、0.1〜3.0モル/リット
ル、好ましくは0.3〜1.5モル/リットルの塩基性
アミノ酸および0.1〜3.0モル/リットル、好まし
くは1.0〜2.0モル/リットルの有機アミン化合物
をそれぞれ別々に含む2つの水溶液を多孔質酸化物担体
に逐次含浸させることによって製造される。また、これ
は、0.1〜3.0モル/リットル、好ましくは0.3
〜1.5モル/リットルの塩基性アミノ酸および/また
は0.1〜3.0モル/リットル、好ましくは1.0〜
2.0モル/リットルの有機アミン化合物を含む1つの
水溶液を多孔質酸化物担体に含浸させることによっても
製造される。上記含浸後の多孔質酸化物担体を150℃
以下、好ましくは100℃以下で乾燥する。
The nitrogen dioxide absorbent according to the present invention may contain, for example, 0.1 to 3.0 mol / liter, preferably 0.3 to 1.5 mol / liter of basic amino acid and 0. It is produced by successively impregnating a porous oxide carrier with two aqueous solutions each containing 1 to 3.0 mol / liter, preferably 1.0 to 2.0 mol / liter of an organic amine compound. Also, this is 0.1 to 3.0 mol / liter, preferably 0.3.
-1.5 mol / l basic amino acid and / or 0.1-3.0 mol / l, preferably 1.0-
It is also prepared by impregnating a porous oxide support with one aqueous solution containing 2.0 mol / liter of an organic amine compound. After the above impregnation, the porous oxide carrier is heated to 150 ° C
Hereafter, it is preferably dried at 100 ° C or lower.

【0027】多孔質酸化物担体の1つの例は、固体酸性
を有する多孔質酸化物である。固体酸性を有する多孔質
酸化物は、アルミナ、シリカ・アルミナ、チタニア、ゼ
オライト、ジルコニア等である。これらな単独でも2以
上の組み合わせでも用いられる。
One example of a porous oxide support is a porous oxide with solid acidity. The porous oxide having solid acidity is alumina, silica-alumina, titania, zeolite, zirconia, or the like. These may be used alone or in combination of two or more.

【0028】上記構成の二酸化窒素吸収剤は、これに道
路トンネルの換気ガスを流速0.05〜10.0Nm/
s(空塔基準)で通し、換気ガス中の二酸化窒素を吸収
除去する、道路トンネル換気ガス浄化に好適に使用され
る。
The nitrogen dioxide absorbent having the above-mentioned structure is supplied with ventilation gas for road tunnels at a flow rate of 0.05 to 10.0 Nm /
It is preferably used for road tunnel ventilation gas purification, in which nitrogen dioxide in ventilation gas is absorbed and removed by passing through s (empty tower standard).

【0029】以下、本発明による二酸化窒素吸収剤をよ
り詳細に説明する。
Hereinafter, the nitrogen dioxide absorbent according to the present invention will be described in more detail.

【0030】アミノ酸は一般にアミノ基(塩基性)とカ
ルボキシル基(酸性)の両者を持つ。アミノ基は二酸化
窒素の固定に役立つが、カルボキシル基はそうでない。
また、アルギニンおよびグアニジンは共にHN=C(イ
ミド基)を持ち、これはアミノ基と同様固体酸点と反応
しアルギニン、グアニジンの担体表面への固定化に役立
つ。従って二酸化窒素固定に有効なフリーのアミノ基が
増加することになり、アルギニンおよびグアニジンは他
の有機アミン化合物より蒸散し難くかつ高い二酸化窒素
固定化能を示す。
Amino acids generally have both an amino group (basic) and a carboxyl group (acidic). Amino groups help fix nitrogen dioxide, while carboxyl groups do not.
Further, both arginine and guanidine have HN = C (imido group), which reacts with a solid acid point similarly to the amino group to help immobilize arginine and guanidine on the carrier surface. Therefore, the number of free amino groups effective for nitrogen dioxide fixation is increased, and arginine and guanidine are less likely to evaporate than other organic amine compounds and exhibit a high nitrogen dioxide fixation ability.

【0031】しかし、アルギニン中のカルボキシル基
は、分子構造上アミノ基の近傍に位置し、二酸化窒素固
定に役立たないばかりでなくアミノ基間を伝播するNO
−、NO−等の拡散に対し阻害要因にもなってい
る。
However, the carboxyl group in arginine is located near the amino group due to its molecular structure, and not only is it not useful for fixing nitrogen dioxide, but also NO which propagates between the amino groups.
3 -, NO 2 - to spread such has also become a disincentive.

【0032】このカルボキシル基に塩基性化合物を作用
させれば、カルボキシル基も二酸化窒素固定化に有効に
機能し、吸収剤の吸収容量が増加する。特に塩基性化合
物としてグアニジンを使用すれば、二酸化窒素拡散に有
効なアミノ基のみが存在することになり、拡散の阻害要
因が減少する。
When a basic compound acts on the carboxyl group, the carboxyl group also effectively functions to immobilize nitrogen dioxide, and the absorption capacity of the absorbent increases. In particular, when guanidine is used as the basic compound, only amino groups effective for diffusion of nitrogen dioxide are present, and the factors inhibiting diffusion are reduced.

【0033】二酸化窒素拡散が容易となれば、二酸化窒
素吸収速度の向上のみでなく、触媒活性点周辺の広い部
分が二酸化窒素固定化に有効となり、吸収容量の増加に
も繋がる。
If the diffusion of nitrogen dioxide is facilitated, not only the absorption rate of nitrogen dioxide is improved, but also a wide area around the catalyst active point is effective for immobilizing nitrogen dioxide, leading to an increase in absorption capacity.

【0034】アルギニンなどの担持量の増加は、二酸化
窒素吸収量の増加に繋がるが、過多の担持はアルギニン
などによる触媒細孔の閉塞や触媒活性点埋没を招き、吸
収速度を低下させる。
An increase in the supported amount of arginine and the like leads to an increase in the absorbed amount of nitrogen dioxide, but an excessive supported amount causes clogging of catalyst pores and burial of catalytic active sites due to arginine and the like, which lowers the absorption rate.

【0035】[0035]

【発明の実施の形態】本発明による二酸化窒素吸収剤の
製造方法およびその性能を実施例で具体的に示す。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a nitrogen dioxide absorbent according to the present invention and its performance are specifically shown in Examples.

【0036】実施例1 a)吸収剤 セラミックペーパーハニカム(厚さ0.6mm:日本無
機社製)を固形分濃度33重量%のチタニア(TiO
)ゾル溶液に浸漬した後、空気中で110℃で乾燥
し、ペーパーを構成するセラミックス繊維間にチタニア
を保持させた。セラミックペーパーハニカムのチタニア
コロイド溶液への浸漬および乾燥操作を再度行い、アナ
ターゼ型チタニアが分散保持されたハニカムを得た。
Example 1 a) Absorbent ceramic paper honeycomb (thickness 0.6 mm: manufactured by Nippon Inorganic Co., Ltd.) with a solid content concentration of 33% by weight of titania (TiO 2)
) After soaking in the sol solution, it was dried in air at 110 ° C. to hold the titania between the ceramic fibers constituting the paper. The ceramic paper honeycomb was dipped in a titania colloid solution and dried again to obtain a honeycomb in which anatase-type titania was dispersed and held.

【0037】このハニカムのチタニアの保持量は211
g/m であった。これを3モル/リットルの硝酸マ
ンガン(Mn(NO )水溶液に30分浸漬
し、通気中で120℃で乾燥した後、1.5℃/分の速
度で450℃まで昇温し、3時間焼成した。さらに、こ
れを1.3g−Ru/リットルの塩化ルテニウム(Ru
C1 )水溶液に30分浸漬し、通気中で120℃で
乾燥した後、1.5℃/分の速度で250℃まで昇温
し、30分焼成した。こうして得られたMn−Ru添加
担体の比表面積は97m /gであった。
The amount of titania retained in this honeycomb is 211
It was g / m 2 . This was immersed in a 3 mol / liter manganese nitrate (Mn (NO 3 ) 2 ) aqueous solution for 30 minutes, dried at 120 ° C. in aeration, and then heated to 450 ° C. at a rate of 1.5 ° C./minute, Baked for 3 hours. In addition, 1.3 g-Ru / liter of ruthenium chloride (Ru
C1 3) were immersed for 30 minutes in an aqueous solution, dried at 120 ° C. in a ventilated, the temperature was raised to 250 ° C. at a 1.5 ° C. / minute rate, and baked for 30 minutes. The specific surface area of the Mn—Ru-added carrier thus obtained was 97 m 2 / g.

【0038】これを0.5モル/リットルのL−アルギ
ニンと1.5モル/リットルの炭酸グアニジンの混合水
溶液に30分浸漬した後、空気中で90℃で乾燥し、N
吸収剤(A)を得た。
This was immersed in a mixed aqueous solution of 0.5 mol / l L-arginine and 1.5 mol / l guanidine carbonate for 30 minutes, then dried in air at 90 ° C.
O 2 absorbent (A) was obtained.

【0039】b)吸収剤の性能評価 ハニカム状の吸収剤(A)(20mm×20mm×46
mm×、ハニカム表面積900m /m )を充填
した吸収管に表1の組成のガスを2.5Nリットル/分
の流量で通し、吸収剤の前流および後流において二酸化
窒素濃度を分析し、NO 破過率(NO 破過率=
出口NO 濃度/入口NO 濃度)を所定時間計測
した。
B) Evaluation of absorbent performance Honeycomb-shaped absorbent (A) (20 mm × 20 mm × 46)
mm ×, a honeycomb surface area of 900 m 2 / m 3 ) was passed through a gas having the composition shown in Table 1 at a flow rate of 2.5 N liter / min to analyze the nitrogen dioxide concentration in the upstream and downstream of the absorbent. , NO 2 breakthrough rate (NO 2 breakthrough rate =
Outlet NO 2 concentration / inlet NO 2 concentration) was measured for a predetermined time.

【0040】その後、表2に示す、大量の二酸化窒素を
含む加速ガスを所定時間通し、その時の二酸化窒素吸収
率と積算吸収量を計測した。
Then, an acceleration gas containing a large amount of nitrogen dioxide shown in Table 2 was passed for a predetermined time, and the nitrogen dioxide absorption rate and the cumulative absorption amount at that time were measured.

【0041】吸収開始当初からNO 吸収量が4Nリ
ットル/m に達するまでは、破過率はほぼ0を示
し、その後上昇し、吸収量が8Nリットル/m に達
した時の破過率は0.14であった。
From the beginning of absorption until the amount of NO 2 absorbed reaches 4 Nl / m 2 , the breakthrough rate shows almost 0, and then rises, and when the amount of absorbed reaches 8 Nl / m 2 , the breakthrough rate increases. The rate was 0.14.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】実施例2 表3に示すように、硝酸マンガン水溶液に代えて硝酸マ
ンガンと各種硝酸金属との混合水溶液を用いた以外、実
施例1と同様の操作を行って、NO 吸収剤B〜Gを
得た。
Example 2 As shown in Table 3, the same operation as in Example 1 was performed except that a mixed aqueous solution of manganese nitrate and various metal nitrates was used in place of the aqueous manganese nitrate solution, and the NO 2 absorbent B was obtained. ~ G was obtained.

【0045】実施例1と同様の操作によりこれら吸収剤
の初期破過率と8Nリットル/m吸収後破過率を計測
した。結果を表3に併記する。
By the same operation as in Example 1, the initial breakthrough rate and the breakthrough rate after absorbing 8 Nl / m 2 of these absorbents were measured. The results are also shown in Table 3.

【0046】比較例1 表3に示すように、Ruの添加工程を省略した以外、実
施例2と同様の操作を行って、Ru非担持NO 吸収
剤A’〜G’を得た。
Comparative Example 1 As shown in Table 3, the same operation as in Example 2 was carried out except that the step of adding Ru was omitted to obtain Ru non-loaded NO 2 absorbents A ′ to G ′.

【0047】実施例1と同様の操作によりこれら吸収剤
の初期破過率と8Nリットル/m吸収後破過率を計測
した。結果を表3に併記する。
By the same operation as in Example 1, the initial breakthrough rate and the breakthrough rate after absorbing 8 Nl / m 2 of these absorbents were measured. The results are also shown in Table 3.

【0048】[0048]

【表3】 [Table 3]

【0049】表3から分かるように、Ru担持による吸
収剤の性能向上が認められる。
As can be seen from Table 3, the performance improvement of the absorbent by supporting Ru is recognized.

【0050】実施例3 表4に示すように、塩化ルテニウム水溶液の代わりに各
種塩化貴金属水溶液を用いた以外、実施例1と同様の操
作を行って、NO 吸収剤H〜Kを得た。
Example 3 As shown in Table 4, NO 2 absorbents H to K were obtained in the same manner as in Example 1 except that various noble metal chloride aqueous solutions were used instead of the ruthenium chloride aqueous solution.

【0051】実施例1と同様の操作によりこれら吸収剤
の初期破過率と8Nリットル/m吸収後破過率を計測
した。結果を表4に併記する。
By the same operation as in Example 1, the initial breakthrough rate and the breakthrough rate after absorbing 8 Nl / m 2 of these absorbents were measured. The results are also shown in Table 4.

【0052】[0052]

【表4】 [Table 4]

【0053】表4から分かるように、塩化ルテニウム水
溶液が各種塩化貴金属水溶液に変わっても同様に、貴金
属の担持効果が認められる。
As can be seen from Table 4, even if the ruthenium chloride aqueous solution is changed to various kinds of noble metal chloride aqueous solutions, the noble metal supporting effect is similarly recognized.

【0054】実施例4 表5に示すように、塩化ルテニウム水溶液の濃度を変え
た以外、実施例1と同様の操作を行って、NO 吸収
剤LとMを得た。
Example 4 As shown in Table 5, NO 2 absorbents L and M were obtained in the same manner as in Example 1 except that the concentration of the ruthenium chloride aqueous solution was changed.

【0055】実施例1と同様の操作によりこれら吸収剤
の初期破過率と8Nリットル/m吸収後破過率を計測
した。結果を表5に併記する。
By the same operation as in Example 1, the initial breakthrough rate and the breakthrough rate after absorbing 8 Nl / m 2 of these absorbents were measured. The results are also shown in Table 5.

【0056】[0056]

【表5】 [Table 5]

【0057】表5から分かるように、塩化ルテニウム水
溶液の濃度を変えても同様の担持効果が認められ、濃度
が高くなるにつれて効果も大きくなる。
As can be seen from Table 5, even when the concentration of the ruthenium chloride aqueous solution is changed, the same supporting effect is recognized, and the effect is increased as the concentration is increased.

【0058】[0058]

【発明の効果】本発明による二酸化窒素吸収剤は、多孔
質酸化物担体に、Ru、Pt、Rh、IrおよびPdか
ら選ばれる少なくとも一成分と、Mn、Fe、Cu、C
o、Ni、CeおよびCaから選ばれる少なくとも一成
分を組み合わせて担持し、さらに塩基性アミノ酸および
/または有機アミン化合物を担持してなるものであるの
で、優れた二酸化窒素吸収性能を示す。
The nitrogen dioxide absorbent according to the present invention comprises a porous oxide carrier and at least one component selected from Ru, Pt, Rh, Ir and Pd, and Mn, Fe, Cu and C.
Since at least one component selected from o, Ni, Ce and Ca is combined and carried, and further a basic amino acid and / or an organic amine compound is carried, it exhibits excellent nitrogen dioxide absorption performance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 大祐 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 Fターム(参考) 4D002 AA12 AC10 BA04 CA07 DA01 DA02 DA03 DA12 DA19 DA21 DA22 DA23 DA24 DA25 DA26 DA31 4G066 AA20C AA22C AA23C AA32A AA53A AA61C AB07B AB13B AD10B BA07 CA28 DA02 FA12 FA22    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Daisuke Fujita             1-89 Minami Kohoku 1-89, Suminoe-ku, Osaka             Standing Shipbuilding Co., Ltd. F-term (reference) 4D002 AA12 AC10 BA04 CA07 DA01                       DA02 DA03 DA12 DA19 DA21                       DA22 DA23 DA24 DA25 DA26                       DA31                 4G066 AA20C AA22C AA23C AA32A                       AA53A AA61C AB07B AB13B                       AD10B BA07 CA28 DA02                       FA12 FA22

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質酸化物担体に、Ru、Pt、R
h、IrおよびPdから選ばれる少なくとも一成分と、
Mn、Fe、Cu、Co、Ni、CeおよびCaから選
ばれる少なくとも一成分を組み合わせて担持し、さらに
塩基性アミノ酸および/または有機アミン化合物を担持
してなることを特徴とする二酸化窒素吸収剤。
1. Ru, Pt, R on a porous oxide support
at least one component selected from h, Ir and Pd,
A nitrogen dioxide absorbent characterized by supporting at least one component selected from Mn, Fe, Cu, Co, Ni, Ce and Ca in combination, and further carrying a basic amino acid and / or an organic amine compound.
【請求項2】 さらにアルカリ水酸化物を担持してなる
ことを特徴とする請求項1記載の二酸化窒素吸収剤。
2. The nitrogen dioxide absorbent according to claim 1, further comprising an alkali hydroxide supported thereon.
【請求項3】 多孔質酸化物が、チタニア、アルミナ、
シリカ、シリカ・アルミナ、ジルコニアおよびゼオライ
トからなる群から選ばれる物質またはこれらの組み合わ
せであることを特徴とする請求項1または2記載の二酸
化窒素吸収剤。
3. The porous oxide is titania, alumina,
The nitrogen dioxide absorbent according to claim 1 or 2, which is a substance selected from the group consisting of silica, silica-alumina, zirconia, and zeolite, or a combination thereof.
【請求項4】 多孔質酸化物が複合酸化物であることを
特徴とする請求項1記載の二酸化窒素吸収剤。
4. The nitrogen dioxide absorbent according to claim 1, wherein the porous oxide is a composite oxide.
【請求項5】 多孔質酸化物が、板状またはハニカム状
のプレフォーム体の繊維間の隙間に保持されていること
を特徴とする請求項1〜5のいずれかに記載の二酸化窒
素吸収剤。
5. The nitrogen dioxide absorbent according to claim 1, wherein the porous oxide is retained in the gaps between the fibers of the plate-shaped or honeycomb-shaped preform. .
JP2002078165A 2002-03-20 2002-03-20 Nitrogen dioxide absorbent Pending JP2003275583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078165A JP2003275583A (en) 2002-03-20 2002-03-20 Nitrogen dioxide absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078165A JP2003275583A (en) 2002-03-20 2002-03-20 Nitrogen dioxide absorbent

Publications (1)

Publication Number Publication Date
JP2003275583A true JP2003275583A (en) 2003-09-30

Family

ID=29205964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078165A Pending JP2003275583A (en) 2002-03-20 2002-03-20 Nitrogen dioxide absorbent

Country Status (1)

Country Link
JP (1) JP2003275583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406127A (en) * 2013-08-28 2013-11-27 北京中安四海节能环保工程技术有限公司 Non-toxic low-temperature denitrating catalytic catalyst and preparation method thereof
JP2014221204A (en) * 2008-01-28 2014-11-27 ゲノ エルエルシー Transformation from nitrogen dioxide (no2) to nitric monoxide (no)
US11202880B2 (en) 2004-08-18 2021-12-21 Vero Biotech LLC Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11554241B2 (en) 2004-08-18 2023-01-17 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11744978B2 (en) 2008-08-21 2023-09-05 Vero Biotech Inc. Systems and devices for generating nitric oxide
US11925764B2 (en) 2009-06-22 2024-03-12 Vero Biotech Inc. Nitric oxide therapies

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202880B2 (en) 2004-08-18 2021-12-21 Vero Biotech LLC Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11291793B2 (en) 2004-08-18 2022-04-05 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11383059B2 (en) 2004-08-18 2022-07-12 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11554241B2 (en) 2004-08-18 2023-01-17 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
JP2014221204A (en) * 2008-01-28 2014-11-27 ゲノ エルエルシー Transformation from nitrogen dioxide (no2) to nitric monoxide (no)
US11312626B2 (en) 2008-01-28 2022-04-26 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11884541B2 (en) 2008-01-28 2024-01-30 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11744978B2 (en) 2008-08-21 2023-09-05 Vero Biotech Inc. Systems and devices for generating nitric oxide
US11925764B2 (en) 2009-06-22 2024-03-12 Vero Biotech Inc. Nitric oxide therapies
CN103406127A (en) * 2013-08-28 2013-11-27 北京中安四海节能环保工程技术有限公司 Non-toxic low-temperature denitrating catalytic catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0908230B1 (en) Nitrogen dioxide absorbent and its use for purifying ventilation gas
JP2003275583A (en) Nitrogen dioxide absorbent
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JP3546547B2 (en) HC adsorbent for exhaust gas purification device and method for producing the same
JP4779620B2 (en) How to use room temperature NOx adsorbent
JP3721449B2 (en) Regeneration method of nitrogen dioxide absorbent
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
JP4135698B2 (en) Method for producing sulfur oxide absorbent
JP3752579B2 (en) Nitrogen dioxide absorbent
JP2002295241A (en) Purification method of marine structure exhaust gas and purifying device
JP2563861B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2896912B2 (en) Catalyst regeneration method
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JP2001187340A (en) Nitrogen dioxide absorbent
JPH1176827A (en) Apparatus for cleaning exhaust gas
JP2001038200A (en) Adsorbent for nitrogen oxide or the like, its production and method for removing nitrogen oxide or the like
JP4985499B2 (en) Sulfur oxide absorber and exhaust gas purification device
JPH0671176A (en) Catalyst for purifying nitrogen oxide
JPH0985056A (en) Exhaust gas purifying apparatus of engine
JPH04200741A (en) Adsorptive removing agent of low concentration nitrogen oxide
JP2002085538A (en) Deodorant and deodorization filter using this deodorant
JPS593210B2 (en) Catalytic reduction method of nitrogen oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515