JP3721449B2 - Regeneration method of nitrogen dioxide absorbent - Google Patents

Regeneration method of nitrogen dioxide absorbent Download PDF

Info

Publication number
JP3721449B2
JP3721449B2 JP32305498A JP32305498A JP3721449B2 JP 3721449 B2 JP3721449 B2 JP 3721449B2 JP 32305498 A JP32305498 A JP 32305498A JP 32305498 A JP32305498 A JP 32305498A JP 3721449 B2 JP3721449 B2 JP 3721449B2
Authority
JP
Japan
Prior art keywords
absorbent
nitrogen dioxide
amino acid
basic amino
amine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32305498A
Other languages
Japanese (ja)
Other versions
JP2000140555A (en
Inventor
厚 福寿
秀次 小林
正義 市来
友紀 西良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP32305498A priority Critical patent/JP3721449B2/en
Publication of JP2000140555A publication Critical patent/JP2000140555A/en
Application granted granted Critical
Publication of JP3721449B2 publication Critical patent/JP3721449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低濃度の窒素酸化物(NOx)を含有する例えば道路トンネルや地下閉鎖空間等の換気ガスから、二酸化窒素(NO2 )を吸収ないしは吸着して除去する排ガス浄化装置に使用するNO2 吸収ないしは吸着剤(以下、単に吸収剤という)に関し、より詳しくは、該NO2 吸収剤の再生方法に関するものである。
【0002】
【従来の技術】
多孔質担体に、塩基性アミノ酸と有機アミン化合物および/またはアルカリ水酸化物を担持したNO2 吸収剤の再生方法に関する先行技術はない。
【0003】
【発明が解決しようとする課題】
本発明者らは、先に、多孔質担体に、塩基性アミノ酸と、有機アミン化合物および/またはアルカリ水酸化物とを担持してなるNO2 吸収剤、およびこれを用いて道路トンネルの換気ガス中のNO2 を吸収除去する浄化方法を提案した(特願平10−288577)。
【0004】
しかし、大量のNO2 を吸収した吸収剤は、NO2 吸収性能が低下してしまっているので、これを適正な頻度で再生させる必要がある。
【0005】
吸収されたNO2 は主として、吸収剤表面のアミノ基と結合しているものと考えられる。加熱などの方法でこの結合を切断すれば、NO2 は脱離し吸収剤は再生されると考えられる。しかし、100℃以上の温度での加熱は、徐々にではあるが吸収剤表面の有機化合物を分解または変質し、NO2 吸収性能の低下をもたらす。
【0006】
また、比較例1で示すように、上記吸収剤を空気中で300℃以上で加熱すると、塩基性アミノ酸など有機物が分解し、NO2 と同伴して脱離する。加熱処理後、再びフレッシュな有機物を担持させれば、吸収剤の再生が行える。しかし、加熱による有機物の燃焼により、細孔内が異常に高温となり、吸収剤担体の熱変化を起こし、再生後の吸収性能は大幅に低下する。
【0007】
【課題を解決するための手段】
本発明者らは、大量にNO2 を吸収した吸収剤を室温で水洗すると、NO2 と結合したままアミノ酸や有機アミンなどが溶出すること見いだした。すなわち、大量のNO2 を吸収した吸収剤を水洗し、水洗水中に吸収NO2 と共に塩基性アミノ酸等などを溶出し、ついでフレッシュなアミノ酸等を担持させれば完全な再生が行えることを見いだした。
【0008】
ここで、実施例1に示すように、空気にNO2 を混合したガスに吸収剤を曝した後、再生した場合には、吸収と再生の繰り返しによる吸収剤の性能低下は全く認められなかったが、実施例2に示すように、ディーゼル排ガスに吸収剤を曝して行った同様の試験では、徐々にではあるが、吸収と再生の繰り返しによる性能低下が認められた。
【0009】
この性能低下は、ディーゼル排ガス中に含まれる微量のオイルミストなどが吸収剤表面に蓄積されるためである。
【0010】
実施例3に示すように、水洗処理により水溶性有機物の大半を除去した後、空気中で加熱処理を行えば、吸収と再生の繰り返しに対し、高い吸収性能を維持できる。
【0011】
すなわち、水洗処理後に加熱処理を行えば、付着したオイルミストなど、水に不溶の成分も除去できるので、ディーゼル排ガスを用いた試験でも吸収と再生の繰り返しに起因する性能低下は起こらない。ただし、多少の熱劣化は認められる。
【0012】
また、実施例4に示すように、水洗水に界面活性剤を添加して水洗処理を行うことにより、付着オイルミストなどを除去でき、吸収と再生の繰り返しによる吸収剤の性能低下は全く認められない。
【0013】
本発明によるNO2 吸収剤の再生方法は、多孔質担体に、塩基性アミノ酸と、有機アミン化合物および/またはアルカリ水酸化物とを担持してなる二酸化窒素吸収剤であって、二酸化窒素吸収によって劣化した吸収剤を、水洗することにより、吸収された二酸化窒素と共に塩基性アミノ酸と有機アミン化合物および/またはアルカリ水酸化物を水洗水中に溶出させ、乾燥後、再び塩基性アミノ酸と有機アミン化合物および/またはアルカリ水酸化物を担体に担持することを特徴とする方法である。
【0014】
水洗水に界面活性剤を添加することが好ましい。
【0015】
乾燥の代わりに、500℃以下で空気加熱を行うことが好ましい。加熱温度が500℃を越えると、担体がシンタリングを起こし易くなるので好ましくない。
【0016】
加熱処理工程からの排ガスを脱硝触媒床に送り、排ガス中のNOxと塩基性アミノ酸または有機アミン化合物の蒸気または熱分解物とを反応させ、NOxを無害なN2 とH2 Oにすることが好ましい。
【0017】
本発明によるもう1つのNO2 吸収剤の再生方法は、多孔質担体に、塩基性アミノ酸と、有機アミン化合物および/またはアルカリ水酸化物とを担持してなる二酸化窒素吸収剤であって、二酸化窒素吸収によって劣化した吸収剤を、界面活性剤と塩基性アミノ酸、有機アミン化合物および/またはアルカリ水酸化物を含む水洗水で水洗することにより、吸収した二酸化窒素を水洗水中に溶出させると同時に、塩基性アミノ酸と有機アミン化合物および/またはアルカリ水酸化物を担体に担持する方法である。
【0018】
上記界面活性剤としては、塩基吸収剤付着オイルミストなど溶解し得る界面活性剤が好ましく、陰イオン性のラウリン酸ナトリウムなどが例示される。
【0019】
NO2 吸収剤は、例えば、0.5〜2.0モル/リットル、好ましくは0.8〜1.5モル/リットルの塩基性アミノ酸と、0.5〜3.0当量、好ましくは0.8〜2.0当量(アミノ酸のカルボン酸に対する当量)の有機アミン化合物および/または0.5〜3.0当量、好ましくは0.8〜2.0当量(アミノ酸のカルボン酸に対する当量)のアルカリ水酸化物とを含む混合水溶液を多孔質担体に含浸させることによっても製造される。上記含浸後の多孔質担体を150℃以下、好ましくは100℃以下で乾燥する。
【0020】
多孔質担体の1つの例は、固体酸性を有する多孔質酸化物である。固体酸性を有する多孔質酸化物は、アルミナ、シリカ・アルミナ、チタニア、ゼオライト等である。これらな単独でも2以上の組み合わせでも用いられる。
【0021】
好ましい多孔質担体は、多孔質酸化物にMn、Co、FeおよびNiからなる群から選ばれる物質またはこれらの組合せを担持して得られる金属添加担体である。金属添加担体は、例えば、Mn、Co、FeおよびNiからなる群から選ばれる物質またはこれらの組合せの、硫酸塩以外の無機酸塩または有機酸塩の0.5〜5モル/リットル、好ましくは2〜4モル/リットルの水溶液を多孔質酸化物に同時または逐次に含浸させることによって得られる。
【0022】
多孔質酸化物の比表面積は30〜500m2 /g、好ましくは60〜120m2 /gである。
【0023】
多孔質酸化物は、板状またはハニカム状のプレフォーム体の繊維間の隙間に保持されていてもよい。
【0024】
多孔質担体の他の例は活性炭である。活性炭の比表面積は100〜2000m2 /g、好ましくは300〜600m2 /gである。
【0025】
活性炭はハニカム状に成形することが好ましい。
【0026】
塩基性アミノ酸としてはアルギニンが好ましく、有機アミン化合物としてはグアニジンが好ましい。アルカリ水酸化物としては、水酸化リチウム、水酸化カリウムおよび水酸化ナトリウムからなる群から選ばれる物質またはこれらの組合せが好ましい。
【0027】
上記構成のNO2 吸収剤は、これに道路トンネルの換気ガスを流速0.05〜10.0Nm/s(空塔基準)で通し、換気ガス中のNO2 を吸収除去する、道路トンネル換気ガス浄化に好適に使用される。
【0028】
【発明の実施の形態】
(実施例1)
a)NO2 吸収剤の調製
0.5mm厚さのセラミックペーパー(日本無機(株)製)を波付け加工し、複数枚の波板を積層してハニカム構造体(プレフォーム体)を形成した。これを固形分濃度30重量%のアナターゼ型チタニア(TiO2 )ゾルに浸漬し、ついで空気中120℃で乾燥した。こうして、ハニカム状チタニア担体を得た。
【0029】
この担体を3.0モル/リットルの硝酸マンガン(Mn(NO3 2 )水溶液に30分浸漬し、ついで空気中120℃で乾燥し、空気通気中450℃で3時間焼成し、Mn添加ハニカム状チタニア担体を得た。
【0030】
この担体を1.3モル/リットルのL−アルギニンと1.5モル/リットルの炭酸グアニジンの混合水溶液に30分間浸漬した後、空気中90℃で乾燥し、ハニカム状NO2 吸収剤を得た。
【0031】
b)固体酸担体NO2 吸収剤の性能試験
この吸収剤をステンレス製の反応器に充填し、この反応器に調製ガス(NO:0.9ppm、NO2 :0.12ppm、相対湿度:60%)を面積速度(AV):9m/hの流量で通し、吸収温度は常温で、吸収剤の前流および後流においてNO2 濃度を分析し、下記計算式によりNO2 吸収率を計測した。これを初期の吸収率とした。
NO2 吸収率
=[(入口NO2 濃度−出口NO2 濃度)/入口NO2 濃度]×100
【0032】
次に、上記吸収剤に、NO2 を含んだ空気(ボンベガス)でNO2 を6Nリットル(NO2 )/m2 (吸収剤)吸収させた後、上記と同じくNO2 吸収率を求めた。こうして得られた値を1年後相当の吸収率とした。
【0033】
c)使用済みNO2 吸収剤の再生
次に、上記試験後の吸収剤を反応器から取り出し、これを常温で水洗した。この水洗により、吸収されたNO2 と共にL−アルギニンと炭酸グアニジンを水洗水中に溶出させた。次いで、乾燥後、再び、水洗ハニカム状チタニア担体を上記と同じ操作でL−アルギニンと炭酸グアニジンの混合水溶液に浸漬し、90℃乾燥して、NO2 吸収剤を得た。
【0034】
この再生吸収剤を用い、上記と同じ条件で初期と1年後相当のNO2 吸収率を求めた。さらに、この吸収と再生の操作を20回繰り返した。5回目、10回目、15回目および20回目でそれぞれ初期と1年後の吸収率を求めた。この結果を表1に示す。
【0035】
【表1】

Figure 0003721449
表1より、吸収と再生の繰り返しによっても吸収性能は全く低下しないことがわかる。
【0036】
(実施例2)
実施例1で用いた、NO2 を含んだ空気(ボンベガス)の代わりに、ディーゼルエンジン排ガスでNO2 を6Nリットル(NO2 )/m2 (吸収剤)吸収させたこと以外は、実施例1と同様の操作を行い、同条件でNO2 吸収試験を行った。
【0037】
試験結果を表2に示す。
【0038】
【表2】
Figure 0003721449
表2より、吸収と再生の繰り返しによって吸収性能が若干ではあるが徐々に低下することがわかる。
【0039】
(実施例3)
水洗後の乾燥の代わりに、300℃、1時間の条件で空気加熱を行ったこと以外は、実施例2と同様の操作を行い、同条件でNO2 吸収試験を行った。
【0040】
試験結果を表3に示す。
【0041】
【表3】
Figure 0003721449
表3より、吸収と再生の繰り返しによって熱劣化による若干の性能低下が認められることがわかる。
【0042】
(実施例4)
水洗水として界面活性剤(ラウリン酸ナトリウム)を含むものを用いたこと以外は、実施例2と同様の操作を行い、同条件でNO2 吸収試験を行った。
【0043】
試験結果を表4に示す。
【0044】
【表4】
Figure 0003721449
表4より、吸収と再生の繰り返しによっても吸収性能が全く低下しないことがわかる。
【0045】
(実施例5)
水洗水に界面活性剤(ラウリン酸ナトリウム)とL−アルギニン、炭酸グアニジンを予め添加しておき、この水洗水で使用済みの吸収剤を水洗した後、90℃で乾燥したこと以外は、実施例2と同様の操作を行い、同条件でNO2 吸収試験を行った。
【0046】
この水洗によって、吸収NO2 などを水洗水中に溶出させると同時に、水洗水中のL−アルギニンと炭酸グアニジンの担持を担体に担持することができた。
【0047】
試験結果を表5に示す。
【0048】
【表5】
Figure 0003721449
表5より、吸収と再生の繰り返しによってもほとんど性能低下が認められないことがわかる。
【0049】
(比較例1)
使用済み吸収剤を水洗しないで、400℃、1時間の空気加熱を行い、再び、吸収剤をL−アルギニンと炭酸グアニジンの混合水溶液に浸漬し、90℃乾燥して、再生吸収剤を得たこと以外は、実施例1と同様の操作を行い、同条件でNO2 吸収試験を行った。
【0050】
試験結果を表6に示す。
【0051】
【表6】
Figure 0003721449
表6より、吸収と再生の繰り返しによって明らかな性能低下が認められることがわかる。
【0052】
【発明の効果】
本発明の吸収剤の再生方法によれば、使用済み吸収剤を、吸収性能の低下を起こさないで、繰り返し再生使用できる。したがって、吸収剤を交換せずに、1年以上のNO2 吸収性能を発揮させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a NO gas used in an exhaust gas purification apparatus that absorbs or adsorbs nitrogen dioxide (NO 2 ) from a ventilation gas containing a low concentration of nitrogen oxides (NOx) such as road tunnels and underground closed spaces. 2 absorbent or adsorbent (hereinafter, simply referred to as absorber) relates, more particularly, to a reproduction method of the NO 2 absorbent.
[0002]
[Prior art]
There is no prior art relating to a method for regenerating a NO 2 absorbent in which a basic amino acid and an organic amine compound and / or an alkali hydroxide are supported on a porous carrier.
[0003]
[Problems to be solved by the invention]
The inventors of the present invention previously described a NO 2 absorbent comprising a porous carrier carrying a basic amino acid and an organic amine compound and / or an alkali hydroxide, and a ventilation gas for a road tunnel using the same. A purification method for absorbing and removing NO 2 therein was proposed (Japanese Patent Application No. 10-288877).
[0004]
However, since the absorbent that has absorbed a large amount of NO 2 has deteriorated in the NO 2 absorption performance, it must be regenerated at an appropriate frequency.
[0005]
It is considered that the absorbed NO 2 is mainly bonded to the amino group on the absorbent surface. If this bond is broken by a method such as heating, it is considered that NO 2 is desorbed and the absorbent is regenerated. However, heating at a temperature of 100 ° C. or higher gradually decomposes or alters the organic compound on the surface of the absorbent, resulting in a decrease in NO 2 absorption performance.
[0006]
Further, as shown in Comparative Example 1, when the absorbent is heated at 300 ° C. or higher in the air, organic substances such as basic amino acids are decomposed and desorbed together with NO 2 . After the heat treatment, the absorbent can be regenerated by loading fresh organic matter again. However, due to the burning of the organic matter due to heating, the inside of the pores becomes abnormally high in temperature, causing a heat change of the absorbent carrier, and the absorption performance after regeneration is greatly reduced.
[0007]
[Means for Solving the Problems]
The present inventors have found that when an absorbent that has absorbed a large amount of NO 2 is washed with water at room temperature, amino acids, organic amines and the like are eluted while bound to NO 2 . In other words, it was found that an absorbent that absorbed a large amount of NO 2 was washed with water, basic amino acids and the like were eluted together with the absorbed NO 2 in the washing water, and then a fresh amino acid and the like were supported, so that complete regeneration could be performed. .
[0008]
Here, as shown in Example 1, when the absorbent was exposed to a gas in which NO 2 was mixed with air and then regenerated, no performance degradation of the absorbent due to repeated absorption and regeneration was observed. However, as shown in Example 2, in a similar test performed by exposing the diesel exhaust gas to an absorbent, although gradually, a decrease in performance due to repeated absorption and regeneration was observed.
[0009]
This decrease in performance is due to accumulation of a small amount of oil mist and the like contained in diesel exhaust gas on the absorbent surface.
[0010]
As shown in Example 3, if most of the water-soluble organic substances are removed by washing with water and then heat treatment is performed in air, high absorption performance can be maintained with respect to repeated absorption and regeneration.
[0011]
That is, if the heat treatment is performed after the water washing treatment, water-insoluble components such as attached oil mist can be removed, so that performance deterioration due to repeated absorption and regeneration does not occur even in a test using diesel exhaust gas. However, some thermal degradation is observed.
[0012]
Further, as shown in Example 4, by adding a surfactant to the washing water and carrying out the washing treatment, it is possible to remove the adhered oil mist and the like, and the performance of the absorbent is deteriorated by repeated absorption and regeneration. Absent.
[0013]
The method for regenerating NO 2 absorbent according to the present invention is a nitrogen dioxide absorbent comprising a porous carrier carrying a basic amino acid and an organic amine compound and / or an alkali hydroxide. By washing the deteriorated absorbent with water, the basic amino acid and the organic amine compound and / or the alkali hydroxide are eluted together with the absorbed nitrogen dioxide into the washing water, and after drying, the basic amino acid and the organic amine compound and It is a method characterized in that an alkali hydroxide is supported on a carrier.
[0014]
It is preferable to add a surfactant to the washing water.
[0015]
It is preferable to perform air heating at 500 ° C. or lower instead of drying. When the heating temperature exceeds 500 ° C., the carrier tends to cause sintering, which is not preferable.
[0016]
Sending the exhaust gas from the heat treatment process to the denitration catalyst bed, reacting NOx in the exhaust gas with the vapor or thermal decomposition product of basic amino acid or organic amine compound, and converting NOx into harmless N 2 and H 2 O preferable.
[0017]
Another NO 2 absorbent regeneration method according to the present invention is a nitrogen dioxide absorbent comprising a porous carrier supporting a basic amino acid, an organic amine compound and / or an alkali hydroxide, and the carbon dioxide absorbent. The absorbent that has deteriorated due to nitrogen absorption is washed with washing water containing a surfactant and a basic amino acid, an organic amine compound and / or an alkali hydroxide to elute the absorbed nitrogen dioxide into the washing water, In this method, a basic amino acid, an organic amine compound and / or an alkali hydroxide are supported on a carrier.
[0018]
The surfactant is preferably a soluble surfactant such as a base absorbent-attached oil mist, and examples thereof include anionic sodium laurate.
[0019]
The NO 2 absorbent is, for example, 0.5 to 2.0 mol / liter, preferably 0.8 to 1.5 mol / liter of basic amino acid, 0.5 to 3.0 equivalents, preferably 0. 8 to 2.0 equivalent (equivalent of amino acid to carboxylic acid) of organic amine compound and / or 0.5 to 3.0 equivalent, preferably 0.8 to 2.0 equivalent (equivalent of amino acid to carboxylic acid) of alkali It is also produced by impregnating a porous carrier with a mixed aqueous solution containing a hydroxide. The impregnated porous carrier is dried at 150 ° C. or lower, preferably 100 ° C. or lower.
[0020]
One example of a porous carrier is a porous oxide having solid acidity. The porous oxide having solid acidity is alumina, silica / alumina, titania, zeolite or the like. These may be used alone or in combination of two or more.
[0021]
A preferred porous support is a metal-added support obtained by supporting a substance selected from the group consisting of Mn, Co, Fe and Ni or a combination thereof on a porous oxide. The metal-added carrier is, for example, a substance selected from the group consisting of Mn, Co, Fe and Ni, or a combination thereof, 0.5 to 5 mol / liter of inorganic acid salt or organic acid salt other than sulfate, preferably It is obtained by impregnating a porous oxide with a 2 to 4 mol / liter aqueous solution simultaneously or sequentially.
[0022]
The specific surface area of the porous oxide is 30 to 500 m 2 / g, preferably 60 to 120 m 2 / g.
[0023]
The porous oxide may be held in the gaps between the fibers of the plate-like or honeycomb-like preform.
[0024]
Another example of the porous carrier is activated carbon. The specific surface area of the activated carbon is 100-2000 m 2 / g, preferably from 300 to 600 m 2 / g.
[0025]
The activated carbon is preferably formed into a honeycomb shape.
[0026]
Arginine is preferable as the basic amino acid, and guanidine is preferable as the organic amine compound. As the alkali hydroxide, a substance selected from the group consisting of lithium hydroxide, potassium hydroxide and sodium hydroxide or a combination thereof is preferable.
[0027]
The NO 2 absorbent configured as described above passes the road tunnel ventilation gas at a flow rate of 0.05 to 10.0 Nm / s (empty standard) to absorb and remove NO 2 in the ventilation gas. It is suitably used for purification.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
a) Preparation of NO 2 absorbent 0.5 mm thick ceramic paper (manufactured by Nippon Inorganic Co., Ltd.) was corrugated and a plurality of corrugated sheets were laminated to form a honeycomb structure (preform body). . This was immersed in anatase-type titania (TiO 2 ) sol having a solid content concentration of 30% by weight, and then dried at 120 ° C. in air. Thus, a honeycomb-like titania carrier was obtained.
[0029]
This support was immersed in an aqueous 3.0 mol / liter manganese nitrate (Mn (NO 3 ) 2 ) solution for 30 minutes, then dried at 120 ° C. in air, and fired at 450 ° C. for 3 hours in an air aeration to obtain a Mn-added honeycomb. A titania carrier was obtained.
[0030]
This support was immersed in a mixed aqueous solution of 1.3 mol / liter L-arginine and 1.5 mol / liter guanidine carbonate for 30 minutes and then dried at 90 ° C. in air to obtain a honeycomb-like NO 2 absorbent. .
[0031]
b) Performance test of solid acid carrier NO 2 absorbent This absorbent is filled into a stainless steel reactor, and the prepared gas (NO: 0.9 ppm, NO 2 : 0.12 ppm, relative humidity: 60%) is filled in this reactor. ) At a flow rate of 9 m / h, the absorption temperature was room temperature, the NO 2 concentration was analyzed in the upstream and downstream of the absorbent, and the NO 2 absorption rate was measured by the following formula. This was taken as the initial absorption rate.
NO 2 absorption rate = [(inlet NO 2 concentration−outlet NO 2 concentration) / inlet NO 2 concentration] × 100
[0032]
Next, NO 2 was absorbed into the absorbent by 6 N liters (NO 2 ) / m 2 (absorbent) with air (cylinder gas) containing NO 2 , and the NO 2 absorption rate was determined in the same manner as described above. The value thus obtained was defined as an absorption rate after one year.
[0033]
c) Regeneration of used NO 2 absorbent Next, the absorbent after the test was taken out of the reactor and washed with water at room temperature. By this washing, L-arginine and guanidine carbonate were eluted in the washing water together with the absorbed NO 2 . Next, after drying, the water-washed honeycomb titania carrier was again immersed in a mixed aqueous solution of L-arginine and guanidine carbonate by the same operation as described above, and dried at 90 ° C. to obtain a NO 2 absorbent.
[0034]
Using this regenerated absorbent, the NO 2 absorption rate corresponding to the initial and one year later was obtained under the same conditions as described above. Further, this absorption and regeneration operation was repeated 20 times. Absorption rates at the initial stage and one year later were determined at the fifth, tenth, fifteenth and twentieth times, respectively. The results are shown in Table 1.
[0035]
[Table 1]
Figure 0003721449
From Table 1, it can be seen that the absorption performance does not deteriorate at all even by repeated absorption and regeneration.
[0036]
(Example 2)
Example 1 except that NO 2 was absorbed by 6 N liters (NO 2 ) / m 2 (absorbent) in the diesel engine exhaust gas instead of the air (cylinder gas) containing NO 2 used in Example 1. The same operation was performed, and a NO 2 absorption test was performed under the same conditions.
[0037]
The test results are shown in Table 2.
[0038]
[Table 2]
Figure 0003721449
From Table 2, it can be seen that the absorption performance gradually decreases with repetition of absorption and regeneration.
[0039]
(Example 3)
A NO 2 absorption test was performed under the same conditions as in Example 2 except that air heating was performed at 300 ° C. for 1 hour instead of drying after washing with water.
[0040]
The test results are shown in Table 3.
[0041]
[Table 3]
Figure 0003721449
From Table 3, it can be seen that a slight decrease in performance due to thermal degradation is observed due to repeated absorption and regeneration.
[0042]
(Example 4)
A NO 2 absorption test was performed under the same conditions as in Example 2 except that a washing agent containing a surfactant (sodium laurate) was used.
[0043]
The test results are shown in Table 4.
[0044]
[Table 4]
Figure 0003721449
From Table 4, it can be seen that the absorption performance does not deteriorate at all even by repeated absorption and regeneration.
[0045]
(Example 5)
Except that surfactant (sodium laurate), L-arginine, and guanidine carbonate were previously added to the washing water, and the used absorbent was washed with this washing water and then dried at 90 ° C. The same operation as 2 was performed, and a NO 2 absorption test was performed under the same conditions.
[0046]
By this washing, absorbed NO 2 and the like were eluted in the washing water, and at the same time, L-arginine and guanidine carbonate in the washing water could be supported on the carrier.
[0047]
The test results are shown in Table 5.
[0048]
[Table 5]
Figure 0003721449
From Table 5, it can be seen that almost no performance degradation is observed even after repeated absorption and regeneration.
[0049]
(Comparative Example 1)
Without washing the used absorbent with water, air heating was performed at 400 ° C. for 1 hour, and the absorbent was again immersed in a mixed aqueous solution of L-arginine and guanidine carbonate and dried at 90 ° C. to obtain a regenerated absorbent. Except for this, the same operation as in Example 1 was performed, and a NO 2 absorption test was performed under the same conditions.
[0050]
The test results are shown in Table 6.
[0051]
[Table 6]
Figure 0003721449
From Table 6, it can be seen that a clear performance degradation is observed by repeated absorption and regeneration.
[0052]
【The invention's effect】
According to the method for regenerating an absorbent of the present invention, a used absorbent can be repeatedly regenerated and used without causing a decrease in absorption performance. Therefore, NO 2 absorption performance of one year or more can be exhibited without exchanging the absorbent.

Claims (5)

多孔質担体に、塩基性アミノ酸と、有機アミン化合物および/またはアルカリ水酸化物とを担持してなる二酸化窒素吸収剤であって、二酸化窒素吸収によって劣化した使用済み吸収剤を、水洗することにより、吸収二酸化窒素と共に塩基性アミノ酸と有機アミン化合物および/またはアルカリ水酸化物を水洗水中に溶出させ、乾燥後、再び塩基性アミノ酸と有機アミン化合物および/またはアルカリ水酸化物を担体に担持することを特徴とする二酸化窒素吸収剤の再生方法。A nitrogen dioxide absorbent comprising a porous carrier carrying a basic amino acid and an organic amine compound and / or an alkali hydroxide, wherein the used absorbent deteriorated by nitrogen dioxide absorption is washed with water. Elution of the basic amino acid and organic amine compound and / or alkali hydroxide together with the absorbed nitrogen dioxide into the washing water, drying and then supporting the basic amino acid and organic amine compound and / or alkali hydroxide again on the carrier A method for regenerating a nitrogen dioxide absorbent. 水洗水に界面活性剤を添加することを特徴とする請求項1記載の二酸化窒素吸収剤の再生方法。The method for regenerating a nitrogen dioxide absorbent according to claim 1, wherein a surfactant is added to the washing water. 水洗後の乾燥の代わりに、500℃以下で加熱を行うことを特徴とする請求項1または2記載の二酸化窒素吸収剤の再生方法。The method for regenerating a nitrogen dioxide absorbent according to claim 1 or 2, wherein heating is performed at 500 ° C or lower instead of drying after washing with water. 加熱処理工程からの排ガスを脱硝触媒床に送り、排ガス中のNOxと塩基性アミノ酸または有機アミン化合物の蒸気または熱分解物とを反応させ、NOxを無害なN2 とH2 Oにすることを特徴とする請求項3記載の二酸化窒素吸収剤の再生方法。The exhaust gas from the heat treatment process is sent to the denitration catalyst bed, and NOx in the exhaust gas reacts with the vapor or thermal decomposition product of basic amino acid or organic amine compound to convert NOx into harmless N 2 and H 2 O. The method for regenerating a nitrogen dioxide absorbent as claimed in claim 3. 多孔質担体に、塩基性アミノ酸と、有機アミン化合物および/またはアルカリ水酸化物とを担持してなる二酸化窒素吸収剤であって、二酸化窒素吸収によって劣化した使用済み吸収剤を、界面活性剤と塩基性アミノ酸、有機アミン化合物および/またはアルカリ水酸化物を含む水洗水で水洗することにより、吸収二酸化窒素を水洗水中に溶出させると同時に、塩基性アミノ酸と有機アミン化合物および/またはアルカリ水酸化物を担体に担持することを特徴とする二酸化窒素吸収剤の再生方法。A nitrogen dioxide absorbent comprising a porous carrier carrying a basic amino acid and an organic amine compound and / or an alkali hydroxide, wherein the used absorbent deteriorated by the absorption of nitrogen dioxide is used as a surfactant. By washing with water containing basic amino acid, organic amine compound and / or alkali hydroxide, the absorbed nitrogen dioxide is eluted into the water, and at the same time, basic amino acid and organic amine compound and / or alkali hydroxide are eluted. A method for regenerating a nitrogen dioxide absorbent, comprising supporting a carrier on a carrier.
JP32305498A 1998-11-13 1998-11-13 Regeneration method of nitrogen dioxide absorbent Expired - Fee Related JP3721449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32305498A JP3721449B2 (en) 1998-11-13 1998-11-13 Regeneration method of nitrogen dioxide absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32305498A JP3721449B2 (en) 1998-11-13 1998-11-13 Regeneration method of nitrogen dioxide absorbent

Publications (2)

Publication Number Publication Date
JP2000140555A JP2000140555A (en) 2000-05-23
JP3721449B2 true JP3721449B2 (en) 2005-11-30

Family

ID=18150591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32305498A Expired - Fee Related JP3721449B2 (en) 1998-11-13 1998-11-13 Regeneration method of nitrogen dioxide absorbent

Country Status (1)

Country Link
JP (1) JP3721449B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275584A (en) * 2002-03-20 2003-09-30 Hitachi Zosen Corp Method for regenerating nitrogen dioxide absorbent
JP5031244B2 (en) * 2006-02-23 2012-09-19 三菱重工メカトロシステムズ株式会社 How to regenerate the absorbent
JP4971217B2 (en) * 2008-02-20 2012-07-11 三菱重工メカトロシステムズ株式会社 Regeneration method of nitrogen oxide removing material
KR101531023B1 (en) * 2014-05-27 2015-06-23 한국과학기술연구원 Production method of highly strong and conductive carbon nano tube fiber by pyrolysis gas doping and carbon nano tube fiber produced thereby

Also Published As

Publication number Publication date
JP2000140555A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP5261189B2 (en) Zeolite catalyst with improved NOx selective catalytic reduction efficiency
CN107876043B (en) A kind of ceramic catalytic filter core and flue gas integration desulfurization denitration dust removal method for gas cleaning
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
KR20080077163A (en) Exhaust gas purifying device
EP0908230B1 (en) Nitrogen dioxide absorbent and its use for purifying ventilation gas
JP3721449B2 (en) Regeneration method of nitrogen dioxide absorbent
JPH04367707A (en) Nitrogen oxides removal
JPH067639A (en) Method for denitrifying waste combustion gas
JP4172828B2 (en) NOx removal agent and method for removing nitrogen oxides in exhaust gas
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP2003275583A (en) Nitrogen dioxide absorbent
JP2022161381A (en) Regeneration method for denitration catalyst
JP3752579B2 (en) Nitrogen dioxide absorbent
US20090053121A1 (en) Catalyst for oxidizing mercury metal, exhaust gas purifying catalyst comprising catalyst for oxidizing mercury metal, and method for producing same
JPH09313946A (en) Catalyst for cleaning nox-containing exhaust gas and cleaning method
JP2002295241A (en) Purification method of marine structure exhaust gas and purifying device
JP4617622B2 (en) Production method of adsorbent
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3436419B2 (en) Method for producing high heat resistant nitrogen oxide purifying catalyst
JP3362401B2 (en) Exhaust gas purification catalyst
JP2896912B2 (en) Catalyst regeneration method
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
WO2010073350A1 (en) Nox absorbent, method for production of the same, and method for removal of nox

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees