JP4172828B2 - NOx removal agent and method for removing nitrogen oxides in exhaust gas - Google Patents

NOx removal agent and method for removing nitrogen oxides in exhaust gas Download PDF

Info

Publication number
JP4172828B2
JP4172828B2 JP19422996A JP19422996A JP4172828B2 JP 4172828 B2 JP4172828 B2 JP 4172828B2 JP 19422996 A JP19422996 A JP 19422996A JP 19422996 A JP19422996 A JP 19422996A JP 4172828 B2 JP4172828 B2 JP 4172828B2
Authority
JP
Japan
Prior art keywords
denitration
exhaust gas
agent
reducing agent
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19422996A
Other languages
Japanese (ja)
Other versions
JPH1033947A (en
Inventor
琢弥 畑岸
康志 今井
政道 倉元
義彦 浅野
達利 田村
正彦 家田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP19422996A priority Critical patent/JP4172828B2/en
Publication of JPH1033947A publication Critical patent/JPH1033947A/en
Application granted granted Critical
Publication of JP4172828B2 publication Critical patent/JP4172828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関等における排気ガス中に含まれている窒素酸化物(NOX)を除去して浄化する方法に関するものである。
【0002】
【従来の技術】
従来からNOX処理技術は種々の分野で必要とされており、例えばディーゼル機関等の排気ガス中に存在するNOXは人体に有害であり、空中に放散されると酸性雨の発生原因ともなるので、これら排気ガス中のNOXを効果的に除去することが望まれている。
【0003】
一般に上記NOXの処理方法は排煙脱硝技術として実用化されている。この排煙脱硝技術は乾式法と湿式法に大別されるが、現在では乾式法の一つである選択接触還元法が技術的に先行しており、有力な脱硝方法として注目されている。
【0004】
上記選択接触還元法の主反応は以下の通りである。
【0005】
4NO+4NH3+O2 → 4N2+6H2O・・・・・・・・・・・・・(1)
この反応は還元剤としてアンモニア,炭化水素,一酸化炭素が使用され、特にアンモニアは酸素が共存しても選択的にNOXを除去するため、ディーゼル機関等の排気ガス中に含まれているNOXの除去に用いて有効である。この反応は触媒としてチタニウム酸化物(TiO2)を主成分として、バナジウム(V),モリブデン(Mo),タングステン(W)等の酸化物とか複塩を含有する触媒が使用される。この中でもV25/TiO2系触媒は、活性,選択性,耐久性の面で有効であり、NOXのみならずSOXダストの含有量の多い排気ガス中での2年以上の運転実績がある。
【0006】
【発明が解決しようとする課題】
上記の選択接触還元法は簡単なシステムでNOXを処理することができるとともに高脱硝率が得られ、しかもNOXを無害なN2ガスとH2Oに分解することにより廃液処理を不要とするという利点を有している反面で、還元触媒が排気ガス中のNOX以外の成分で劣化してしまうことがあるため、触媒交換を必要とするという課題がある。特に高価な貴金属系の触媒は経済的な見地から使用できないケースがあり、その中でもV25/TiO2系触媒のV25は可溶性で且つ毒性が強いため、使用後の触媒の処分に関して特別な処理をしない限り環境汚染をもたらす虞れがある。
【0007】
近年は省エネルギー化によりコ・ジェネレーションシステムが普及しており、特に内燃機関であるガスエンジンとかディーゼルエンジンは酸素過剰下で燃焼する必要があるため、排気ガス中には13%程度の過剰の酸素が含まれている。このような過剰酸素の影響でガソリンエンジンの排気ガス浄化触媒である三元触媒は酸化反応による触媒金属の劣化を生じることがあり、内燃機関のNOXを完全に除去することは困難である。
【0008】
還元剤としてアンモニアを用いた場合、このアンモニアは危険物に指定されているため、高圧の液化ガスでの運搬と貯蔵は取り扱い性に問題点がある。貴金属系とか遷移金属系の触媒を使用した場合、これら触媒の比重が大きいために実際に取り扱う上で不利であり、高温下では触媒成分の焼結が進行する反面で、低温下ではアンモニウムが水分あるいはSOXと反応して硫酸アンモニウム等の塩が触媒表面に生成してしまい、脱硝率が低下するという問題がある。そのため使用温度の範囲は320℃〜450℃に制限されているのが現状である。
【0009】
他の脱硝法として直接分解法とか炭化水素系の還元剤を用いた選択還元脱硝法も研究されており、例えば近年ではCu−ZSM−5ゼオライトとかペロブスカイト型複合化合物等に遷移金属、アルカリ土類金属といった金属を担持あるいはイオン交換したものを触媒とし、還元剤を用いてNOXをN2に還元させる反応が見いだされているが、この反応は反応機構が詳細に解明されていないこともあって温度とか触媒(金属)、還元剤等の組み合わせにより活性が大きく変化する難点がある。最も高活性なCu−ZSM−5ゼオライトでも排気ガス中のSOXあるいはO2で触媒性能が劣化することがあり、実用上での障害となっている。
【0010】
還元剤として危険なアンモニアに代えて尿素を使用する方法もあり、触媒担体としてTiO2とV25,WO3,MoO3等が用いられるが、特にTiO2系触媒は排気ガス中に含まれるSOXとの反応性が低く、劣化しにくいため、触媒担体として適している。しかしTiO2のV25成分は可溶性で毒性を持つため、触媒の処理に問題がある。
【0011】
本発明は上記に鑑みてなされたものであって、最適な触媒の担体を選択し、この触媒の担体に担持させる金属と還元剤を選択することにより、脱硝率を高めた排気ガス中の窒素酸化物の除去方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明は上記目的を達成するために、還元剤としてアンモニア水または尿素を用い、前記還元剤の共存下で窒素酸化物(NOx)含有排気ガスと接触反応させることにより排気ガス中の窒素酸化物(NOx)の除去を行う脱硝剤において、前記脱硝剤は、主原料としてのNH4−ZSM−5ゼオライトをハニカム状に成形,焼成してH型のH−ZSM−5とした触媒担体に、イオン交換率を5〜10(%)としてイオン交換法によってコバルトを担持して形成したことを特徴とする脱硝剤を提供する。
【0013】
また、還元剤として尿素を用い、前記還元剤の共存下で窒素酸化物(NOx)含有排気ガスと接触反応させることにより排気ガス中の窒素酸化物(NOx)の除去を行う脱硝剤において、前記脱硝剤は、主原料としてのNH 4 −ZSM−5ゼオライトをハニカム状に成形し、コバルトイオンを含む溶液に浸漬させて水素とコバルトとのイオン交換を行った後、当該NH 4 −ZSM−5ゼオライトを焼成して成り、前記脱硝剤にはコバルトが0.1〜1.0wt%含まれていることを特徴とする脱硝剤を提供する。
【0015】
かかる排気ガス中の窒素酸化物の除去方法によれば、主原料としてZSM−5ゼオライトを用いるとともにコバルトのイオン交換率は5〜10(%)にすることによって従来のNaYもしくはNaA型ゼオライトを用いた脱硝剤に比して脱硝率が格段に向上しており、又、ZSM−5ゼオライトを用いて還元剤としてアンモニア水または尿素を用いた場合、還元剤によって物質の分解特性及び脱硝率は異なるが、何れの還元剤を用いても85(%)以上の高い脱硝率が得られる。又、イオン交換を焼成前に行うことにより、焼成温度によってNH4型ゼオライトがN型ゼオライトに変化して定度が向上する。
【0016】
【発明の実施の形態】
以下本発明にかかる排気ガス中の窒素酸化物の除去方法の具体的な実施例を説明する。本実施例では先ず触媒と還元剤を用いて窒素酸化物(NOX)を窒素ガス(N2)に還元する反応において、触媒の担体として軽量,安価で且つ毒性を持つゼオライトを使用する。
【0017】
一般にゼオライトはアルミニウムとシリカで構成され、X(M2+,M+1)O・Al23・ySiO2・zH2Oで示される結晶性のアルミナシリケートであり、3〜9Åの微細な細孔を有する結晶であるが、アルミニウムとシリカの比率を変えることによってY型とかX型,A型モルデナイト型,ZSM−5型等の種々の構造を有するゼオライトとなる。
【0018】
中でもZSM−5型ゼオライトは化学的に安定したゼオライトとして知られている。本実施例ではZSM−5型ゼオライトを主原料として焼成とハニカム成形を行って触媒担体とし、この触媒担体にイオン交換法により金属触媒を担持させる方法を検討した。
【0019】
本実施例を適用した実験では、触媒担体の主原料としてNH4−ZSM−5ゼオライト(組成:SiO2/Al23=39.5)を用いて、上記主原料をハニカム状に成形,焼成した。上記主原料をハニカム状に成形する際に700℃〜800℃の高温焼成工程が入るため、主原料中のNH4 が抜けてH型のH−ZSM−5となる。
NH4−ZSM−5 → NH3(g)+H−ZSM−5
このH−ZSM−5に触媒として活性金属のコバルトCoをイオン交換法により担持させる。イオン交換率は5%,つまりHの量の5%をコバルトに置き換える。還元剤としてアンモニア水、尿素、炭酸アンモニウム、メラミンを用いた。
【0020】
コバルトCoのイオン交換方法としてはCoイオンを含む溶液にゼオライトを浸漬し、溶液温度60℃で数時間撹拌する。Coイオンを含む塩類は酢酸塩、硝酸塩等が挙げられる。
【0021】
実験条件を以下に記す。
(1)反応温度:400℃
(2)サンプルガス:NO,SO2(濃度860ppm),酸素(濃度13%),残部窒素ガス(6.7l/min)
(3)還元剤:アンモニア水(NH3),サンプルガス中にNH3ガスとして860ppm
(4)ハニカム体積:6.8×10-5(m3
(5)比較例:ゼオライト原料としてNaY型ゼオライト、NaA型ゼオライトを用いる。
【0022】
本実施例と比較例による脱硝剤に用いて、図1に示す装置により脱硝効率を求めた。図中の1は常圧固定床型の反応槽、2はガス導入管であり、反応槽1の内部には脱硝剤3,3が充填され、反応槽1の入口と出口には温度測定用の熱電対13,14が配備されている。この反応槽1は保温ヒータ4によって所定温度に加温,保持されており、該反応槽1に近接するガス導入管2の周囲にも予熱ヒータ5が配備されている。
【0023】
6は還元剤溶液が充填されたタンク、7は還元剤を反応槽1に送り込むためのポンプ、8は還元剤溶液を反応槽1内に注入するノズルである。又、上記ガス導入管2に供給するサンプルガスMを調製するため、NOガスボンベ9,N2ガスボンベ10,SO2ガスボンベ11,O2ガスボンベ12を用意し、これらの混合ガスを作成して図外の流量調節バルブを介してガス導入管2にサンプルガスMが流入される。
【0024】
実験に際して、保温ヒータ4によって反応槽1内の温度を400℃に保持し、サンプルガスMを予熱ヒータ5によって予熱しながら6.7(l/min)で反応槽1内に流し、同時にポンプ7を起動してタンク6に充填された還元剤としてのアンモニア水をサンプルガス中にNH3ガスとして860ppmの割合となるようにして反応槽1に注入した。注入量は還元剤と反応槽1入口のNOの組成比が1:1になるように調整した。
【0025】
図2は反応槽1内部を示す断面図であり、ステンレス鋼で成る反応槽1の内壁面にシール材1aが配置され、このシール材1aの内方にハニカム状に成形された脱硝剤3,3が積層されている。
【0026】
反応槽1を通過したサンプルガスMと反応槽1を通過しないサンプルガスM、即ち反応前後における各サンプルガスMのNOX濃度と酸素濃度とを図示していないNOX・O2分析計もしくはガスクロマトグラフィーにより測定した。
【0027】
そして反応前のサンプルガスMのNOX濃度をC0(ppm)とし、反応後のNOXの濃度をC1(ppm)として脱硝率を次式によって求めた。
【0028】
脱硝率(%)={C0(ppm)−C1(ppm)}/{C0(ppm)}×100・・・・・(2)
表1は上記実験により、ゼオライト原料としてNaY型ゼオライト、NaA型ゼオライト及び本実施例によるZSM−5ゼオライトを用いた場合の脱硝率(%)を示している。
【0029】
【表1】

Figure 0004172828
【0030】
表1の結果からNaY型ゼオライト又はNaA型ゼオライトを用いた場合の脱硝率35%,20%に較べて、ZSM−5ゼオライトを用いた場合の脱硝率90%が格段に向上していることが分かる。
【0031】
次に主原料としてのNH4−ZSM−5ゼオライトを成形,焼成してH型のH−ZSM−5とし、イオン交換率を変えて触媒としてのコバルトCoを担持して同一の条件で実験を試みた。表2はイオン交換率を0,5,10,30,100(%)とした時の脱硝率(%)を示している。
【0032】
【表2】
Figure 0004172828
【0033】
表2によれば、コバルトCoのイオン交換率が5%乃至10%で最も脱硝率が高いことが判明した。但しコバルトCoの交換率が30(%)を超えると、逆に脱硝率は低下する傾向を示した。これは還元剤であるNH3はゼオライト中のH+(プロトン)と選択的に吸着するため、H+をCo2+に交換していくと触媒表面へのNOの吸着量が増大し、NH3の吸着量が低下するためと考えられる。従ってコバルトCoのイオン交換率は5〜30(%)が適当である。
【0034】
次にコバルトのイオン交換率5%としたCo−ZSM−5ゼオライトを用いて、還元剤としてアンモニア水、尿素、炭酸アンモニウム、メラミンを用いて同一の条件で実験を試みた。実験は夫々の還元剤に含まれるNH3の量をサンプルガス中で860ppmになるようにした。その結果を表3に示す。
【0035】
【表3】
Figure 0004172828
【0036】
還元剤によって物質の分解特性及び脱硝率は異なるが、何れの還元剤を用いても85(%)以上の脱硝率が得られた。
【0037】
図3は本実施例にかかるCo−ZSM−5ゼオライトとCo−NaYゼオライトを主原料として用いた脱硝剤にNOを吸着させて、昇温脱離法でNOを脱離して排出されたNOの量をTCD検出器で検出した際の温度と脱離速度の関係を示すグラフである。▲1▼に示すCo−ZSM−5ゼオライトを用いた脱硝剤には多量のNOが吸着されており、▲2▼に示したCo−NaYゼオライトにはほとんどNOが吸着されていないことが分かる。
【0038】
次に本実施例で採用した各種脱硝剤の製作方法を比較例とともに説明する。
【0039】
〔脱硝剤1〕
シリカ/アルミナ比が23.3のNH4型ZSM−ゼオライト粉末を用いて成形と焼成によりハニカム状触媒担体を製作したが、コバルトCoのイオン交換は焼成過程前に実施した。イオン交換は焼成後に行うこともできるが、焼成温度によってNH4型ゼオライトがN型ゼオライトに変化し、安定度が向上するので焼成前に行うことが好ましい。
【0040】
得られたハニカム状触媒担体の1個の重量は250gであり、これを0.1M濃度のCo(CH3COO)2・4H2O水溶液4リットルに浸漬し、60℃で12時間撹拌してイオン交換を行った。イオン交換操作終了後に担体を4リットルの純水で洗浄し、150℃で8時間乾燥した。乾燥後700℃で5時間焼成し、ハニカム状脱硝剤を得た。
【0041】
得られた脱硝剤の元素分析の結果、Coが1.0重量%含まれていることが判明した。
【0042】
〔脱硝剤2〕
上記と同一のハニカム状触媒担体に対するCoのイオン交換時間を60℃で2時間とした。他の操作は同一とした。得られた脱硝剤の元素分析の結果、Coが0.1重量%含まれており、イオン交換時間によってイオン交換量の調節が可能であることが判明した。
【0043】
参考例1
上記と同一のハニカム状触媒担体に対するCoのイオン交換時間を60℃で24時間とした。他の操作は同一とした。得られた脱硝剤の元素分析の結果、Coが2.0重量%含まれていた。
【0044】
〔比較例1〕
上記と同一のハニカム状触媒担体にイオン交換を行わずに4リットルの純水で洗浄し、150℃で8時間乾燥した。乾燥後700℃で5時間焼成したH型ゼオライトを得た。このH型ゼオライトを用いて実施例1と同一の操作により脱硝剤を作成した。
【0045】
〔比較例2〕
上記と同一のハニカム状触媒担体に銅Cuのイオン交換を行った。具体的には触媒担体を0.1M濃度のCu(CH3COO)2・4H2O水溶液4リットルに浸漬し、60℃で12時間撹拌してイオン交換を行った。イオン交換操作終了後に担体を4リットルの純水で洗浄し、150℃で8時間乾燥した。乾燥後700℃で5時間焼成し、ハニカム状脱硝剤を得た。
【0046】
得られた脱硝剤の元素分析の結果、Cuが0.9重量%含まれていることが判明した。
【0047】
〔脱硝剤の性能評価〕
上記の脱硝剤1、脱硝剤2、参考例1、比較例1、比較例2の各々の脱硝剤を前記図1に示した常圧固定床型の反応槽1内に充填し、空気の流通下で約1時間の前処理を行ってから表4に示す混合ガスを流通して還元剤として尿素をNO/尿素=0.5の比率で添加し、反応温度400〜500℃で脱硝を行い、脱硝特性として定常状態に戻した時点でのNOの浄化率を測定した結果を表5に示す。
【0048】
【表4】
Figure 0004172828
【0049】
【表5】
Figure 0004172828
【0050】
表5によれば、本実施例にかかる脱硝剤1,2のNO浄化率は93%,95%,と良好であり、Coが0.1〜1.0重量%含まれている脱硝剤に還元剤として尿素を用いることによって良好な脱硝特性が得られ、比較例1のCoをイオン交換しない脱硝剤のNO浄化率30%と較べて明らかに差異があった。尚、参考例1はCoが2.0重量%含まれているためNO浄化率は85%とやや低下した。比較例2のCuを用いてイオン交換した脱硝剤はNO浄化率が参考例1と同一の85%であり、やや良好な結果が得られたので、Coと同様にCuをイオン交換した脱硝剤の実用化の可能性を示した。
【0051】
次に表6により脱硝剤1,2、参考例1、比較例1の各々の脱硝剤を前記反応槽1内に充填し、前記と同様な空気の流通下で約1時間の前処理を行ってから表4に示す混合ガスを流通して還元剤として軽油を軽油/NO=0.5の比率で添加し、反応温度350〜450℃で脱硝を行い、脱硝特性として反応温度が350℃,400℃,450℃でのNOの浄化率を測定した結果を示す。
【0052】
【表6】
Figure 0004172828
【0053】
表6によれば本実施例にかかる脱硝剤1,2、参考例1に還元剤として軽油を用いることによって各反応温度条件下で良好な脱硝特性が得られ、比較例1のCoをイオン交換しない脱硝剤のNO浄化率33%,40%,35%と較べて明らかに差異があった。但し、参考例1はCoが2.0重量%含まれているため脱硝剤1,2と較べてNO浄化率はやや低下した。
【0054】
次に前記比較例1の結果に鑑みて、コバルトCoに代えて銅Cuをイオン交換した参考例2,3,4を作成した。
【0055】
参考例2
シリカ/アルミナ比が23.3のNH4型ZSM−ゼオライト粉末を用いて成形と焼成によりハニカム状触媒担体を製作した。得られたハニカム状触媒担体の1個の重量は250gであり、これを0.1M濃度のCu(CH3COO)2・4H2O水溶液4リットルに浸漬し、60℃で12時間撹拌してイオン交換を行った。イオン交換操作終了後に担体を4リットルの純水で洗浄し、150℃で8時間乾燥した。乾燥後700℃で5時間焼成し、ハニカム状脱硝剤を得た。
【0056】
得られた脱硝剤の元素分析の結果、Cuが0.9重量%含まれていることが判明した。
【0057】
参考例3
上記と同一のハニカム状触媒担体に対するCuのイオン交換時間を、60℃で1.5時間とし、他の操作は同一とした。得られた脱硝剤の元素分析の結果、Cuが0.1重量%含まれている。
【0058】
参考例4
上記と同一のハニカム状触媒担体に対するCuのイオン交換時間を60℃で18時間とした。他の操作は同一とした。得られた脱硝剤の元素分析の結果、Cuが1.5重量%含まれていた。
【0059】
〔比較例3〕
上記と同一のハニカム状触媒担体にNiのイオン交換を行った。具体的には触媒担体を0.1M濃度のNi(CH3COO)2・4H2O水溶液4リットルに浸漬し、60℃で10時間撹拌してイオン交換を行った。イオン交換操作終了後に担体を4リットルの純水で洗浄し、150℃で8時間乾燥した。乾燥後700℃で5時間焼成し、ハニカム状脱硝剤を得た。
【0060】
得られた脱硝剤の元素分析の結果、Niが1.2重量%含まれていることが判明した。
次に表7により参考例2,3,4、比較例3の各々の脱硝剤を前記反応槽1内に充填し、前記と同様な空気の流通下で400℃約1時間の前処理を行ってから表4に示す混合ガスを流通して還元剤として軽油を軽油/NO=0.8の比率で添加して反応温度350〜450℃で脱硝を行い、脱硝特性として反応温度が350℃,400℃,450℃でのNOの浄化率を測定した結果を示す。
【0061】
【表7】
Figure 0004172828
【0062】
表7によれば参考例2,3,4に係る脱硝剤に還元剤として軽油を用いることによって各反応温度条件下で良好な脱硝特性が得られ、比較例1,3の脱硝剤のNO浄化率と較べて明らかに差異があった。
【0063】
この測定においてSO2の濃度を0〜1000ppmまで変化させてNOの浄化率を測定した結果を表8に示す。尚、SO2の連続通気時間は500時間とした。
【0064】
【表8】
Figure 0004172828
【0065】
表8によれば、SO2濃度が0ppmであればほぼ問題なく、SO2濃度が1000ppmになると参考例2,3に係る脱硝剤は良好な脱硝特性を示したが参考例4に係る脱硝剤のNOの浄化率が40%とやや低下した。
【0066】
【発明の効果】
以上詳細に説明したように、本発明によれば主原料としてZSM−5ゼオライトを用いて触媒の担体を形成するとともに、この触媒担体に担持するコバルトのイオン交換率は5〜10(%)にすることによって従来の脱硝剤に比して脱硝率が格段に向上し、還元剤としてアンモニア水または尿素を用いた場合でも還元剤によって物質の分解特性及び脱硝率は異なるものの何れの還元剤を用いても85(%)以上の高い脱硝率を得ることができる。
【0067】
又、還元触媒が排気ガス中のNOX以外の成分、例えばSOXあるいはO2で触媒性能が劣化することがないため頻繁な触媒交換は不要であり、還元剤としてアンモニア水または尿素が利用可能であるため、これらの還元剤の取扱いに格別の注意は要求されないという利点がある。更に還元触媒として高価な貴金属系の触媒を使用することがないので、経済的な見地からも有効である。
【0068】
特に本発明によれば、内燃機関の排気ガスの処理に際して最適な触媒の担体を選択し、この触媒の担体に担持させる活性金属と還元剤を選択することにより排気ガス中の脱硝率を格段に高めることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明にかかる脱硝方法を用いて脱硝効率を求める実験装置の構成を示す概要図。
【図2】図1の要部縦断面図。
【図3】本実施例と従来例で用いた脱硝剤に吸着したNOを脱離器で検出した際の温度と脱離速度の関係を示すグラフ。
【符号の説明】
1…反応槽
2…ガス導入管
3…脱硝剤
4…保温ヒータ
5…予熱ヒータ
6…(還元剤の)タンク
8…(還元剤の)ノズル
9…NOガスボンベ
10…N2ガスボンベ
11…SO2ガスボンベ
12…O2ガスボンベ
13,14…熱電対[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing and purifying nitrogen oxide (NO x ) contained in exhaust gas in an internal combustion engine or the like.
[0002]
[Prior art]
NO X processing techniques conventionally are needed in various fields, for example, NO X present in the exhaust gas such as diesel engines is harmful to the human body, comprising also when it is released into the air and cause acid rain Therefore, it is desired to effectively remove NO x in these exhaust gases.
[0003]
In general, the NO x treatment method has been put to practical use as a flue gas denitration technique. The flue gas denitration technology is roughly divided into a dry method and a wet method. At present, the selective catalytic reduction method, which is one of the dry methods, is technically advanced, and has attracted attention as a powerful denitration method.
[0004]
The main reaction of the selective catalytic reduction method is as follows.
[0005]
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
In this reaction, ammonia, hydrocarbons, and carbon monoxide are used as a reducing agent. In particular, ammonia selectively removes NO x even in the presence of oxygen, so NO contained in exhaust gas from diesel engines and the like. Effective for removing X. In this reaction, a catalyst containing titanium oxide (TiO 2 ) as a main component and an oxide such as vanadium (V), molybdenum (Mo), tungsten (W) or a double salt is used. Among these, the V 2 O 5 / TiO 2 catalyst is effective in terms of activity, selectivity, and durability, and has been operated for 2 years or more in exhaust gas containing a large amount of SO X dust as well as NO X. There is a track record.
[0006]
[Problems to be solved by the invention]
The above selective catalytic reduction method can treat NO x with a simple system and obtain a high NOx removal rate, and also eliminates waste liquid treatment by decomposing NO x into harmless N 2 gas and H 2 O. However, there is a problem that the catalyst needs to be replaced because the reduction catalyst may be deteriorated by components other than NO x in the exhaust gas. Particularly expensive noble metal catalysts there are cases that can not be used from an economic point of view, since and virulent in V 2 O 5 is soluble in V 2 O 5 / TiO 2 catalyst Among them, the disposal of the catalyst after use Unless special treatment is performed, there is a risk of environmental pollution.
[0007]
In recent years, cogeneration systems have become widespread due to energy savings, especially gas engines and diesel engines that are internal combustion engines need to burn under excess oxygen, so there is about 13% excess oxygen in the exhaust gas. include. The three-way catalyst, which is an exhaust gas purification catalyst of a gasoline engine due to the influence of such excess oxygen, may cause deterioration of the catalyst metal due to an oxidation reaction, and it is difficult to completely remove NO x of the internal combustion engine.
[0008]
When ammonia is used as the reducing agent, since this ammonia is designated as a hazardous material, transportation and storage with a high-pressure liquefied gas have problems in handling. When noble metal or transition metal catalysts are used, the specific gravity of these catalysts is large, which is disadvantageous in actual handling. Sintering of the catalyst components proceeds at high temperatures, but ammonium is moisture at low temperatures. or would be salts such as ammonium sulfate reacts with SO X is produced on the catalyst surface, the denitration rate is lowered. Therefore, the current temperature range is limited to 320 ° C to 450 ° C.
[0009]
As other denitration methods, a direct decomposition method or a selective reduction denitration method using a hydrocarbon-based reducing agent has been studied. For example, in recent years, transition metals and alkaline earths such as Cu-ZSM-5 zeolite and perovskite type composite compounds have been studied. those metal such metal bearing or ion exchange as a catalyst, the reaction of reducing the nO X with a reducing agent to N 2 has been found, this reaction was also the reaction mechanism has not been elucidated in detail Therefore, there is a difficulty that the activity varies greatly depending on the combination of temperature, catalyst (metal), reducing agent and the like. Most also highly active Cu-ZSM-5 zeolite may catalyst performance deteriorates with SO X or O 2 in the exhaust gas, which is an obstacle in practical use.
[0010]
There is also a method in which urea is used instead of dangerous ammonia as a reducing agent, and TiO 2 and V 2 O 5 , WO 3 , MoO 3, etc. are used as a catalyst carrier. In particular, a TiO 2 catalyst is included in the exhaust gas. It is suitable as a catalyst carrier because it has low reactivity with SO x and hardly deteriorates. However, since the V 2 O 5 component of TiO 2 is soluble and toxic, there is a problem in the treatment of the catalyst.
[0011]
The present invention has been made in view of the above, and by selecting an optimal catalyst carrier and selecting a metal and a reducing agent to be supported on the catalyst carrier, nitrogen in the exhaust gas having an increased denitration rate. An object of the present invention is to provide a method for removing oxides.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses ammonia water or urea as a reducing agent, and in the presence of the reducing agent, the nitrogen oxide in the exhaust gas is brought into contact with the exhaust gas containing nitrogen oxide (NOx). In the denitration agent that removes (NOx), the denitration agent is formed by ionizing NH 4 -ZSM-5 zeolite as a main raw material into a honeycomb shape and calcining to form H-type H-ZSM-5. Provided is a denitration agent characterized by being formed by supporting cobalt by an ion exchange method at an exchange rate of 5 to 10 (%).
[0013]
Further, in the denitration agent that removes nitrogen oxide (NOx) in the exhaust gas by using urea as a reducing agent and performing a contact reaction with the exhaust gas containing nitrogen oxide (NOx) in the presence of the reducing agent, The denitration agent is formed by forming NH 4 —ZSM-5 zeolite as a main raw material into a honeycomb shape and immersing it in a solution containing cobalt ions to perform ion exchange between hydrogen and cobalt, and then the NH 4 —ZSM-5. Provided is a denitration agent characterized by being formed by firing zeolite, wherein the denitration agent contains 0.1 to 1.0 wt% of cobalt.
[0015]
According to such a method for removing nitrogen oxides from exhaust gas, conventional NaY or NaA type zeolite is used by using ZSM-5 zeolite as a main raw material and setting the ion exchange rate of cobalt to 5 to 10 (%) . The denitration rate is remarkably improved compared to the conventional denitration agent. Also, when ZSM-5 zeolite is used and ammonia water or urea is used as the reducing agent, the decomposition characteristics and denitration rate of the substances differ depending on the reducing agent. However, a high denitration rate of 85% or more can be obtained with any reducing agent. Further, by performing ion exchange before calcination, NH 4 type zeolite is changed to N type zeolite depending on the calcination temperature, and the degree of stability is improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Specific examples of the method for removing nitrogen oxides in exhaust gas according to the present invention will be described below. In this embodiment, first, a light, inexpensive, and toxic zeolite is used as a catalyst carrier in a reaction of reducing nitrogen oxide (NO x ) to nitrogen gas (N 2 ) using a catalyst and a reducing agent.
[0017]
Generally the zeolite is composed of aluminum and silica, X (M 2+, M +1 ) is a crystalline alumina silicate represented by O · Al 2 O 3 · ySiO 2 · zH 2 O, fine of 3~9Å Although it is a crystal having pores, it becomes a zeolite having various structures such as Y type, X type, A type mordenite type, ZSM-5 type, etc. by changing the ratio of aluminum and silica.
[0018]
Among these, ZSM-5 type zeolite is known as a chemically stable zeolite. In this example, a method was examined in which a ZSM-5 type zeolite was used as a main raw material and the catalyst carrier was fired and formed into a honeycomb, and a metal catalyst was supported on the catalyst carrier by an ion exchange method.
[0019]
In an experiment in which this example was applied, NH 4 —ZSM-5 zeolite (composition: SiO 2 / Al 2 O 3 = 39.5) was used as the main raw material of the catalyst carrier, and the main raw material was formed into a honeycomb shape. Baked. When the main raw material is formed into a honeycomb, a high-temperature firing step of 700 ° C. to 800 ° C. is performed, so that NH 4 in the main raw material is released to form H-type H-ZSM-5.
NH 4 -ZSM-5 → NH 3 (g) + H-ZSM-5
The H-ZSM-5 is loaded with an active metal cobalt Co as a catalyst by an ion exchange method. The ion exchange rate is 5%, that is, 5% of the amount of H is replaced with cobalt. Ammonia water, urea, ammonium carbonate, and melamine were used as the reducing agent.
[0020]
As an ion exchange method for cobalt Co, zeolite is immersed in a solution containing Co ions and stirred at a solution temperature of 60 ° C. for several hours. Examples of salts containing Co ions include acetates and nitrates.
[0021]
The experimental conditions are described below.
(1) Reaction temperature: 400 ° C
(2) Sample gas: NO, SO 2 (concentration 860 ppm), oxygen (concentration 13%), remaining nitrogen gas (6.7 l / min)
(3) Reducing agent: ammonia water (NH 3 ), 860 ppm as NH 3 gas in the sample gas
(4) Honeycomb volume: 6.8 × 10 −5 (m 3 )
(5) Comparative example: NaY-type zeolite and NaA-type zeolite are used as zeolite raw materials.
[0022]
Using the denitration agent according to the present example and the comparative example, the denitration efficiency was obtained by the apparatus shown in FIG. In the figure, 1 is an atmospheric pressure fixed bed type reaction tank, 2 is a gas introduction pipe, the inside of the reaction tank 1 is filled with denitration agents 3 and 3, and the reaction tank 1 has inlet and outlet for temperature measurement. Thermocouples 13 and 14 are provided. The reaction tank 1 is heated and maintained at a predetermined temperature by a heat retaining heater 4, and a preheating heater 5 is also provided around the gas introduction pipe 2 adjacent to the reaction tank 1.
[0023]
6 is a tank filled with a reducing agent solution, 7 is a pump for feeding the reducing agent into the reaction tank 1, and 8 is a nozzle for injecting the reducing agent solution into the reaction tank 1. Further, in order to prepare the sample gas M to be supplied to the gas introduction pipe 2, a NO gas cylinder 9, an N 2 gas cylinder 10, an SO 2 gas cylinder 11, and an O 2 gas cylinder 12 are prepared, and these mixed gases are prepared and not shown. The sample gas M is introduced into the gas introduction pipe 2 through the flow rate adjusting valve.
[0024]
During the experiment, the temperature in the reaction vessel 1 is maintained at 400 ° C. by the heat retaining heater 4, and the sample gas M is flowed into the reaction vessel 1 at 6.7 (l / min) while preheating by the preheating heater 5, and at the same time the pump 7 Then, ammonia water as a reducing agent filled in the tank 6 was injected into the reaction tank 1 as NH 3 gas in the sample gas so as to have a ratio of 860 ppm. The injection amount was adjusted so that the composition ratio of the reducing agent and NO at the inlet of the reaction vessel 1 was 1: 1.
[0025]
FIG. 2 is a cross-sectional view showing the inside of the reaction tank 1, in which a sealing material 1a is arranged on the inner wall surface of the reaction tank 1 made of stainless steel, and a denitration agent 3, which is formed in a honeycomb shape inside the sealing material 1a. 3 are stacked.
[0026]
A sample gas M that has passed through the reaction tank 1 and a sample gas M that has not passed through the reaction tank 1, that is, a NO x / O 2 analyzer or gas that does not show the NO x concentration and oxygen concentration of each sample gas M before and after the reaction. Measured by chromatography.
[0027]
Then the concentration of NO X sample gas M before reaction and C 0 (ppm), the concentration of the NO X after the reaction was determined denitrification rate by the following equation as C 1 (ppm).
[0028]
Denitration rate (%) = {C 0 (ppm) −C 1 (ppm)} / {C 0 (ppm)} × 100 (2)
Table 1 shows the denitration rate (%) when NaY-type zeolite, NaA-type zeolite and ZSM-5 zeolite according to this example were used as the zeolite raw material by the above experiment.
[0029]
[Table 1]
Figure 0004172828
[0030]
From the results in Table 1, it can be seen that the denitration rate of 90% when using ZSM-5 zeolite is markedly improved compared to the denitration rate of 35% and 20% when using NaY-type zeolite or NaA-type zeolite. I understand.
[0031]
Next, NH 4 -ZSM-5 zeolite as the main raw material is molded and calcined to form H-type H-ZSM-5, and cobalt Co as the catalyst is supported by changing the ion exchange rate, and the experiment is performed under the same conditions. Tried. Table 2 shows the denitration rate (%) when the ion exchange rate is 0, 5, 10, 30, and 100 (%).
[0032]
[Table 2]
Figure 0004172828
[0033]
According to Table 2, it was found that the denitration rate was highest when the ion exchange rate of cobalt Co was 5% to 10%. However, when the exchange rate of cobalt Co exceeded 30 (%), the denitration rate tended to decrease. This is because NH 3 as a reducing agent selectively adsorbs to H + (protons) in the zeolite, so when H + is exchanged for Co 2+ , the amount of NO adsorbed on the catalyst surface increases, and NH 3 This is probably because the adsorption amount of 3 is reduced. Therefore, the ion exchange rate of cobalt Co is suitably 5 to 30 (%).
[0034]
Next, an experiment was attempted under the same conditions using Co-ZSM-5 zeolite with a cobalt ion exchange rate of 5% and using ammonia water, urea, ammonium carbonate, and melamine as the reducing agent. In the experiment, the amount of NH 3 contained in each reducing agent was adjusted to 860 ppm in the sample gas. The results are shown in Table 3.
[0035]
[Table 3]
Figure 0004172828
[0036]
Although the decomposition characteristics and the denitration rate of the substances differ depending on the reducing agent, a denitration rate of 85 (%) or more was obtained with any reducing agent.
[0037]
FIG. 3 shows NO of adsorbed NO by a denitration agent using Co-ZSM-5 zeolite and Co-NaY zeolite as main raw materials according to the present embodiment, and desorbed NO by the temperature-programmed desorption method. It is a graph which shows the relationship between the temperature at the time of detecting quantity with a TCD detector, and a desorption rate. It can be seen that a large amount of NO is adsorbed on the denitration agent using Co-ZSM-5 zeolite shown in (1), and almost no NO is adsorbed on the Co-NaY zeolite shown in (2).
[0038]
Next, manufacturing methods of various denitration agents employed in this example will be described together with comparative examples.
[0039]
[Denitration agent 1]
A honeycomb catalyst carrier was fabricated by molding and firing using NH 4 type ZSM-zeolite powder having a silica / alumina ratio of 23.3, but cobalt Co ion exchange was performed before the firing process. Ion exchange can be performed after calcination, but NH 4 type zeolite is changed to N type zeolite depending on the calcination temperature, and stability is improved, so that it is preferably performed before calcination.
[0040]
The obtained honeycomb catalyst carrier weighed 250 g, and was immersed in 4 liters of a 0.1M concentration Co (CH 3 COO) 2 .4H 2 O aqueous solution and stirred at 60 ° C. for 12 hours. Ion exchange was performed. After completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying, it was fired at 700 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.
[0041]
As a result of elemental analysis of the obtained denitration agent, it was found that 1.0% by weight of Co was contained.
[0042]
[Denitration agent 2]
The Co ion exchange time for the same honeycomb-shaped catalyst carrier as described above was 2 hours at 60 ° C. Other operations were the same. As a result of elemental analysis of the obtained denitration agent, it was found that 0.1 wt% of Co was contained, and the ion exchange amount could be adjusted by the ion exchange time.
[0043]
[ Reference Example 1 ]
The Co ion exchange time for the same honeycomb-shaped catalyst carrier as described above was 24 hours at 60 ° C. Other operations were the same. As a result of elemental analysis of the obtained denitration agent, 2.0% by weight of Co was contained.
[0044]
[Comparative Example 1]
The same honeycomb catalyst carrier as described above was washed with 4 liters of pure water without performing ion exchange, and dried at 150 ° C. for 8 hours. After drying, an H-type zeolite calcined at 700 ° C. for 5 hours was obtained. A denitration agent was prepared by the same operation as in Example 1 using this H-type zeolite.
[0045]
[Comparative Example 2]
Copper Cu ion exchange was performed on the same honeycomb-shaped catalyst carrier as described above. Specifically, the catalyst support was immersed in 4 liters of a 0.1 M concentration Cu (CH 3 COO) 2 .4H 2 O aqueous solution and stirred at 60 ° C. for 12 hours for ion exchange. After completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying, it was fired at 700 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.
[0046]
As a result of elemental analysis of the obtained denitration agent, it was found that 0.9% by weight of Cu was contained.
[0047]
[Performance evaluation of denitration agent]
Each of the denitration agents 1, 2, Reference Example 1, Comparative Example 1 and Comparative Example 2 is filled in the normal pressure fixed bed type reaction tank 1 shown in FIG. Under the pretreatment for about 1 hour, the mixed gas shown in Table 4 is circulated, urea is added as a reducing agent at a ratio of NO / urea = 0.5, and denitration is performed at a reaction temperature of 400 to 500 ° C. Table 5 shows the measurement results of the NO purification rate when the denitration characteristic is returned to the steady state.
[0048]
[Table 4]
Figure 0004172828
[0049]
[Table 5]
Figure 0004172828
[0050]
According to Table 5, the NO removal rates of the denitration agents 1 and 2 according to the present example are as good as 93% and 95%, and the denitration agent containing 0.1 to 1.0% by weight of Co. By using urea as the reducing agent, good denitration characteristics were obtained, and there was a clear difference compared with the NO removal rate of 30% of the denitration agent of Comparative Example 1 that does not ion-exchange Co. In addition, since the reference example 1 contained 2.0% by weight of Co, the NO purification rate slightly decreased to 85%. The denitration agent ion-exchanged using Cu of Comparative Example 2 had a NO purification rate of 85%, which was the same as that of Reference Example 1 , and a slightly good result was obtained. The possibility of practical use was shown.
[0051]
Next, according to Table 6, the denitration agents 1, 2, Reference Example 1 and Comparative Example 1 are filled in the reaction tank 1, and pretreatment is performed for about 1 hour under the same air flow as described above. After that, the gas mixture shown in Table 4 was circulated and light oil was added as a reducing agent at a ratio of light oil / NO = 0.5, denitration was performed at a reaction temperature of 350 to 450 ° C., and the reaction temperature was 350 ° C. The result of having measured the purification rate of NO in 400 degreeC and 450 degreeC is shown.
[0052]
[Table 6]
Figure 0004172828
[0053]
According to Table 6, by using the denitration agents 1 and 2 according to this example and light oil as the reducing agent in Reference Example 1 , good denitration characteristics can be obtained under each reaction temperature condition, and Co in Comparative Example 1 is ion-exchanged. There was a clear difference compared to NO removal rates of 33%, 40%, and 35% for NOx removal. However, since the reference example 1 contained 2.0% by weight of Co, the NO purification rate was slightly lowered as compared with the denitration agents 1 and 2.
[0054]
Next, in view of the results of Comparative Example 1, Reference Examples 2 , 3, and 4 were produced in which copper Cu was ion-exchanged instead of cobalt Co.
[0055]
[ Reference Example 2 ]
A honeycomb catalyst carrier was fabricated by molding and firing using NH 4 type ZSM-zeolite powder having a silica / alumina ratio of 23.3. The weight of one of the obtained honeycomb-shaped catalyst carriers is 250 g, and this is immersed in 4 liters of 0.1 M concentration Cu (CH 3 COO) 2 .4H 2 O aqueous solution and stirred at 60 ° C. for 12 hours. Ion exchange was performed. After completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying, it was fired at 700 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.
[0056]
As a result of elemental analysis of the obtained denitration agent, it was found that 0.9% by weight of Cu was contained.
[0057]
[ Reference Example 3 ]
The Cu ion exchange time for the same honeycomb catalyst carrier as described above was 1.5 hours at 60 ° C., and the other operations were the same. As a result of elemental analysis of the obtained denitration agent, 0.1% by weight of Cu is contained.
[0058]
[ Reference Example 4 ]
The Cu ion exchange time for the same honeycomb catalyst carrier as described above was 18 hours at 60 ° C. Other operations were the same. As a result of elemental analysis of the obtained denitration agent, Cu was contained by 1.5% by weight.
[0059]
[Comparative Example 3]
Ni ion exchange was performed on the same honeycomb-shaped catalyst carrier as described above. Specifically, the catalyst support was immersed in 4 liters of a 0.1 M Ni (CH 3 COO) 2 .4H 2 O aqueous solution and stirred at 60 ° C. for 10 hours for ion exchange. After completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying, it was fired at 700 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.
[0060]
As a result of elemental analysis of the obtained denitration agent, it was found that 1.2% by weight of Ni was contained.
Next, according to Table 7 , each of the denitration agents of Reference Examples 2, 3, 4 and Comparative Example 3 is filled in the reaction tank 1 and pre-treated at 400 ° C. for about 1 hour under the same air flow as described above. Then, the mixed gas shown in Table 4 was circulated, and light oil was added as a reducing agent at a ratio of light oil / NO = 0.8 and denitration was performed at a reaction temperature of 350 to 450 ° C. The result of having measured the purification rate of NO in 400 degreeC and 450 degreeC is shown.
[0061]
[Table 7]
Figure 0004172828
[0062]
According to Table 7, by using light oil as a reducing agent for the denitration agents according to Reference Examples 2, 3, and 4 , good denitration characteristics can be obtained under each reaction temperature condition, and NO purification of the denitration agents of Comparative Examples 1 and 3 is achieved. There was a clear difference compared to the rate.
[0063]
Table 8 shows the results of measuring the NO purification rate by changing the SO 2 concentration from 0 to 1000 ppm in this measurement. The continuous ventilation time of SO 2 was 500 hours.
[0064]
[Table 8]
Figure 0004172828
[0065]
According to Table 8, there is almost no problem when the SO 2 concentration is 0 ppm, and when the SO 2 concentration is 1000 ppm, the denitration agent according to Reference Examples 2 and 3 showed good denitration properties, but the denitration agent according to Reference Example 4 NO purification rate was slightly reduced to 40%.
[0066]
【The invention's effect】
As described above in detail, according to the present invention, a catalyst carrier is formed using ZSM-5 zeolite as the main raw material, and the ion exchange rate of cobalt supported on this catalyst carrier is 5-10 (%). As a result, the denitration rate is significantly improved compared to conventional denitration agents. Even when ammonia water or urea is used as the reducing agent, any reducing agent can be used, although the decomposition characteristics of the substance and the denitration rate differ depending on the reducing agent. However, a high denitration rate of 85 (%) or more can be obtained.
[0067]
In addition, since the reduction catalyst does not deteriorate the catalyst performance due to components other than NO x in the exhaust gas, such as SO x or O 2 , frequent catalyst replacement is unnecessary, and ammonia water or urea can be used as a reducing agent. Therefore, there is an advantage that no special attention is required for the handling of these reducing agents. Furthermore, since an expensive noble metal-based catalyst is not used as the reduction catalyst, it is effective from an economical viewpoint.
[0068]
In particular, according to the present invention, an optimum catalyst carrier is selected in the treatment of exhaust gas of an internal combustion engine, and the denitration rate in the exhaust gas is remarkably increased by selecting an active metal and a reducing agent supported on the catalyst carrier. The effect that it can raise is acquired.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of an experimental apparatus for obtaining denitration efficiency using a denitration method according to the present invention.
2 is a longitudinal sectional view of a main part of FIG.
FIG. 3 is a graph showing the relationship between the temperature and the desorption rate when NO adsorbed on the denitration agent used in this example and the conventional example is detected by a desorber.
[Explanation of symbols]
1 ... reactor 2 ... gas (reducing agent) inlet pipe 3 ... denitrating agent 4 ... insulation heater 5 ... preheater 6 ... (reducing agent) tank 8 ... nozzle 9 ... NO gas cylinder 10 ... N 2 gas cylinder 11 ... SO 2 Gas cylinder 12 ... O 2 gas cylinder 13,14 ... thermocouple

Claims (4)

還元剤としてアンモニア水または尿素を用い、前記還元剤の共存下で窒素酸化物(NOX)含有排気ガスと接触反応させることにより排気ガス中の窒素酸化物(NOX)の除去を行う脱硝剤において、
前記脱硝剤は、主原料としてのNH4−ZSM−5ゼオライトをハニカム状に成形,焼成してH型のH−ZSM−5とした触媒担体に、イオン交換率を5〜10(%)としてイオン交換法によってコバルトを担持して形成したことを特徴とする脱硝剤。
A denitration agent that removes nitrogen oxides (NO x ) in exhaust gas by using ammonia water or urea as a reducing agent and causing a catalytic reaction with exhaust gas containing nitrogen oxides (NO x ) in the presence of the reducing agent. In
The denitration agent is a catalyst carrier in which NH 4 —ZSM-5 zeolite as a main raw material is formed and fired into a honeycomb shape to form an H-type H-ZSM-5 with an ion exchange rate of 5 to 10 (%). A denitration agent formed by supporting cobalt by an ion exchange method.
還元剤として尿素を用い、前記還元剤の共存下で窒素酸化物(NOX)含有排気ガスと接触反応させることにより排気ガス中の窒素酸化物(NOX)の除去を行う脱硝剤において、
前記脱硝剤は、主原料としてのNH4−ZSM−5ゼオライトをハニカム状に成形し、コバルトイオンを含む溶液に浸漬させて水素とコバルトとのイオン交換を行った後、当該NH4−ZSM−5ゼオライトを焼成して成り、前記脱硝剤にはコバルトが0.1〜1.0wt%含まれていることを特徴とする脱硝剤。
In a denitration agent that uses urea as a reducing agent and removes nitrogen oxides (NO x ) in exhaust gas by contact reaction with exhaust gas containing nitrogen oxide (NO x ) in the presence of the reducing agent,
The denitration agent, after the main raw material as NH 4 -ZSM-5 zeolite was formed into a honeycomb shape, was subjected to ion exchange with hydrogen and cobalt by immersion in a solution containing cobalt ions, the NH 4 -ZSM- 5. A denitration agent obtained by firing 5 zeolite, wherein the denitration agent contains 0.1 to 1.0 wt% of cobalt.
請求項1に記載の脱硝剤と窒素酸化物(NOX)含有排気ガスとを、還元剤であるアンモニア水または尿素の共存下で接触反応させることによって、前記窒素酸化物を還元することを特徴とする排気ガス中の窒素酸化物の除去方法。The nitrogen oxide is reduced by causing the denitration agent according to claim 1 and the exhaust gas containing nitrogen oxide (NO x ) to contact with each other in the presence of ammonia water or urea as a reducing agent. A method for removing nitrogen oxides in exhaust gas. 請求項2に記載の脱硝剤と窒素酸化物(NOX)含有排気ガスとを、還元剤である尿素の共存下で、400〜500℃で加熱しながら接触反応させることによって、前記窒素酸化物を還元することを特徴とする排気ガス中の窒素酸化物の除去方法。A nitrogen oxide (NO x ) -containing exhaust gas according to claim 2 is contacted with the nitrogen oxide (NO x ) -containing exhaust gas while being heated at 400 to 500 ° C. in the presence of urea as a reducing agent. A method for removing nitrogen oxides in exhaust gas, characterized in that
JP19422996A 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas Expired - Lifetime JP4172828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19422996A JP4172828B2 (en) 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19422996A JP4172828B2 (en) 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas

Publications (2)

Publication Number Publication Date
JPH1033947A JPH1033947A (en) 1998-02-10
JP4172828B2 true JP4172828B2 (en) 2008-10-29

Family

ID=16321117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19422996A Expired - Lifetime JP4172828B2 (en) 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas

Country Status (1)

Country Link
JP (1) JP4172828B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2160497B1 (en) * 1999-06-17 2002-07-01 Univ Valencia Politecnica Catalyst removing nitrogen oxides in presence of oxygen comprises zeolite containing copper and e.g. transition metal ions, for exhaust gas cleaning
TWI389738B (en) 2005-09-09 2013-03-21 Taiyo Nippon Sanso Corp Cu-ZSM5 zeolite forming adsorbent, activation method thereof, temperature change type adsorption device and gas purification method
JP5071193B2 (en) * 2008-03-28 2012-11-14 東ソー株式会社 SCR catalyst and nitrogen oxide purification method using the same
JP5478308B2 (en) * 2010-03-23 2014-04-23 日本碍子株式会社 Filter and manufacturing method thereof
CN102151585B (en) * 2011-03-22 2012-11-07 华东理工大学 Melamine-supported denitration catalyst and preparation method thereof
WO2013146729A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Method for cleaning discharged combustion gas, and denitration catalyst
JP6326257B2 (en) 2014-03-24 2018-05-16 日立造船株式会社 Combustion exhaust gas purification catalyst and combustion exhaust gas purification method
CN105396614A (en) * 2015-10-28 2016-03-16 天津大学 Catalyst for removing nitric oxide by selective catalytic reduction by ammonia, and preparation method and application of catalyst
CN111921555B (en) * 2020-08-06 2023-05-26 大连海事大学 NO decomposition denitration catalyst and preparation method and application thereof
CN115487657A (en) * 2022-09-20 2022-12-20 陈少男 Solid denitration agent and preparation method and application thereof

Also Published As

Publication number Publication date
JPH1033947A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP5540421B2 (en) Method for removing nitrogen oxides in exhaust gas
JP5354903B2 (en) Catalyst and nitrogen oxide reduction method
Iwamoto Chapter II. 3 catalytic decomposition of nitrogen monoxide
KR100204257B1 (en) Heat treated activated carbon for denitration process for preparing the same method of denitration using the same and system of denitration using the same
EP1685891A1 (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
EP0661089A2 (en) Device and method for cleaning exhaust gas
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
JP4172828B2 (en) NOx removal agent and method for removing nitrogen oxides in exhaust gas
JP2006289211A (en) Ammonia oxidation catalyst
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JPH09313946A (en) Catalyst for cleaning nox-containing exhaust gas and cleaning method
JP2002295241A (en) Purification method of marine structure exhaust gas and purifying device
JPH06343868A (en) Production of denitrating agent
JPH09206600A (en) Catalyst for denitrification and denitrifying method using that catalyst
JPH08323148A (en) Denitrating apparatus
JPH08192056A (en) Denitrification method
JPH0724257A (en) Production of denitrating agent
JPH08141370A (en) Determination method for concentration of reducing agent in denitration device
JPH06269673A (en) Production of denitration agent and denitration method
JPH07116520A (en) Production of denitrating agent
JPH07155548A (en) Denitrification method
JPH0523546A (en) Waste gas cleaning catalyst and waste gas cleaning method using same
JPH09164321A (en) Denitrification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060203

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

EXPY Cancellation because of completion of term