JPH06269673A - Production of denitration agent and denitration method - Google Patents

Production of denitration agent and denitration method

Info

Publication number
JPH06269673A
JPH06269673A JP5058752A JP5875293A JPH06269673A JP H06269673 A JPH06269673 A JP H06269673A JP 5058752 A JP5058752 A JP 5058752A JP 5875293 A JP5875293 A JP 5875293A JP H06269673 A JPH06269673 A JP H06269673A
Authority
JP
Japan
Prior art keywords
denitration
zeolite
gas
cobalt
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5058752A
Other languages
Japanese (ja)
Inventor
Yoshihiko Asano
義彦 浅野
Kaoru Kitakizaki
薫 北寄崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5058752A priority Critical patent/JPH06269673A/en
Publication of JPH06269673A publication Critical patent/JPH06269673A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To denitrate NOx with high denitration efficiency by bringing a soln. containing Co into contact with Y-type zeolite containing Na to support Co on zeolite and baking Co supported zeolite to obtain a denitration agent and bringing this denitration agent into contact with NOx-containing gas in the coexistence of A-heavy oil. CONSTITUTION:A soln. containing Co (e.g., aqueous cobalt nitrate soln.) is brought into contact with Y-type zeolite containing Na to support Co on zeolite and this zeolite is baked to produce a denitration agent. This denitration agent and NOx-containing gas are brought into contact with each other in the coexistence of A-heavy oil. As a result, NOx in exhaust gas can be denitrated with high denitration efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNOxの除去技術に関
し、特に内燃機関の排煙等のNOx含有ガスからNOx
除去する技術に関する。
The present invention relates to an elimination technology NO x, relates to a technique for especially removing NO x from the NO x containing gas such as flue gas of the internal combustion engine.

【0002】[0002]

【従来の技術】従来、NOx処理技術は例えば排煙脱硝
技術として実用化されている。この排煙脱硝方法は乾式
法と湿式法とに大別され、このうち最も進んでいるのは
乾式法の一種である選択接触還元法である。この主反応
を以下に示す。
2. Description of the Related Art Conventionally, NO x treatment technology has been put to practical use as, for example, flue gas denitration technology. This flue gas denitration method is roughly classified into a dry method and a wet method, and the most advanced of these is the selective catalytic reduction method, which is a type of dry method. This main reaction is shown below.

【0003】4NO+4NH4+O2→6H2O+4N2 この反応は還元剤としてアンモニアを還元剤として使用
しており、酸素が共存しても選択的にNOxと反応する
ので、ディーゼル機関の排気ガス等の処理に使用され
る。この場合、触媒としてPt等の貴金属系やAl23
TiO2等に担持させた各種金属酸化物等が使用される。 前記選択接触還元法は、簡単なシステムでNOxを処理す
ることができ、高脱硝率が得られ、しかもNOxを無害
なN2とH2Oとに分解できるので、廃液処理が不要とな
る等の利点を有する。
4NO + 4NH 4 + O 2 → 6H 2 O + 4N 2 This reaction uses ammonia as a reducing agent as a reducing agent, and even if oxygen coexists, it selectively reacts with NO x , so exhaust gas of a diesel engine, etc. Used to process. In this case, as a catalyst, a precious metal such as Pt or Al 2 O 3 ,
Various metal oxides supported on TiO 2 or the like are used. In the selective catalytic reduction method, NO x can be treated with a simple system, a high denitration rate can be obtained, and NO x can be decomposed into harmless N 2 and H 2 O, so that waste liquid treatment is unnecessary. It has advantages such as

【0004】しかし、この方法にては有害で危険なアン
モニアガスを使用するので、その取り扱いに注意を必要
とし、また排気ガス中のNOx以外の成分で還元触媒が
劣化してしまうので触媒交換の作業が必要となり、特に
高価な貴金属系の触媒を使用する場合は経済的に不利と
なる。
However, in this method, since harmful and dangerous ammonia gas is used, it is necessary to handle it with caution, and the reduction catalyst is deteriorated by components other than NO x in the exhaust gas, so catalyst replacement is required. Is required, which is economically disadvantageous especially when an expensive precious metal-based catalyst is used.

【0005】更に、高温においては触媒成分の焼結が進
行する等の不都合が生じ、更に、低温においてはアンモ
ニアが水分またはSOxと反応するので、硫安等の塩が
触媒表面に生成されて脱硝率が低下する。従って、使用
温度範囲が320〜450℃に制限されてしまう。
Further, at high temperatures, disadvantages such as progress of sintering of catalyst components occur, and at low temperatures, ammonia reacts with water or SO x , so that salts such as ammonium sulfate are formed on the catalyst surface to denitrate. The rate drops. Therefore, the operating temperature range is limited to 320 to 450 ° C.

【0006】また、自動車(ガソリン車)の排気ガスの
脱硝方法として三元触媒法も用いられているが、酸素過
剰の排気ガス中では触媒の劣化が速くなり、寿命が短く
なってしまう。
[0006] A three-way catalyst method is also used as a denitration method for exhaust gas from automobiles (gasoline vehicles). However, in exhaust gas with excess oxygen, the catalyst deteriorates faster and its life becomes shorter.

【0007】このように上記アンモニアを用いる脱硝方
法及び三元触媒法においては問題点も多いので、他の脱
硝方法の研究が行われている。現在、特に直接分解法に
よる脱硝方法が注目されている。この直接分解法はNO
xの最も理想的な除去方法であり、近年Cu−ZSM−5
ゼオライトやペロブスカイト型複合化合物等の触媒が見
いだされてきている。
As described above, since there are many problems in the denitration method using ammonia and the three-way catalyst method, studies on other denitration methods have been conducted. At present, the denitration method based on the direct decomposition method is particularly attracting attention. This direct decomposition method is NO
This is the most ideal removal method for x , and has recently been adopted by Cu-ZSM-5.
Catalysts such as zeolites and perovskite-type composite compounds have been found.

【0008】[0008]

【発明が解決しようとする課題】しかし、この直接分解
方法においては、最も高活性なCu−ZSM−5を触媒
としても排気ガス中のSOxあるいはH2O等によって触
媒性能が劣化して脱硝率が低下してしまう。従って長期
にわたって高い脱硝率を得ることは非常に困難である。
[SUMMARY OF THE INVENTION However, in the direct decomposition method, the most highly active Cu-ZSM-5 catalyst performance is deteriorated by SO x or H 2 O or the like in the exhaust gas as a catalyst denitration The rate drops. Therefore, it is very difficult to obtain a high denitration rate over a long period of time.

【0009】本発明は上記背景の下になされたものであ
り、排気ガス等のNOxガスの脱硝を高脱硝率にて行う
ことを目的とする。
The present invention has been made in view of the above background, and an object thereof is to denitrate NO x gas such as exhaust gas at a high denitration rate.

【0010】[0010]

【課題を解決するための手段及び作用】近年はゼオライ
トに触媒金属を担持させた脱硝剤が研究されている。例
えば特開昭63−283727号公報には各種金属を含
むゼオライトを炭化水素の共存下でNOx含有ガスと接
触させて脱硝を行う方法が開示されている。
[Means and Actions for Solving the Problems] In recent years, studies have been conducted on denitration agents in which a catalyst metal is supported on zeolite. Method of performing denitration in contact with NO x containing gas zeolites containing various metal in the presence of hydrocarbons is disclosed in JP Sho 63-283727.

【0011】しかしこの方法においては触媒成分として
含まれる各種金属が排気ガス中に含まれる硫黄酸化物
(SOx)等により被毒されて触媒活性が低下してしま
うという課題が残されていた。
However, this method has a problem that various metals contained as a catalyst component are poisoned by sulfur oxide (SO x ) contained in the exhaust gas and the catalytic activity is lowered.

【0012】本発明者らは上記背景の下に鋭意研究を重
ねて本発明を完成させた。
The present inventors have completed the present invention by earnestly researching under the above background.

【0013】請求項1記載の発明はコバルトを含有する
溶液とNaを含有するY型ゼオライトとを接触させて前
記ゼオライトに前記コバルトを担持させた後に前記ゼオ
ライトを焼成することを特徴とする脱硝剤の製造方法を
提供する。
The invention according to claim 1 is characterized in that a solution containing cobalt and a Y-type zeolite containing Na are brought into contact with each other to support the cobalt on the zeolite, and then the zeolite is calcined. A method for manufacturing the same is provided.

【0014】また、コバルトを含有する溶液としては硝
酸コバルト水溶液及び酢酸コバルト水溶液等が挙げられ
る。
Examples of the cobalt-containing solution include cobalt nitrate aqueous solution and cobalt acetate aqueous solution.

【0015】上記のようにゼオライトを焼成することに
よって、金属とゼオライトとの結合が強化されるので、
脱硝率を高くすることができる。
By calcining the zeolite as described above, the bond between the metal and the zeolite is strengthened.
The denitration rate can be increased.

【0016】請求項2記載の発明は請求項1記載の脱硝
剤とNOx含有ガスとをA重油の共存下で接触させて前
記NOxガスの脱硝を行うことを特徴とする脱硝方法を
提供する。
The invention according to claim 2 provides a denitration method, wherein the denitration agent of claim 1 and the NO x containing gas are contacted in the presence of heavy fuel oil A to denitrate the NO x gas. To do.

【0017】通常、NOx含有ガスにはSOx等が含まれ
るが、これらの成分が脱硝剤表面を被覆すると脱硝率が
非常に低くなる。また、触媒被毒も起こる。
Normally, the NO x -containing gas contains SO x and the like, but when these components cover the surface of the denitration agent, the denitration rate becomes extremely low. Also, catalyst poisoning occurs.

【0018】上記のように脱硝時に還元剤としてA重油
を共存させるとSOxガスはA重油と優先的に反応す
る。従ってSOxガスがゼオライト表面を被覆しなくな
り、また活性金属のコバルトとも反応しなくなる。
As described above, when A heavy oil is coexistent as a reducing agent during denitration, SO x gas reacts preferentially with A heavy oil. Therefore, SO x gas does not cover the surface of the zeolite and does not react with the active metal cobalt.

【0019】また、A重油は排気ガス温度(300〜5
00℃)において燃焼するが、この際排気ガス中に含ま
れる煤も燃焼させるため、煤による触媒被毒も回避さ
れ、従って触媒寿命が大幅に延びる。特に、A重油はデ
ィーゼル発電機の燃料として用いられているので、新た
に還元剤を用意する必要がなく、好適に用いることがで
きる。
Further, the fuel oil A has an exhaust gas temperature (300 to 5).
Although it burns at 00 ° C., the soot contained in the exhaust gas is also burned at this time, so that poisoning of the catalyst due to the soot is also avoided, and therefore the catalyst life is greatly extended. In particular, since the heavy fuel oil A is used as a fuel for a diesel generator, it is not necessary to prepare a new reducing agent and it can be preferably used.

【0020】脱硝時に上記A重油を共存させる方法には
特に制限はないが、例えばコバルト担持ゼオライトにN
x含有ガスを流通させる際にA重油の噴霧を行う等の
方法が挙げられる。
There is no particular limitation on the method of coexisting the heavy oil A at the time of denitration, but, for example, cobalt-supported zeolite with N
Examples include a method of spraying A heavy oil when the O x -containing gas is circulated.

【0021】[0021]

【実施例】本実施例においてはNaを含有するY型ゼオ
ライトの成分の一部をコバルトとイオン交換することに
より脱硝剤(コバルト担持ゼオライト)を製造し、この
脱硝剤とNOx含有ガスとをA重油の共存下で接触させ
て脱硝を行った。この際、図1に示す脱硝装置を用いて
脱硝及びNOx濃度の測定を行った。
EXAMPLE In this example, a denitration agent (cobalt-supporting zeolite) was produced by ion-exchanging a part of the components of Y-type zeolite containing Na with cobalt, and the denitration agent and the NO x -containing gas were mixed with each other. Denitration was performed by bringing them into contact with each other in the presence of A heavy oil. At this time, denitration and NO x concentration were measured using the denitration device shown in FIG.

【0022】図1において1はガス導入口5を有する脱
硝管であり、このガス導入口5にはガス導入管2、及び
流量調節バルブ3を有するバイパス管4が接続されてい
る。
In FIG. 1, reference numeral 1 denotes a denitration pipe having a gas introduction port 5, to which a gas introduction pipe 2 and a bypass pipe 4 having a flow rate adjusting valve 3 are connected.

【0023】脱硝管1の中央部にはハニカム触媒ホルダ
ー7が設けられており、これによりハニカム触媒8が支
持される。これら触媒ホルダー7及びハニカム触媒8触
媒付近はヒーター9によって所定温度に保持されてい
る。
A honeycomb catalyst holder 7 is provided at the center of the denitration pipe 1, and the honeycomb catalyst 8 is supported thereby. A heater 9 keeps the catalyst holder 7 and the honeycomb catalyst 8 near the catalyst at a predetermined temperature.

【0024】脱硝管1のガス流入部5とハニカム触媒ホ
ルダー7間には毎分0.1〜1(cc)(1秒間噴霧)の範囲
で還元剤溶液を噴射できるノズル6が挿入されている。
A nozzle 6 capable of injecting a reducing agent solution at a rate of 0.1 to 1 (cc) per minute (spraying for 1 second) is inserted between the gas inflow portion 5 of the denitration pipe 1 and the honeycomb catalyst holder 7.

【0025】脱硝管1の他端には質量分析計11及びN
x分析計12に処理ガスを導入する処理ガス排出管1
0が挿入されている。
At the other end of the denitration tube 1, a mass spectrometer 11 and N
Process gas discharge pipe 1 for introducing process gas into the O x analyzer 12
0 is inserted.

【0026】上記装置において、ガス導入管2から流入
するNOx含有ガスは流量調節バルブ3によって流量を
調節された後にガス導入口5を通じて脱硝管1に流入す
る。余剰ガスはバイパス管4から排気される。
In the above apparatus, the NO x -containing gas flowing in from the gas introduction pipe 2 flows into the denitration pipe 1 through the gas introduction port 5 after the flow rate is adjusted by the flow rate adjusting valve 3. Excess gas is exhausted from the bypass pipe 4.

【0027】脱硝管1内に流入したNOx含有ガスは、
ノズル6によって還元剤を噴霧された後にハニカム触媒
と接触して脱硝される。この際、反応温度はヒーター9
により400℃程度に保持するものとした。
The NO x -containing gas flowing into the denitration pipe 1 is
After the reducing agent is sprayed by the nozzle 6, it is contacted with the honeycomb catalyst for denitration. At this time, the reaction temperature is heater 9
Therefore, the temperature is kept at about 400 ° C.

【0028】NOx含有ガスは脱硝された後に処理ガス
として処理ガス排出管10を通じてNOx分析計(島津
製作所製、NOA−307DX)11にてNOx除去率
を測定される構成となっている。
After the NO x- containing gas is denitrated, the NO x removal rate is measured by a NO x analyzer (NOA-307DX manufactured by Shimadzu Corporation) 11 as a processing gas through a processing gas discharge pipe 10. .

【0029】次にコバルトを担持したゼオライトに前処
理として焼成を行って脱硝を行って脱硝剤を製造し、そ
の脱硝率を測定した。
Next, the zeolite carrying cobalt was subjected to pretreatment as a pretreatment to denitrate to produce a denitration agent, and its denitration rate was measured.

【0030】まず、Na含有モルデナイト(Naモルデナ
イト:東ソー製、HSZ−320NAA)の粉末量に対
して粘土及びガラス繊維を30(%)混合し、よく混練し
て65×65×65(mm)角のハニカム形状に成形加工し
た。
First, 30% of clay and glass fibers were mixed with the powder amount of Na-containing mordenite (Na mordenite: Tosoh, HSZ-320NAA), and the mixture was well kneaded to form a 65 × 65 × 65 (mm) square. Was formed into a honeycomb shape.

【0031】このハニカムを天日で1日乾燥した後に乾
燥器中にて50℃で10時間、100℃で5時間それぞ
れ乾燥し、更に750℃で2時間焼成して担持母材とな
るハニカム体を得た。
This honeycomb was dried in the sun for 1 day, then dried in a dryer at 50 ° C. for 10 hours and 100 ° C. for 5 hours, and further fired at 750 ° C. for 2 hours to form a supporting base material. Got

【0032】次に上記ハニカム体を純水で洗浄し、0.01
(mol/l)に調製されたCo(NO3)2(硝酸コバルト)水溶
液1リットル中に室温で2時間浸漬した後に上記ハニカ
ム体を純水で洗浄して120(℃)で5時間乾燥した。
Next, the honeycomb body is washed with pure water,
The honeycomb body was immersed in 1 liter of an aqueous Co (NO 3 ) 2 (cobalt nitrate) solution (mol / l) at room temperature for 2 hours, washed with pure water, and dried at 120 (° C) for 5 hours. .

【0033】更に、脱硝を行う前に前処理として大気中
500(℃)で3時間焼成して脱硝剤1を製造した。この
ように前処理を行うことでコバルトとゼオライト等との
結合を強くすることができる。
Further, before the denitration, a denitration agent 1 was produced by pre-treatment by firing at 500 (° C.) in the atmosphere for 3 hours. By performing the pretreatment in this way, the bond between cobalt and zeolite or the like can be strengthened.

【0034】この脱硝剤1を用いて図1に示す脱硝装置
にて脱硝率を測定した。
Using this denitration agent 1, the denitration rate was measured by the denitration apparatus shown in FIG.

【0035】尚、NOx含有ガスとしてはディーゼル発
電機(40kVA)からの実機排気ガスを用いてこの脱
硝装置に毎分10リットル導入した。
As the NO x- containing gas, an actual exhaust gas from a diesel generator (40 kVA) was used and 10 liters per minute was introduced into this denitration device.

【0036】ノズル6から噴射する還元剤としてはA重
油を用いるとともに、その噴射量を0.25(cc/sec)(1
秒間噴霧)とした。反応時の温度はヒーター9により4
00(℃)程度に保持した。
A heavy oil is used as the reducing agent injected from the nozzle 6, and the injection amount is 0.25 (cc / sec) (1
Spraying for 2 seconds). The temperature during the reaction is 4 by the heater 9.
The temperature was maintained at about 00 (° C).

【0037】また、上記コバルトの担持を行わないハニ
カム体を脱硝剤2としてブランク試験を行った。
A blank test was conducted using the honeycomb body not carrying the above cobalt as the denitration agent 2.

【0038】上記脱硝剤1及び脱硝剤2における脱硝率
の測定結果を表1に示す。
Table 1 shows the measurement results of the denitration rates of the above denitration agents 1 and 2.

【0039】[0039]

【表1】 [Table 1]

【0040】この表に示されるように、コバルトを担持
していない脱硝剤2においてはNO除去率は1.0(%)で
あるのに対し、コバルトを担持させた脱硝剤1において
は48.7(%)と非常に高い脱硝率が得られていることがわ
かる。
As shown in this table, the NO removal rate is 1.0 (%) in the denitration agent 2 which does not carry cobalt, whereas it is 48.7 (%) in the denitration agent 1 which carries cobalt. It can be seen that a very high denitration rate is obtained.

【0041】以上説明したように、本実施例においては
コバルト水溶液にゼオライトを浸漬して得たコバルト担
持ゼオライトに前処理を行うことでコバルトとゼオライ
トとの結合を強くし、更にコバルト担持を行う際の硝酸
コバルト溶液の濃度を0.01(mol/l)とすることにより高
い脱硝率を得ることができる。
As described above, in this example, the cobalt-supported zeolite obtained by immersing the zeolite in the aqueous cobalt solution was pretreated to strengthen the bond between the cobalt and the zeolite, and to further support cobalt. A high denitrification rate can be obtained by setting the concentration of the cobalt nitrate solution of 0.01 to 0.01 (mol / l).

【0042】特に、SO2等のSOxや過剰酸素が存在す
る実際のディーゼル発電機の排気ガスの脱硝において
も、48.7(%)という従来に比較して非常に高い脱硝率を
得ることができた。
Particularly, in denitration of exhaust gas of an actual diesel generator in which SO x such as SO 2 and excess oxygen exist, a very high denitration rate of 48.7 (%) can be obtained as compared with the conventional denitration. It was

【0043】上記実施例において、脱硝剤は反応温度3
00〜600(℃)で作用し、反応圧力には特に制限され
ずに有効に反応する。
In the above embodiment, the denitration agent has a reaction temperature of 3
It works at 00 to 600 (° C.) and reacts effectively without being limited to the reaction pressure.

【0044】次に、コバルト溶液の濃度を0〜0.5(mo
l/l)として脱硝率の測定を行った結果を図2に示す。
Next, the concentration of the cobalt solution was adjusted to 0-0.5 (mo
The result of measuring the denitration rate as (l / l) is shown in FIG.

【0045】この図に示されるように、コバルト溶液の
濃度を0.01(mol/l)とすると脱硝率が最も高くなる。
これはコバルト溶液の濃度が0.01(mol/l)以上になる
とコバルト溶液のpHが低くなり、ゼオライトの構造が
破壊されることに起因する。
As shown in this figure, when the concentration of the cobalt solution is 0.01 (mol / l), the denitration rate becomes the highest.
This is because when the concentration of the cobalt solution becomes 0.01 (mol / l) or more, the pH of the cobalt solution becomes low and the structure of zeolite is destroyed.

【0046】[0046]

【発明の効果】本発明においては、コバルトを含有する
溶液に浸漬したNaY型ゼオライトに対して前処理とし
て焼成を行っている。このように前処理を行うことでコ
バルトとゼオライト等との結合を強くすることができ、
脱硝率を高くするとともに触媒寿命を長くすることがで
きる。
INDUSTRIAL APPLICABILITY In the present invention, the NaY type zeolite immersed in the solution containing cobalt is fired as a pretreatment. By pretreatment in this way, it is possible to strengthen the bond between cobalt and zeolite,
It is possible to increase the denitration rate and prolong the catalyst life.

【0047】また、ディーゼルエンジンの排気ガスの脱
硝を行う場合、燃料のA重油を還元剤として脱硝時に噴
霧して脱硝を行うことができる。従って還元剤貯蔵用タ
ンクやボンベを必要としないので、コンパクトかつ経済
的に脱硝を行うことができる。
Further, when denitration of the exhaust gas of a diesel engine is carried out, denitration can be carried out by spraying fuel A fuel oil as a reducing agent at the time of denitration. Therefore, a reducing agent storage tank and a cylinder are not required, and denitration can be performed compactly and economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る脱硝装置の説明図。FIG. 1 is an explanatory diagram of a denitration device according to an embodiment of the present invention.

【図2】コバルト溶液濃度とNOx除去率との相関を示
すグラフ
FIG. 2 is a graph showing the correlation between the cobalt solution concentration and the NO x removal rate.

【符号の説明】[Explanation of symbols]

1…脱硝管 2…ガス導入管 3…流量調節バルブ 4…バイパス管 5…ガス導入口 6…ノズル 7…ハニカム触媒ホルダー 8…ハニカム触媒 9…ヒーター 10…ガス排出管 11…NOx分析計1 ... Denitration pipe 2 ... Gas introduction pipe 3 ... Flow control valve 4 ... Bypass pipe 5 ... Gas introduction port 6 ... Nozzle 7 ... Honeycomb catalyst holder 8 ... Honeycomb catalyst 9 ... Heater 10 ... Gas exhaust pipe 11 ... NO x analyzer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルトを含有する溶液とNaを含有す
るY型ゼオライトとを接触させて前記ゼオライトに前記
コバルトを担持させた後に前記ゼオライトを焼成するこ
とを特徴とする脱硝剤の製造方法。
1. A method for producing a denitration agent, which comprises contacting a solution containing cobalt with a Y-type zeolite containing Na to support the cobalt on the zeolite and then calcining the zeolite.
【請求項2】 請求項1記載の脱硝剤とNOx含有ガス
とをA重油の共存下で接触させて前記NOxガスの脱硝
を行うことを特徴とする脱硝方法。
2. A denitration method characterized by the denitrating agent according to claim 1, wherein and the NO x containing gas is contacted in the presence of A heavy oil perform denitration of the NO x gas.
JP5058752A 1993-03-18 1993-03-18 Production of denitration agent and denitration method Pending JPH06269673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5058752A JPH06269673A (en) 1993-03-18 1993-03-18 Production of denitration agent and denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5058752A JPH06269673A (en) 1993-03-18 1993-03-18 Production of denitration agent and denitration method

Publications (1)

Publication Number Publication Date
JPH06269673A true JPH06269673A (en) 1994-09-27

Family

ID=13093277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5058752A Pending JPH06269673A (en) 1993-03-18 1993-03-18 Production of denitration agent and denitration method

Country Status (1)

Country Link
JP (1) JPH06269673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685897B1 (en) 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685897B1 (en) 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

Similar Documents

Publication Publication Date Title
JP4745968B2 (en) Denitration catalyst with excellent low temperature characteristics
JP2015164729A (en) Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
JP4172828B2 (en) NOx removal agent and method for removing nitrogen oxides in exhaust gas
JP4316901B2 (en) Diesel exhaust gas treatment method and treatment apparatus
US10953366B2 (en) Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same
JPH06269673A (en) Production of denitration agent and denitration method
JPH06269674A (en) Production of denitration agent and denitration method
JPH06343868A (en) Production of denitrating agent
JPH0724257A (en) Production of denitrating agent
JPH06319954A (en) Denitration
JPH0760125A (en) Production of denitrification agent
JP4087659B2 (en) Method of manufacturing denitration catalyst, denitration catalyst, and denitration system
JP2023085859A (en) Method for regenerating metal zeolite catalyst, and regeneration apparatus of metal zeolite catalyst
JPH07116520A (en) Production of denitrating agent
JPH0671142A (en) Method for denitrification, denitrification agent and its preparation
JPH09164321A (en) Denitrification method
JPH09206600A (en) Catalyst for denitrification and denitrifying method using that catalyst
JPH07155548A (en) Denitrification method
JPH05220351A (en) Denitrification method and denitrating agent and its production
JPH07155547A (en) Denitrification method
JPH0671141A (en) Method for denitrification, denitrification agent and preparation of denitrification agent
JPH08323148A (en) Denitrating apparatus
JPH07275661A (en) Denitration method
JPH04265120A (en) Denitrator