JPH0775720A - Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin - Google Patents

Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin

Info

Publication number
JPH0775720A
JPH0775720A JP6030947A JP3094794A JPH0775720A JP H0775720 A JPH0775720 A JP H0775720A JP 6030947 A JP6030947 A JP 6030947A JP 3094794 A JP3094794 A JP 3094794A JP H0775720 A JPH0775720 A JP H0775720A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
exhaust gas
dioxins
waste gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6030947A
Other languages
Japanese (ja)
Inventor
Makoto Yanai
誠 柳井
Kenro Uejima
賢郎 上島
Takashi Mori
高志 森
Tadashi Maruyama
忠 丸山
Yoshihiro Ide
義弘 井手
Kenichi Kashiwabara
賢一 柏原
Yoshiro Morimoto
啓郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP6030947A priority Critical patent/JPH0775720A/en
Publication of JPH0775720A publication Critical patent/JPH0775720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove nitrogen oxides and dioxins in a waste gas with one kind of a catalyst at the same time by cooling the waste gas to a specific temp. and after collecting dust, heating again up to a specific temp. and bringing the gas into contact with a specific catalyst with a reducing agent for denitration. CONSTITUTION:The waste gas containing nitrogen oxide and toxic chlorine compounds such as dioxins is cooled to 100-180 deg.C. The cooled waste gas is, after introduced into a bag filter to capture dust containing solid dioxins, heated again to 200-249 deg.C. Next, the waste gas is brought into contact with the honeycomb shaped catalyst, which is composed of 70-95wt.% at least one kind of oxides of Ti and Si and 1-20wt.% at least one kind of oxides of W and V and 3-7mm in aperture equivalent diameter, with the reducing agent for denitration such as ammonia.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化物
(NOx )及びダイオキシン(DXN)類を同時に除去
する方法、並びにこの方法に用いる窒素酸化物・ダイオ
キシン除去用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simultaneously removing nitrogen oxides (NO x ) and dioxins (DXN) in exhaust gas, and a nitrogen oxide / dioxin removing catalyst used in this method.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物等を焼却する焼却
炉から発生する排ガス中には、NOx、SOx 、HCl
等の有害物質の他に、微量ではあるが、毒性の強いダイ
オキシン、PCB等の有機塩素化合物が含まれている。
NOx 、SOx 等については、その除去技術は実用化さ
れているが、ダイオキシンの除去技術については、実用
化レベルに至っていない。
2. Description of the Related Art NO x , SO x , HCl are contained in exhaust gas generated from an incinerator for incinerating municipal solid waste or industrial waste.
In addition to toxic substances such as, for example, dioxins, which are highly toxic, and organic chlorine compounds such as PCB are contained in a small amount.
For NO x , SO x, etc., the removal technology has been put to practical use, but the dioxin removal technology has not reached the level of practical use.

【0003】従来、排ガス中のダイオキシン類を除去す
る技術として、次の方法が提案されている。 (1)特開平2−35914号公報に記載されているよ
うに、触媒として、酸化チタン、酸化バナジウム、酸化
タングステン、白金、パラジウムのうちの少なくとも1
種を用い、150℃以上で焼却炉排ガス中の芳香族系塩
素化合物を分解する方法。 (2)特開平3−4920号公報に記載されているよう
に、焼却炉排ガス中のダイオキシンを、汎用の酸化触媒
により、HCl、H2 O、CO2 に分解する方法。 (3)特開平3−8415号公報に記載されているよう
に、触媒として、Ti、Si、Zrから選択されたA成
分と、Pt、Pd、Ru、Mn、Cu、Cr、Feから
選択されたB成分とからなるものを用い、触媒の貫通孔
の相当直径2mm以上、開口率50%以上のハニカム構造
体として、ダイオキシン等の有機塩素化合物を、温度2
50℃以上、空間速度(SV)50000 h-1以下、触
媒表面積1m2当たりのガス量(AV)250m3/hr・m2
(at temp.)以下の条件で除去する方法。
Conventionally, the following method has been proposed as a technique for removing dioxins in exhaust gas. (1) As described in JP-A-2-35914, at least one of titanium oxide, vanadium oxide, tungsten oxide, platinum, and palladium is used as a catalyst.
A method of decomposing aromatic chlorine compounds in exhaust gas of an incinerator at 150 ° C. or higher using seeds. (2) A method of decomposing dioxin in exhaust gas of an incinerator into HCl, H 2 O, and CO 2 by a general-purpose oxidation catalyst as described in JP-A-3-4920. (3) As described in JP-A-3-8415, as a catalyst, an A component selected from Ti, Si and Zr and Pt, Pd, Ru, Mn, Cu, Cr and Fe are selected. And a component B, and an organochlorine compound such as dioxin is used as a honeycomb structure having a catalyst through-hole having an equivalent diameter of 2 mm or more and an opening ratio of 50% or more at a temperature of 2
50 ° C or higher, space velocity (SV) 50000 h -1 or less, gas amount (AV) per 1 m 2 of catalyst surface area 250 m 3 / hr · m 2
(At temp.) A method of removing under the following conditions.

【0004】(4)特開平3−12221号公報に記載
されているように、上記(3)と同じ組成及び形状の触
媒を用いて焼却炉排ガス中の塩素系高分子化合物を除去
し、その後、集じん部に導入して除じんする方法。 (5)特開平4−200722号公報に記載されている
ように、NOx 、DXN(ダイオキシン)、NH3 を含
む焼却炉排ガスを、200〜500℃で脱硝触媒に接触
させて、まずNOx を除去した後、200〜500℃で
脱DXN触媒に接触させて、DXNを除去する方法。脱
DXN触媒の基体として、Ti、Si、Al、Zrのう
ちの1種以上の酸化物が用いられ、担体として、Pt、
Pd、Ru、Mn、Cu、Cr、Feのうちの少なくと
も1種の金属又はその酸化物が用いられることが記載さ
れている。また、基体として、3Al2 3 ・2SiO
2 を用い、TiO2 を表面被覆すること、及び基体とし
て、TiO2 −SiO2 、TiO2 −ZrO2 、TiO
2 −SiO2 −Al2 3 、TiO2 −SiO2 −Zr
2 が用いられることが記載されている。
(4) As described in JP-A-3-12221, the chlorine-based polymer compound in the exhaust gas of the incinerator is removed by using the catalyst having the same composition and shape as the above (3), and thereafter. , Method of introducing dust to the dust collecting part to remove dust. (5) as described in JP-A-4-200722, NO x, the DXN (dioxin), incinerator exhaust gas containing NH 3, and is brought into contact with the denitrification catalyst at 200 to 500 ° C., first NO x And then removing DXN by contacting with a de-DXN catalyst at 200 to 500 ° C. One or more oxides of Ti, Si, Al and Zr are used as the substrate of the DXN-free catalyst, and Pt,
It is described that at least one metal selected from Pd, Ru, Mn, Cu, Cr and Fe or an oxide thereof is used. Also, as the base, 3Al 2 O 3 .2SiO
2 is used for the surface coating of TiO 2 , and as a substrate, TiO 2 —SiO 2 , TiO 2 —ZrO 2 , TiO 2
2 -SiO 2 -Al 2 O 3, TiO 2 -SiO 2 -Zr
It is stated that O 2 is used.

【0005】(6)特公平4−63288号公報に記載
されているように、SOx 、NOx 、CO、ダスト等を
含む焼却炉排ガスを、徐じんした後、セラミックハニカ
ム構造体に白金を担持させた触媒と300〜500℃で
接触させて、排ガス中のダイオキシンを除去する方法。 (7)特開平4−265122号公報に記載されている
ように、Ti、Si、Al、Zrから選択された少なく
とも1種の酸化物からなる基体の表面上に、Pt、P
d、Ru、Mn、Cu、Cr、Feから選択された少な
くとも1種の金属又はその酸化物を担持させた触媒に、
アンモニアが添加された焼却炉排ガスを150〜340
℃で接触させて、NOx 及び有機塩素化合物を除去する
方法。
(6) As described in Japanese Examined Patent Publication No. 4-63288, after incinerating exhaust gas containing SO x , NO x , CO, dust, etc., it is gradually dusted, and then platinum is added to the ceramic honeycomb structure. A method of contacting a supported catalyst at 300 to 500 ° C. to remove dioxin in exhaust gas. (7) As described in JP-A-4-265122, Pt and P are formed on the surface of a substrate made of at least one oxide selected from Ti, Si, Al and Zr.
a catalyst supporting at least one metal selected from d, Ru, Mn, Cu, Cr and Fe, or an oxide thereof,
150 to 340 incinerator exhaust gas added with ammonia
A method of removing NO x and an organic chlorine compound by contacting at ℃.

【0006】[0006]

【発明が解決しようとする課題】上記の(1)〜(7)
の公報に記載された方法は、本発明と比較して、次のよ
うな差異を有している。 (1)芳香族系塩素化合物のみを除去するもので、NO
x 、ダイオキシン(DXN)を同時に処理するものでは
ない。また、本発明の相当する触媒組成比は記載されて
いない。 (2)ダイオキシンのみを除去するもので、NOx 、D
XNを同時に除去するものではない。また、触媒は汎用
の酸化触媒を使用するもので、触媒組成は記載されてい
ない。 (3)DXNのみを除去するもので、NOx 、DXNを
同時に処理するものではない。また、触媒組成が異な
る。 (4)塩素系高分子化合物のみを除去するもので、NO
x 、DXNを同時に処理するものではない。また、工程
及び触媒組成が異なる。 (5)脱硝と脱DXNとを異なる触媒及び異なる工程で
行うもので、1種類の触媒によるNOx ・DXN同時処
理ではない。また、触媒組成が異なる。 (6)DXNのみを除去するもので、NOx 、DXNを
同時に処理するものではない。また、触媒組成が異な
る。 (7)NOx 及びDXNを同時に除去するものである
が、Wの酸化物又はVの酸化物を含むものではなく、触
媒の構成物質及び割合が異なる。
[Problems to be Solved by the Invention] The above (1) to (7)
The method described in this publication has the following differences compared with the present invention. (1) Removes only aromatic chlorine compounds, NO
x and dioxin (DXN) are not treated at the same time. Moreover, the corresponding catalyst composition ratio of the present invention is not described. (2) Removes only dioxin, NO x , D
It does not remove XN at the same time. Further, the catalyst uses a general-purpose oxidation catalyst, and the catalyst composition is not described. (3) Only DXN is removed, and NO x and DXN are not simultaneously processed. Also, the catalyst composition is different. (4) Removes only chlorine-based polymer compounds, NO
x and DXN are not processed simultaneously. Also, the process and catalyst composition are different. (5) the denitrification and de DXN performs in different catalysts and different processes, not the NO x · DXN simultaneous treatment with one type of catalyst. Also, the catalyst composition is different. (6) Only DXN is removed, and NO x and DXN are not simultaneously processed. Also, the catalyst composition is different. (7) Although it removes NO x and DXN at the same time, it does not contain an oxide of W or an oxide of V, and the constituent materials and proportions of the catalyst are different.

【0007】本発明者らは、上記の点に鑑み、排ガス中
のダイオキシン類を効率よく除去する方法を鋭意研究し
ている過程で、NOx 還元用触媒が、排ガス中のダイオ
キシン類を分解する機能を有することを知見した。本発
明は上記の知見に基づき、排ガス中のダイオキシンはガ
ス状と固体状の両方の形態で存在していることに着目し
てなされたもので、本発明の目的は、1種類の触媒で、
NOx 及びダイオキシン類を同時に効率よく除去する方
法及びこのための触媒を提供することにある。
In view of the above points, the inventors of the present invention are diligently researching a method for efficiently removing dioxins in exhaust gas, and a catalyst for NO x reduction decomposes dioxins in exhaust gas. It was found to have a function. The present invention was made by focusing on the fact that dioxin in exhaust gas exists in both gaseous and solid forms based on the above findings, and the object of the present invention is to use one type of catalyst,
An object of the present invention is to provide a method for efficiently removing NO x and dioxins simultaneously and a catalyst therefor.

【0008】[0008]

【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明の排ガス処理方法は、窒素酸化物
及びダイオキシン類等の毒性塩素化合物を含む排ガス
を、100〜180℃に冷却し、この冷却排ガスをバグ
フィルタに導入して固体状のダイオキシン類を含むダス
トを捕集した後、200〜249℃に再加熱し、つい
で、この排ガスを、Tiの酸化物及びSiの酸化物のう
ち少なくとも1種70〜95wt%と、Wの酸化物及びV
の酸化物のうち少なくとも1種1〜20wt%とからなる
目開相当径3〜7mmのハニカム形状の触媒にアンモニア
等の脱硝用還元剤とともに接触させて、窒素酸化物及び
ダイオキシン類等の毒性塩素化合物を同時に分解・除去
することを特徴としている。脱硝用還元剤としては、ア
ンモニアガス、尿素水、アンモニア水等が用いられる。
In order to achieve the above object, the method for treating exhaust gas of the present invention comprises cooling exhaust gas containing toxic chlorine compounds such as nitrogen oxides and dioxins to 100 to 180 ° C. Then, this cooling exhaust gas is introduced into a bag filter to collect dust containing solid dioxins, and then reheated to 200 to 249 ° C., and then this exhaust gas is mixed with an oxide of Ti and an oxide of Si. 70 to 95 wt% of at least one of W oxide and V
1 to 20% by weight of at least one of the oxides mentioned above is brought into contact with a honeycomb-shaped catalyst having an equivalent opening diameter of 3 to 7 mm together with a reducing agent for denitration such as ammonia, and toxic chlorine such as nitrogen oxides and dioxins. The feature is that compounds are decomposed and removed at the same time. As the denitration reducing agent, ammonia gas, urea water, ammonia water, or the like is used.

【0009】排ガスの冷却温度は100〜180℃であ
るが、110〜150℃とするのが好ましい。この範囲
より低くなると、塩化物による腐食及びバグフィルタの
徐じん効率の悪化が懸念される。一方、この範囲より高
くなると、減温反応器のHCl、SOx の除去性能が低
下し、また、バグフィルタのダイオキシン除去性能が悪
化する傾向がある。また、再加熱温度は200〜249
℃であるが、脱硝・脱ダイオキシン性能及びごみ焼却設
備における生成スチーム条件を考慮すると、210〜2
20℃とするのが好ましい。この範囲より低くなると、
脱硝性能及びダイオキシンの除去率が低下する傾向があ
り、一方、この範囲より高くなると、分解したダイオキ
シンが再合成する可能性がある。また、ハニカム触媒の
目開相当径は3〜7mmであるが、4〜6mmとするのが好
ましい。この範囲より小さくなると、焼却ダストあるい
は酸性硫安等による目詰りの発生が懸念される。一方、
この範囲より大きくすると、単位触媒体積当りの処理ガ
ス量が減少し、必要触媒量が増大する。
The cooling temperature of the exhaust gas is 100 to 180 ° C, preferably 110 to 150 ° C. If the content is lower than this range, there is concern that corrosion due to chloride and deterioration of dust filter efficiency of the bag filter may occur. On the other hand, if it is higher than this range, the removal performance of HCl and SO x of the temperature-reducing reactor tends to deteriorate, and the dioxin removal performance of the bag filter tends to deteriorate. The reheating temperature is 200 to 249.
However, considering the denitration and dedioxin performance and the steam generation conditions in the refuse incineration facility, it is 210-2
The temperature is preferably 20 ° C. Below this range,
The denitration performance and the dioxin removal rate tend to decrease, while if it is higher than this range, decomposed dioxin may be resynthesized. The opening diameter of the honeycomb catalyst is 3 to 7 mm, but it is preferably 4 to 6 mm. If it is smaller than this range, there is a concern that clogging due to incinerated dust or acidic ammonium sulfate may occur. on the other hand,
When it is larger than this range, the amount of processing gas per unit volume of catalyst is decreased and the required amount of catalyst is increased.

【0010】上記の方法において、バグフィルタの上流
側に粉末活性炭を吹き込み、この粉末活性炭に排ガス中
のダイオキシン類を吸着させた後、バグフィルタで捕集
することが好ましい。また、触媒と接触する前の排ガス
中に、オゾン及び過酸化水素のうち少なくとも1種を添
加することが好ましい。さらに、Pt、Pd、Ru及び
Rhのうち少なくとも1種0.01〜3wt%をさらに加
えた触媒を使用することが好ましい。
In the above method, it is preferable that powdered activated carbon is blown into the upstream side of the bag filter to adsorb dioxins in the exhaust gas to the powdered activated carbon, and then the powdered carbon is collected by the bag filter. Further, it is preferable to add at least one of ozone and hydrogen peroxide to the exhaust gas before contacting with the catalyst. Further, it is preferable to use a catalyst to which 0.01 to 3 wt% of at least one of Pt, Pd, Ru and Rh is further added.

【0011】上記の本発明の方法により、ダイオキシン
類以外に、ダイオキシン関連物質としてPCB、とくに
化学式化1に示すようなコプラナーPCB(Copla
nar PCB)を除去することができる。
According to the above-mentioned method of the present invention, in addition to dioxins, PCB as a dioxin-related substance, especially coplanar PCB (Copla PCB) as shown in Chemical Formula 1
nar PCB) can be removed.

【0012】[0012]

【化1】 [Chemical 1]

【0013】本発明のNOx ・ダイオキシン除去用触媒
は、第1成分としてTiの酸化物及びSiの酸化物のう
ち少なくとも1種70〜95wt%と、第2成分としてW
の酸化物及びVの酸化物のうち少なくとも1種1〜20
wt%と、からなることを特徴としている。第1成分とし
ては、TiO2 単独、SiO2 単独、TiO2 とSiO
2 との混合物、又はTiO2 −SiO2 の複合酸化物を
用いることができる。
[0013] NO x · dioxin removal catalyst of the present invention includes at least one 70 to 95 wt% of the oxide of the oxide and Si of Ti as a first component, W as the second component
1 to 20 of at least one of the oxides of V and V
wt%, and is characterized by. As the first component, TiO 2 alone, SiO 2 alone, TiO 2 and SiO
A mixture of 2, or a composite oxide of TiO 2 -SiO 2 can be used.

【0014】また、本発明のNOx ・ダイオキシン除去
用触媒は、第1成分としてTiの酸化物及びSiの酸化
物のうち少なくとも1種70〜95wt%と、第2成分と
してWの酸化物及びVの酸化物のうち少なくとも1種1
〜20wt%と、第3成分としてPt、Pd、Ru及びR
hのうち少なくとも1種0.01〜3wt%と、からなる
ことを特徴としている。
Further, NO x · dioxin removal catalyst of the present invention is an oxide of at least one and 70 to 95 wt%, W as the second component of the oxide of the oxide and Si of Ti as a first component and At least one of V oxides 1
~ 20 wt% and Pt, Pd, Ru and R as third component
At least one kind of h is 0.01 to 3% by weight.

【0015】第1成分の含有量は70〜95wt%である
が、80〜90wt%とするのが好ましい。このうち、触
媒の成形性及び触媒作用の環境維持の観点から、Si酸
化物は0〜10wt%、Ti酸化物は70〜90wt%とす
るのが好ましい。また、第2成分の含有量は1〜20wt
%であるが、脱硝・脱ダイオキシンの観点から、W酸化
物は3〜15wt%、またV酸化物は4〜10wt%とする
のが好ましい。また、第3成分の含有量は0.01〜3
wt%であるが、0.1〜1wt%とするのが好ましい。こ
の範囲より少ないと、ダイオキシンの分解性能が低下す
る傾向があり、一方、この範囲より多いと、脱硝性能が
低下する傾向がある。
The content of the first component is 70 to 95% by weight, preferably 80 to 90% by weight. Of these, the Si oxide content is preferably 0 to 10 wt% and the Ti oxide content is 70 to 90 wt% from the viewpoints of moldability of the catalyst and maintenance of the catalytic action environment. The content of the second component is 1 to 20 wt.
%, But from the viewpoint of denitration and dedioxin, it is preferable that W oxide is 3 to 15 wt% and V oxide is 4 to 10 wt%. Further, the content of the third component is 0.01 to 3
Although it is wt%, it is preferably 0.1 to 1 wt%. If it is less than this range, the decomposition performance of dioxin tends to decrease, while if it is more than this range, the denitration performance tends to decrease.

【0016】以下、本発明の方法の処理工程例を図1〜
図4に基づいて説明する。まず、図1に示すように、焼
却炉10から排出されるNOx 、SOx 、HCl、ダイ
オキシン類、ダスト等を含む排ガスが、減温反応器12
に導入される。減温反応器では、減温のために水スプレ
ーがなされる他に脱塩・脱硫のために消石灰、生石灰等
の脱塩・脱硫剤が吹き込まれる。100〜180℃に減
温された排ガスは、バグフィルタ14に導入されて、ダ
イオキシン類を含むダストが捕集される。ついで、排ガ
スは再加熱器16で200〜249℃に再加熱されて脱
硝・脱DXN装置18に導入され、NOx 及びダイオキ
シン類が分解・除去された後、煙突20から放出され
る。なお、アンモニア等の脱硝用還元剤は、脱硝・脱D
XN装置18又はその上流側に添加される。脱硝・脱D
XN装置18には、Tiの酸化物及びSiの酸化物のう
ち少なくとも1種70〜95wt%と、Wの酸化物及びV
の酸化物のうち少なくとも1種1〜20wt%とからなる
目開相当径3〜7mmのハニカム形状の触媒が収納されて
いる。上記の触媒に、さらにPt、Pd、Ru及びRh
のうち少なくとも1種0.01〜3wt%を加えた触媒を
使用する場合もある。
Hereinafter, examples of processing steps of the method of the present invention will be described with reference to FIGS.
It will be described with reference to FIG. First, as shown in FIG. 1, the exhaust gas containing NO x , SO x , HCl, dioxins, dust, and the like discharged from the incinerator 10 is cooled by the temperature reduction reactor 12
Will be introduced to. In the dehumidifying reactor, water is sprayed to reduce the temperature, and desalting and desulfurizing agents such as slaked lime and quick lime are injected for desalting and desulfurizing. The exhaust gas cooled to 100 to 180 ° C. is introduced into the bag filter 14 to collect dust containing dioxins. Next, the exhaust gas is reheated to 200 to 249 ° C. by the reheater 16 and introduced into the denitration / DXN device 18, where NO x and dioxins are decomposed and removed, and then discharged from the chimney 20. In addition, the reducing agent for denitration such as ammonia is
It is added to the XN device 18 or the upstream side thereof. Denitration / D removal
The XN device 18 includes at least one of 70 to 95 wt% of Ti oxide and Si oxide, W oxide and V oxide.
1 to 20 wt% of at least one of the oxides of the above-mentioned, and a honeycomb-shaped catalyst having an opening equivalent diameter of 3 to 7 mm is housed. In addition to the above catalyst, Pt, Pd, Ru and Rh
In some cases, a catalyst containing 0.01 to 3 wt% of at least one of them may be used.

【0017】上記のように、バグフィルタ14で固体状
のダイオキシン類を捕集することにより、脱硝・脱DX
N装置18におけるハニカム触媒の負担を軽減して、触
媒の劣化及び触媒の目詰りを防止するとともに、触媒の
寿命を延ばすことができる。
As described above, by collecting solid dioxins with the bag filter 14, denitration / DX removal is performed.
It is possible to reduce the burden on the honeycomb catalyst in the N device 18, prevent deterioration of the catalyst and clogging of the catalyst, and extend the life of the catalyst.

【0018】また、図2に示すように、バグフィルタ1
4の前(上流側)に粉末活性炭を吹き込み、この粉末活
性炭に排ガス中のダイオキシン類を吸着させた後、バグ
フィルタで捕捉するように構成することもある。この場
合は、ダイオキシン類の除去効果が向上するという利点
がある。他の構成は図1の場合と同様である。
In addition, as shown in FIG.
In some cases, powder activated carbon is blown in front of (4) (upstream side) to adsorb dioxins in the exhaust gas to the powder activated carbon, and then trapped by a bag filter. In this case, there is an advantage that the effect of removing dioxins is improved. Other configurations are similar to those in the case of FIG.

【0019】また、図3に示すように、触媒と接触する
前、すなわち、脱硝・脱DXN装置18の上流の排ガス
中に、オゾン又は過酸化水素、あるいはこれらの両方を
添加するように構成することもある。この場合は、反応
がより進行し、ダイオキシン類の除去効果が向上すると
いう利点がある。他の構成は図1の場合と同様である。
Further, as shown in FIG. 3, ozone, hydrogen peroxide, or both of them are added to the exhaust gas before contact with the catalyst, that is, in the exhaust gas upstream of the NOx removal / DXN device 18. Sometimes. In this case, there is an advantage that the reaction proceeds further and the effect of removing dioxins is improved. Other configurations are similar to those in the case of FIG.

【0020】さらに、図4に示すように、バグフィルタ
14の前に粉末活性炭を吹き込むとともに、脱硝・脱D
XN装置18の前にオゾン又は/及び過酸化水素を添加
するように構成することもある。他の構成は図1の場合
と同様である。
Further, as shown in FIG. 4, powdered activated carbon is blown in front of the bag filter 14, and denitration and denitration are performed.
It may be configured to add ozone or / and hydrogen peroxide before the XN device 18. Other configurations are similar to those in the case of FIG.

【0021】[0021]

【実施例】以下、本発明の実施例及び実験例を挙げて説
明する。 実験例1 TiO2 72wt%、V2 5 7wt%、WO3 5wt
%からなる触媒を調製した。一方、ダイオキシン代替物
質としてオルトクロロフェノール10ppm 、NOx 12
0ppm を含むガスを調製し、このガスにアンモニアをN
3 /NOx モル比1.0の割合で添加した後、前記の
触媒を目開相当径6mmのハニカム構造に形成したものに
接触させ、空間速度(SV)3100 h-1、4100 h
-1、6200 h-1、12500 h-1の場合について、N
x 及びオルトクロロフェノールの除去性能を測定し
た。このときの温度と除去率との関係は図5に示す如く
であった。このことから、排ガスを触媒に接触させる温
度範囲としては、190〜400℃が望ましく、200
〜320℃がより効果的である。しかし、バグフィルタ
に導入する排ガス温度は100〜180℃と低いので、
あまり高い温度に再加熱するのはダイオキシンの再合成
及び経済性の観点から好ましくなく、200〜249℃
程度で十分である。
EXAMPLES Hereinafter, examples and experimental examples of the present invention will be described. Experimental Example 1 TiO 2 72 wt%, V 2 O 5 7 wt%, WO 3 5 wt
% Of catalyst was prepared. On the other hand, as an alternative substance for dioxins, orthochlorophenol 10ppm, NO x 12
Prepare a gas containing 0 ppm and add ammonia to this gas.
After the H 3 / NO x molar ratio of 1.0 was added, the catalyst was brought into contact with a honeycomb structure having an opening equivalent diameter of 6 mm, and the space velocity (SV) was 3100 h −1 , 4100 h.
-1 , 6,200 h -1 , 12500 h -1 in case of N
The O x and removal performance of orthochlorophenol was measured. The relationship between the temperature and the removal rate at this time was as shown in FIG. From this, the temperature range in which the exhaust gas is brought into contact with the catalyst is preferably 190 to 400 ° C,
~ 320 ° C is more effective. However, since the temperature of the exhaust gas introduced into the bag filter is as low as 100 to 180 ° C,
Reheating to a too high temperature is not preferable from the viewpoint of re-synthesis of dioxin and economical efficiency, and is 200 to 249 ° C.
The degree is enough.

【0022】実験例2 TiO2 73wt%、V2 5 5wt%、WO3 5wt
%、Pd 0.5wt%からなる触媒を調製し、他は実験
例1と同様の条件で測定を行った。結果は図6に示す如
くであった。
Experimental Example 2 TiO 2 73 wt%, V 2 O 5 5 wt%, WO 3 5 wt%
%, Pd 0.5 wt% was prepared, and the measurement was performed under the same conditions as in Experimental Example 1 except for the above. The result was as shown in FIG.

【0023】実験例3 実験例1で用いた触媒と同じ組成及び形状のハニカム構
造体に、NOx 100ppm 、ダイオキシン類(PCDD
+PCDF)1.2〜12ng/Nm3 を含有する除じん後
のごみ焼却炉排ガスに、NH3 /NOx モル比0.6の
割合でアンモニアを添加し、空間速度(SV)2500
h-1で接触させた。このときの温度と除去率との関係は
図7に示す如くであった。
Experimental Example 3 In a honeycomb structure having the same composition and shape as the catalyst used in Experimental Example 1, 100 ppm of NO x and dioxins (PCDD) were added.
+ PCDF) Ammonia is added at a ratio of NH 3 / NO x molar ratio of 0.6 to the dust incinerator exhaust gas after dust removal containing 1.2 to 12 ng / Nm 3 , and the space velocity (SV) 2500
Contacted at h -1 . The relationship between the temperature and the removal rate at this time was as shown in FIG.

【0024】実験例4 実験例2で用いた触媒と同じ組成及び形状のハニカム構
造体を用い、他は実験例3とほぼ同様の条件で測定を行
った。結果は図8に示す如くであった。
Experimental Example 4 A honeycomb structure having the same composition and shape as the catalyst used in Experimental Example 2 was used, and the measurement was carried out under substantially the same conditions as in Experimental Example 3. The result was as shown in FIG.

【0025】実験例5 実験例1で用いた触媒と同じ組成及び形状のハニカム構
造体にNOx 100ppm 、ベンゼン10ppm を含む排ガ
スを、温度250℃、SV3100 h-1で接触させ、ガ
スクロマトグラフィによって除去性能を測定した。結果
は図9及び図10に示す如くであった。触媒出口におい
てベンゼン分析のリテンションタイムである0.79分
前後にはピークが認められず(図10)、ベンゼンは殆
ど分解していることがわかる。
Experimental Example 5 An exhaust gas containing 100 ppm of NO x and 10 ppm of benzene was brought into contact with a honeycomb structure having the same composition and shape as the catalyst used in Experimental Example 1 at a temperature of 250 ° C. and SV3100 h −1 , and was removed by gas chromatography. The performance was measured. The results were as shown in FIGS. 9 and 10. At the catalyst outlet, no peak was observed around 0.79 minutes, which is the retention time for benzene analysis (Fig. 10), indicating that benzene was almost decomposed.

【0026】実験例6 実験例1で用いた触媒と同じ組成及び形状のハニカム構
造体を用いた。NOx100ppm 、コプラナーPCB
0.02ng/Nm3 を含有するガスを調製し、このガスを
210〜220℃に加熱するとともに、アンモニアをN
3 /NOx モル比0.4の割合で添加して上記のハニ
カム構造体に接触させ、AV(接触表面積1m2当りのガ
ス流量)m3/m2・hrとコプラナーPCBの除去率との関
係を測定した。結果は図11に示す如くであった。
Experimental Example 6 A honeycomb structure having the same composition and shape as the catalyst used in Experimental Example 1 was used. NO x 100ppm, coplanar PCB
A gas containing 0.02 ng / Nm 3 was prepared, and this gas was heated to 210 to 220 ° C.
The H 3 / NO x molar ratio of 0.4 was added to bring the mixture into contact with the above honeycomb structure, and AV (gas flow rate per 1 m 2 of contact surface area) m 3 / m 2 · hr and coplanar PCB removal rate were obtained. The relationship was measured. The result was as shown in FIG.

【0027】実施例1 NOx 96ppm 、ダイオキシン類10ng/Nm3 を含むご
み焼却炉排ガスを水スプレー式減温塔で約150℃に冷
却し、この冷却排ガスをバグフィルタに導入してダイオ
キシン類を含むダストを捕集した後、チューブ式蒸気加
熱器で210℃に再加熱し、このガスにNH3 /NOx
モル比0.8の割合でNH3 を注入し、ついで、TiO
2 72wt%、V2 5 7wt%、WO3 5wt%、目
開6mmのハニカム型触媒に接触させてNOx 及びダイオ
キシン類の除去性能を測定した。その結果、触媒反応器
出口のNOx は19ppm 、ダイオキシン類は0.07ng
/Nm3 の結果を得た。なお、バグフィルタ出口のダイオ
キシン類濃度は0.6ng/Nm3 であった。
Example 1 Waste incinerator exhaust gas containing 96 ppm of NO x and 10 ng / Nm 3 of dioxins was cooled to about 150 ° C. in a water spray type desuperheater, and this cooled exhaust gas was introduced into a bag filter to remove dioxins. After collecting the contained dust, it was reheated to 210 ° C with a tube-type steam heater, and NH 3 / NO x was added to this gas.
NH 3 was injected at a molar ratio of 0.8 and then TiO 2.
2 72wt%, V 2 O 5 7wt%, WO 3 5wt%, was measured removal performance of the NO x and dioxins in contact with the honeycomb catalyst of the eye opening 6 mm. As a result, NO x at the outlet of the catalytic reactor was 19 ppm and dioxins were 0.07 ng.
The result was / Nm 3 . The dioxin concentration at the bag filter outlet was 0.6 ng / Nm 3 .

【0028】実施例2、比較例1 NOx 120ppm 、ダイオキシン類4.3ng/Nm3 を含
む170℃のごみ焼却炉排ガスに、飛灰の1.5%に相
当する粉末活性炭を吹き込み、後置のバグフィルタで捕
集しDXN類の除去性能を測定した。その結果、バグフ
ィルタ出口のダイオキシン類濃度は0.42ng/Nm3
あった。なお粉末活性炭を吹き込まない場合は、バグフ
ィルタ出口のダイオキシン類は0.85ng/Nm3 であっ
た。以上の結果から活性炭を吹き込まない場合に比べ
て、除去率が約10%向上することが判った。
Example 2, Comparative Example 1 Powdered activated carbon corresponding to 1.5% of fly ash was blown into the exhaust gas of a refuse incinerator at 170 ° C. containing 120 ppm of NO x and 4.3 ng / Nm 3 of dioxins, followed by post-treatment. Was collected by a bag filter of No. 3 and the removal performance of DXNs was measured. As a result, the dioxin concentration at the bag filter outlet was 0.42 ng / Nm 3 . When powdered activated carbon was not blown in, the dioxin content at the bag filter outlet was 0.85 ng / Nm 3 . From the above results, it was found that the removal rate was improved by about 10% as compared with the case where activated carbon was not blown.

【0029】[0029]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1)1種類の触媒でNOx 及びダイオキシン類を同時
に効率よく分解・除去することができるので、排ガス処
理装置のコンパクト化を図ることができる。 (2)本発明の触媒は、C6 5 Cl、C6 5 ClO
等のダイオキシン前駆物質の脱塩素のみならず、ベンゼ
ン環をも分解するので、ダイオキシン、コプラナーPC
Bの生成及び再合成を抑制することができる。 (3)バグフィルタで固体状のダイオキシン類を予め捕
集するので、後流の脱硫・脱DXN装置内のハニカム触
媒の負担を軽減して、触媒の劣化及び目詰りを防止する
ことができ、触媒の寿命を延ばすことができる。
Since the present invention is configured as described above, it has the following effects. (1) NO x and dioxins can be efficiently decomposed and removed simultaneously with one type of catalyst, so that the exhaust gas treatment device can be made compact. (2) The catalyst of the present invention is C 6 H 5 Cl, C 6 H 5 ClO.
Not only dechlorination of dioxin precursors such as benzene ring, but also decomposes benzene ring, so dioxin, coplanar PC
Generation and resynthesis of B can be suppressed. (3) Since solid dioxin is collected in advance by the bag filter, the burden on the honeycomb catalyst in the downstream desulfurization / deDXN device can be reduced, and deterioration and clogging of the catalyst can be prevented. The life of the catalyst can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排ガス処理方法を実施するフローの一
例を示す工程図である。
FIG. 1 is a process chart showing an example of a flow for carrying out an exhaust gas treatment method of the present invention.

【図2】本発明の排ガス処理方法を実施するフローの他
の例を示す工程図である。
FIG. 2 is a process drawing showing another example of the flow for carrying out the exhaust gas treatment method of the present invention.

【図3】本発明の排ガス処理方法を実施するフローの他
の例を示す工程図である。
FIG. 3 is a process chart showing another example of a flow for carrying out the exhaust gas treatment method of the present invention.

【図4】本発明の排ガス処理方法を実施するフローのさ
らに他の例を示す工程図である。
FIG. 4 is a process drawing showing still another example of the flow for carrying out the exhaust gas treatment method of the present invention.

【図5】実験例1における測定結果を示し、NOx 及び
ダイオキシン代替物質であるオルトクロロフェノールの
除去性能を示すグラフである。
FIG. 5 is a graph showing the measurement results in Experimental Example 1, showing the removal performance of NO x and orthochlorophenol which is a dioxin substitute.

【図6】実験例2における測定結果を示し、NOx 及び
ダイオキシン代替物質であるオルトクロロフェノールの
除去性能を示すグラフである。
FIG. 6 is a graph showing the measurement results in Experimental Example 2, showing the removal performance of NO x and orthochlorophenol which is a dioxin substitute.

【図7】実験例3における測定結果を示し、ごみ焼却炉
排ガス中のNOx 及びダイオキシンの除去性能の実測デ
ータを示すグラフである。
FIG. 7 is a graph showing the measurement results in Experimental Example 3 and showing actual measurement data of the removal performance of NO x and dioxins in the exhaust gas of a refuse incinerator.

【図8】実験例4における測定結果を示し、ごみ焼却炉
排ガス中のNOx 及びダイオキシンの除去性能の実測デ
ータを示すグラフである。
FIG. 8 is a graph showing the measurement results in Experimental Example 4 and showing the actual measurement data of the removal performance of NO x and dioxin in the exhaust gas of a refuse incinerator.

【図9】実験例5における測定結果を示し、排ガスの分
析におけるベンゼンのリテンションタイム等を示すグラ
フである。
FIG. 9 is a graph showing the measurement results in Experimental Example 5 and showing the retention time of benzene in the analysis of exhaust gas.

【図10】実験例5における測定結果を示し、ベンゼン
の除去性能を示すグラフである。
FIG. 10 is a graph showing the measurement results in Experimental Example 5 and showing the benzene removal performance.

【図11】実験例6における測定結果を示し、コプラナ
ーPCBの除去性能を示すグラフである。
FIG. 11 is a graph showing the measurement results of Experimental Example 6 and showing the removal performance of coplanar PCB.

【符号の説明】[Explanation of symbols]

10 焼却炉 12 減温反応器 14 バグフィルタ 16 再加熱器 18 脱硝・脱ダイオキシン(DXN)装置 20 煙突 10 Incinerator 12 Dehumidifying Reactor 14 Bag Filter 16 Reheater 18 Denitration / Dedioxin (DXN) Device 20 Chimney

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/30 ZAB A 8017−4G B01D 53/36 102 B (72)発明者 森 高志 神戸市中央区東川崎町3丁目1番1号 川 崎重工業株式会社神戸工場内 (72)発明者 丸山 忠 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 井手 義弘 神戸市中央区東川崎町1丁目1番3号 川 崎重工業株式会社神戸本社内 (72)発明者 柏原 賢一 神戸市中央区東川崎町1丁目1番3号 川 崎重工業株式会社神戸本社内 (72)発明者 森本 啓郎 神戸市中央区東川崎町1丁目1番3号 川 重環境エンジニアリング株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/30 ZAB A 8017-4G B01D 53/36 102 B (72) Inventor Takashi Mori Kobe city center 3-1-1 Higashikawasaki-cho, Kawasaki, inside the Kobe factory (72) Inventor Tadashi Maruyama 1-1, Kawasaki-cho, Akashi-shi, Hyogo Inside the Akashi factory, Kawasaki Heavy Industries (72) Inventor Yoshihiro Ide Kobe-shi Chuo-ku Higashikawasakicho 1-3-3 Kawasaki Heavy Industries, Ltd. Kobe Head Office (72) Inventor Kenichi Kashiwara 1-3 Higashikawasakicho Chuo-ku, Chuo-ku Kawasaki Heavy Industries Ltd. Kobe Headquarters (72) Inventor Keiro Morimoto 1-3-3 Higashikawasaki-cho, Chuo-ku, Kobe Inside Kawaju Environmental Engineering Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物及びダイオキシン類等の毒性
塩素化合物を含む排ガスを、100〜180℃に冷却
し、この冷却排ガスをバグフィルタに導入して固体状の
ダイオキシン類を含むダストを捕集した後、200〜2
49℃に再加熱し、ついで、この排ガスを、Tiの酸化
物及びSiの酸化物のうち少なくとも1種70〜95wt
%と、Wの酸化物及びVの酸化物のうち少なくとも1種
1〜20wt%とからなる目開相当径3〜7mmのハニカム
形状の触媒にアンモニア等の脱硝用還元剤とともに接触
させて、窒素酸化物及びダイオキシン類等の毒性塩素化
合物を同時に分解・除去することを特徴とする排ガス処
理方法。
1. An exhaust gas containing toxic chlorine compounds such as nitrogen oxides and dioxins is cooled to 100 to 180 ° C., and the cooled exhaust gas is introduced into a bag filter to collect dust containing solid dioxins. After doing 200-2
The exhaust gas is reheated to 49 ° C., and at least one of Ti oxide and Si oxide is added to 70 to 95 wt.
% And at least one of W oxide and V oxide of 1 to 20 wt%, and a honeycomb-shaped catalyst having an opening equivalent diameter of 3 to 7 mm is brought into contact with a denitration reducing agent such as ammonia, and nitrogen is added. An exhaust gas treatment method characterized by simultaneously decomposing and removing toxic chlorine compounds such as oxides and dioxins.
【請求項2】 バグフィルタの上流側に粉末活性炭を吹
き込み、この粉末活性炭に排ガス中のダイオキシン類を
吸着させた後、バグフィルタで捕集することを特徴とす
る請求項1記載の排ガス処理方法。
2. The method for treating exhaust gas according to claim 1, wherein powdered activated carbon is blown into the upstream side of the bag filter, dioxins in the exhaust gas are adsorbed by the powdered activated carbon, and then collected by the bag filter. .
【請求項3】 触媒と接触する前の排ガス中に、オゾン
及び過酸化水素のうち少なくとも1種を添加することを
特徴とする請求項1又は2記載の排ガス処理方法。
3. The method for treating exhaust gas according to claim 1 or 2, wherein at least one of ozone and hydrogen peroxide is added to the exhaust gas before contact with the catalyst.
【請求項4】 Pt、Pd、Ru及びRhのうち少なく
とも1種0.01〜3wt%をさらに加えた触媒を使用す
ることを特徴とする請求項1、2、又は3記載の排ガス
処理方法。
4. The exhaust gas treatment method according to claim 1, wherein a catalyst further containing 0.01 to 3 wt% of at least one of Pt, Pd, Ru and Rh is used.
【請求項5】 第1成分としてTiの酸化物及びSiの
酸化物のうち少なくとも1種70〜95wt%と、 第2成分としてWの酸化物及びVの酸化物のうち少なく
とも1種1〜20wt%と、からなることを特徴とする窒
素酸化物・ダイオキシン除去用触媒。
5. A first component of at least one of Ti oxide and Si oxide of 70 to 95 wt%, and a second component of at least one of W oxide and V oxide of 1 to 20 wt%. %, A catalyst for removing nitrogen oxides / dioxins.
【請求項6】 第1成分としてTiの酸化物及びSiの
酸化物のうち少なくとも1種70〜95wt%と、 第2成分としてWの酸化物及びVの酸化物のうち少なく
とも1種1〜20wt%と、 第3成分としてPt、Pd、Ru及びRhのうち少なく
とも1種0.01〜3wt%と、からなることを特徴とす
る窒素酸化物・ダイオキシン除去用触媒。
6. A first component of at least one of Ti oxide and Si oxide of 70 to 95 wt%, and a second component of at least one of W oxide and V oxide of 1 to 20 wt%. %, And 0.01 to 3 wt% of at least one of Pt, Pd, Ru and Rh as a third component, a catalyst for removing nitrogen oxides and dioxins.
JP6030947A 1993-07-13 1994-02-01 Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin Pending JPH0775720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030947A JPH0775720A (en) 1993-07-13 1994-02-01 Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19535393 1993-07-13
JP5-195353 1993-07-13
JP6030947A JPH0775720A (en) 1993-07-13 1994-02-01 Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin

Publications (1)

Publication Number Publication Date
JPH0775720A true JPH0775720A (en) 1995-03-20

Family

ID=26369392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030947A Pending JPH0775720A (en) 1993-07-13 1994-02-01 Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin

Country Status (1)

Country Link
JP (1) JPH0775720A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787521A1 (en) * 1995-08-08 1997-08-06 Ebara Corporation Method and apparatus for treating combustion exhaust gases
WO1998025690A1 (en) * 1996-12-13 1998-06-18 Thyssen Stahl Ag Method of reducing the concentration of pcdd and/or pcdf in waste gases
US6120747A (en) * 1996-12-27 2000-09-19 Nippon Shokubai Co., Ltd. Catalyst for removing organic halogen compounds, preparation method therefor and method for removing organic halogen compounds
EP1112772A1 (en) * 1999-12-28 2001-07-04 Nippon Shokubai Co., Ltd. Process for disposing of exhaust gases
KR100382050B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR100406364B1 (en) * 1998-12-16 2004-01-24 주식회사 포스코 Cromia/zeolite catalyst for removing nitrogen oxides and chlorinated organic compounds from waste gases
KR100428564B1 (en) * 1999-12-10 2004-04-28 주식회사 포스코 W-cr-tio2 catalysts and method for the removal of chlorinated organic compounds
KR100460665B1 (en) * 1999-08-10 2004-12-09 주식회사 포스코 A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
WO2005005025A1 (en) * 2003-07-10 2005-01-20 Taiheiyo Cement Corporation Device and method for processing combustion exhaust gas
KR100497171B1 (en) * 2002-09-18 2005-06-23 주식회사 엘지화학 Catalyst supporting noble metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same
US7837963B2 (en) 2006-10-24 2010-11-23 Taiheiyo Cement Corporation Method for removing lead from cement burning furnace
US7947229B2 (en) 2005-08-26 2011-05-24 Taiheiyo Cement Corporation Apparatus and method for dissolution reaction
US8282263B2 (en) 2005-10-31 2012-10-09 Taiheiyo Cement Corporation Apparatus and method for adding wet ash to cement
US8439202B2 (en) 2006-12-05 2013-05-14 Taiheiyo Cement Corporation Coal ash treatment method and apparatus
KR101322075B1 (en) * 2013-08-08 2013-10-29 효성에바라엔지니어링 주식회사 Apparatus for recovering energy using solid biofuel with improved acid gas treatment efficiency
KR101322110B1 (en) * 2013-08-19 2013-10-29 효성에바라엔지니어링 주식회사 Apparatus for recovering energy using solid biofuel with improved flue gas treatment efficiency
US8607469B2 (en) 2006-06-28 2013-12-17 Taiheiyo Cement Corporation Cement burning apparatus and method of drying high-water-content organic waste
US8893892B2 (en) 2005-12-07 2014-11-25 Taiheiyo Cement Corporation Apparatus and method for removing unburned carbon from fly ash
CN104368374A (en) * 2014-09-24 2015-02-25 中国科学院大连化学物理研究所 High-dispersion monolithic catalyst for hydrogen peroxide synthesis, and preparation method and application thereof
CN109833770A (en) * 2017-11-24 2019-06-04 中科天龙(厦门)环保股份有限公司 A kind of bioactive molecule coupling cloth bag oxidation catalyst filter technique for incineration flue gas near-zero release
CN110038411A (en) * 2019-04-25 2019-07-23 山东大学 Based on O3Dioxin step degeneration system and method in the sintering flue gas of denitration
JP2019534771A (en) * 2016-10-07 2019-12-05 ハルドール・トプサー・アクチエゼルスカベット Method for cryogenic gas purification and catalyst for use in the method
CN110559827A (en) * 2019-08-26 2019-12-13 山鹰国际控股股份公司 Treatment process of papermaking waste gas
WO2020245243A1 (en) 2019-06-07 2020-12-10 Haldor Topsøe A/S A method for ozone-assisted dioxin removal
US10940471B1 (en) 2019-10-30 2021-03-09 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11071947B2 (en) 2019-10-30 2021-07-27 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787521A1 (en) * 1995-08-08 1997-08-06 Ebara Corporation Method and apparatus for treating combustion exhaust gases
US6027697A (en) * 1995-08-08 2000-02-22 Ebara Corporation Method and apparatus for treating combustion exhaust gases
WO1998025690A1 (en) * 1996-12-13 1998-06-18 Thyssen Stahl Ag Method of reducing the concentration of pcdd and/or pcdf in waste gases
US6120747A (en) * 1996-12-27 2000-09-19 Nippon Shokubai Co., Ltd. Catalyst for removing organic halogen compounds, preparation method therefor and method for removing organic halogen compounds
KR100406364B1 (en) * 1998-12-16 2004-01-24 주식회사 포스코 Cromia/zeolite catalyst for removing nitrogen oxides and chlorinated organic compounds from waste gases
KR100460665B1 (en) * 1999-08-10 2004-12-09 주식회사 포스코 A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
KR100428564B1 (en) * 1999-12-10 2004-04-28 주식회사 포스코 W-cr-tio2 catalysts and method for the removal of chlorinated organic compounds
US6716404B2 (en) 1999-12-28 2004-04-06 Nippon Shokubai Co., Ltd. Process for the purification of exhaust gases
EP1112772A1 (en) * 1999-12-28 2001-07-04 Nippon Shokubai Co., Ltd. Process for disposing of exhaust gases
KR100382050B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR100497171B1 (en) * 2002-09-18 2005-06-23 주식회사 엘지화학 Catalyst supporting noble metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same
JP4615443B2 (en) * 2003-07-10 2011-01-19 太平洋セメント株式会社 Combustion exhaust gas treatment apparatus and treatment method
WO2005005025A1 (en) * 2003-07-10 2005-01-20 Taiheiyo Cement Corporation Device and method for processing combustion exhaust gas
JPWO2005005025A1 (en) * 2003-07-10 2007-09-20 太平洋セメント株式会社 Combustion exhaust gas treatment device and treatment method
US7799297B2 (en) 2003-07-10 2010-09-21 Taiheiyo Cement Corporation Device and method for processing combustion exhaust gas
US7947229B2 (en) 2005-08-26 2011-05-24 Taiheiyo Cement Corporation Apparatus and method for dissolution reaction
US8282263B2 (en) 2005-10-31 2012-10-09 Taiheiyo Cement Corporation Apparatus and method for adding wet ash to cement
US8893892B2 (en) 2005-12-07 2014-11-25 Taiheiyo Cement Corporation Apparatus and method for removing unburned carbon from fly ash
US8607469B2 (en) 2006-06-28 2013-12-17 Taiheiyo Cement Corporation Cement burning apparatus and method of drying high-water-content organic waste
US7837963B2 (en) 2006-10-24 2010-11-23 Taiheiyo Cement Corporation Method for removing lead from cement burning furnace
US8439202B2 (en) 2006-12-05 2013-05-14 Taiheiyo Cement Corporation Coal ash treatment method and apparatus
KR101322075B1 (en) * 2013-08-08 2013-10-29 효성에바라엔지니어링 주식회사 Apparatus for recovering energy using solid biofuel with improved acid gas treatment efficiency
KR101322110B1 (en) * 2013-08-19 2013-10-29 효성에바라엔지니어링 주식회사 Apparatus for recovering energy using solid biofuel with improved flue gas treatment efficiency
CN104368374A (en) * 2014-09-24 2015-02-25 中国科学院大连化学物理研究所 High-dispersion monolithic catalyst for hydrogen peroxide synthesis, and preparation method and application thereof
JP2019534771A (en) * 2016-10-07 2019-12-05 ハルドール・トプサー・アクチエゼルスカベット Method for cryogenic gas purification and catalyst for use in the method
CN109833770A (en) * 2017-11-24 2019-06-04 中科天龙(厦门)环保股份有限公司 A kind of bioactive molecule coupling cloth bag oxidation catalyst filter technique for incineration flue gas near-zero release
CN110038411A (en) * 2019-04-25 2019-07-23 山东大学 Based on O3Dioxin step degeneration system and method in the sintering flue gas of denitration
WO2020245243A1 (en) 2019-06-07 2020-12-10 Haldor Topsøe A/S A method for ozone-assisted dioxin removal
CN113905805A (en) * 2019-06-07 2022-01-07 托普索公司 Ozone-assisted dioxin removal method
CN110559827A (en) * 2019-08-26 2019-12-13 山鹰国际控股股份公司 Treatment process of papermaking waste gas
CN110559827B (en) * 2019-08-26 2020-06-30 山鹰国际控股股份公司 Treatment process of papermaking waste gas
US10940471B1 (en) 2019-10-30 2021-03-09 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11071947B2 (en) 2019-10-30 2021-07-27 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11602717B2 (en) 2019-10-30 2023-03-14 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration

Similar Documents

Publication Publication Date Title
JPH0775720A (en) Treatment of waste gas and catalyst for removing nitrogen oxide and dioxin
KR950004139B1 (en) Removing method and filter of nitrogen oxide and organic chlorine compound from fuel gas
JPH07299331A (en) Dry desulfurization and denitration process
JPH04503772A (en) Methods of reducing emissions of organic products of incomplete combustion
US20060258528A1 (en) Catalyst for removing aromatic halogenated compounds comprising dioxin, carbon monoxide, and nitrogen oxide and use thereof
JP3448246B2 (en) Bag filter and exhaust gas purification method
JP3021420B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2000015106A (en) Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JPH0947661A (en) Process and catalyst for purifying exhaust gas
JP2000051648A (en) Method and apparatus for treating exhaust gas
JP3457917B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2001187319A (en) Method and device for cleaning gas
JP2003033628A (en) Method and device for reducing dioxins in waste gas
JP2609393B2 (en) Exhaust gas treatment method
JP2003284918A (en) Exhaust gas treatment apparatus
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP2000024500A (en) Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus
KR20020062946A (en) Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method
JP2000300959A (en) Method and apparatus for decomposing halogen- containing organic compound
JP2002320863A (en) Method for regenerating catalyst
JP2000015100A (en) Exhaust gas treatment catalyst, exhaust gas treatment method and apparatus
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
KR100423413B1 (en) A chromia/titania catalyst for removing dioxins and a method of removing dioxins by usint the same
JP2001170452A (en) Treating device for waste gas