JP2976041B2 - How to remove organic halides - Google Patents

How to remove organic halides

Info

Publication number
JP2976041B2
JP2976041B2 JP2052701A JP5270190A JP2976041B2 JP 2976041 B2 JP2976041 B2 JP 2976041B2 JP 2052701 A JP2052701 A JP 2052701A JP 5270190 A JP5270190 A JP 5270190A JP 2976041 B2 JP2976041 B2 JP 2976041B2
Authority
JP
Japan
Prior art keywords
volatile organic
organic halide
titania
metal compound
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2052701A
Other languages
Japanese (ja)
Other versions
JPH0347516A (en
Inventor
光一 水野
豊 肥沼
悟 小林
暁 櫛山
玲司 相澤
日出夫 大内
政弘 田島
精一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tosoh Corp
Original Assignee
Agency of Industrial Science and Technology
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tosoh Corp filed Critical Agency of Industrial Science and Technology
Priority to JP2052701A priority Critical patent/JP2976041B2/en
Publication of JPH0347516A publication Critical patent/JPH0347516A/en
Application granted granted Critical
Publication of JP2976041B2 publication Critical patent/JP2976041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機ハロゲン化物の分解方法に関する。更
に詳しくは、塩素、弗素、臭素等の少なくとも1種を含
むハロゲン化有機化合物を接触分解してこれを除去する
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for decomposing an organic halide. More specifically, the present invention relates to a method for catalytically decomposing a halogenated organic compound containing at least one of chlorine, fluorine, bromine and the like to remove the compound.

〔従来の技術〕[Conventional technology]

フロンガス、トリクロロエチレン等の有機ハロゲン化
物はその化学的性質、特に溶剤、噴射剤、冷媒等として
優れ、産業界のみならず一般にも広く多用されている。
Organic halides such as chlorofluorocarbon and trichloroethylene are excellent in their chemical properties, particularly as solvents, propellants and refrigerants, and are widely used not only in the industrial world but also in general.

しかし、これらの物質は、一般に揮発性が大で、排ガ
スとして大気中に排出されると、オゾン層の破壊、地球
の温暖化の促進、発ガン性などの問題が指摘され、近時
環境保全の面からその対策が緊急の課題として提起され
ている。特に一部の有機ハロゲン化物については、「オ
ゾン層を破壊する物質に関するモントリオール議定書」
において、その使用について制限することが決定されて
いる。その排出規制の対策としては、排出時にこれらを
捕集し回収する方法、または分解する方法等がある。
However, these substances are generally highly volatile, and if they are emitted into the atmosphere as exhaust gas, problems such as destruction of the ozone layer, promotion of global warming, and carcinogenicity have been pointed out. Therefore, the countermeasures are raised as an urgent issue. In particular, for some organic halides, the Montreal Protocol on Substances That Deplete the Ozone Layer
Has decided to limit its use. As a measure against the emission control, there is a method of collecting and collecting them at the time of discharge, or a method of disassembling them.

有機ハロゲン化物を捕集又は分解する方法は、一般的
に、活性炭、活性炭素繊維にこれらを吸着させ回収する
方法がある。この方法は、被吸着物の濃度が高い場合は
吸着効果は比較的大であるが、前記濃度が低い場合、即
ち分圧が低い場合は吸着量が少なく更に共存する他の物
質によって有機ハロゲン化物の吸着が阻害されることが
多く効率が悪い。更に、回収時の加熱温度が高すぎる
(200℃以上)と活性炭が燃焼するという問題点があ
る。又分解方法として熱分解法がある。この方法は、高
温度例えば800℃で熱分解する方法、活性炭に吸着させ
たものを窒素気流中で800℃までの温度で熱分解する方
法である。しかしこの後者の方法は例えばハロゲン化物
としてクロロフルオロカーボン(CFC−11、CFC−12等)
を処理すると四弗化炭素が生成し、このものは800℃以
下の温度ではそれ以上分解されない。更に熱分解法は比
較的安価な分解方法であるが、分解で遊離されたハロゲ
ンが分解装置の材質を腐蝕するなどの副次的な問題が生
ずる。
As a method of collecting or decomposing organic halides, there is generally a method of collecting them by adsorbing them on activated carbon or activated carbon fiber. In this method, the adsorption effect is relatively large when the concentration of the substance to be adsorbed is high, but when the concentration is low, that is, when the partial pressure is low, the amount of adsorption is small and the organic halide is removed by another coexisting substance. Adsorption is often hindered, resulting in poor efficiency. Furthermore, when the heating temperature at the time of recovery is too high (200 ° C. or higher), there is a problem that activated carbon is burned. There is a thermal decomposition method as a decomposition method. This method is a method of thermally decomposing at a high temperature, for example, 800 ° C., or a method of thermally decomposing a substance adsorbed on activated carbon at a temperature of up to 800 ° C. in a nitrogen stream. However, the latter method uses, for example, chlorofluorocarbon (CFC-11, CFC-12, etc.) as a halide.
Produces carbon tetrafluoride which is not further decomposed at temperatures below 800 ° C. Further, the thermal decomposition method is a relatively inexpensive decomposition method, but has a secondary problem such as the halogen liberated by the decomposition corroding the material of the decomposition apparatus.

更に還元性試薬を用いて化学反応により分解する方法
も検討されており、安価で、被分解物を選択的に分解す
る試薬の探索が鋭意進められている。最近、オゾン層を
破壊する可能性が高い規制フロンについては、オゾン層
破壊をもたらさない代替フロンの開発が盛んである。し
かし、これら代替品は、成層圏におけるオゾン層問題は
解決できるが、更に下層の大気圏で分解するため、酸性
雨の発生等の新たな大気汚染の原因になる可能性もあ
る。従って、有機ハロゲン化物は既製品、代替品の如何
を問わず、大気への放出を制御する必要があり、発生源
における当該化合物の分解技術の確立が重要である。有
機ハロゲン化物の特に環境保全面からの分解除去方法に
とっては、少なくとも次の事項を満足することが必要と
考えられている。即ち、 1)分解は、広い操作条件で確実に可能であること、 2)分解による有害副生物の発生が抑制できること、 3)被処理物を含む混合物中で選択的に被処理物を分解
可能であること、 4)被処理物の排出形態に適宜対応可能であること等々
である。
Further, a method of decomposing by a chemical reaction using a reducing reagent is also being studied, and a search for a reagent which is inexpensive and selectively decomposes a substance to be decomposed has been earnestly pursued. Recently, as for regulated CFCs that are likely to deplete the ozone layer, development of alternative CFCs that do not cause ozone layer destruction has been actively pursued. However, although these alternatives can solve the problem of the ozone layer in the stratosphere, they also decompose in the lower atmosphere, which may cause new air pollution such as generation of acid rain. Therefore, it is necessary to control the release of the organic halide into the atmosphere regardless of whether it is a ready-made product or a substitute, and it is important to establish a technology for decomposing the compound at the source. It is considered that it is necessary to satisfy at least the following items for a method of decomposing and removing organic halides, particularly from the viewpoint of environmental protection. That is, 1) decomposition can be reliably performed under a wide range of operating conditions, 2) generation of harmful by-products due to decomposition can be suppressed, and 3) decomposition of the substance to be treated can be selectively performed in a mixture containing the substance to be treated. 4) It is possible to appropriately cope with the discharge form of the object to be processed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明者らは以上の問題点に適応する有機ハロゲン化
物の分解方法を提供する目的で種々の方法を検討した結
果、簡便で効率の良い方法を見出だし本発明を完成し
た。
The present inventors have studied various methods for the purpose of providing a method for decomposing an organic halide adapted to the above problems, and as a result, found a simple and efficient method and completed the present invention.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は揮発性有機ハロゲン化物の分子径以上の細孔
径を持つシリカチタニア及びチタニアジルコニアから選
ばれた1種以上の金属化合物に、当該揮発性有機ハロゲ
ン化物を接触させてこれを分解することを特徴とする揮
発性有機ハロゲン化物の除去方法、特に、金属化合物
が、周期律表のI A族及びII A族元素を除く同表の第3
周期から第6周期に属する金属と揮発性有機ハロゲン化
物の分子径以上の細孔径を持つシリカチタニア及びチタ
ニアジルコニアから選ばれた1種以上の金属化合物とか
ら成ることを特徴とする揮発性有機ハロゲン化物の除去
方法に関するものである。
The present invention relates to contacting the volatile organic halide with one or more metal compounds selected from silica titania and titania zirconia having a pore diameter not less than the molecular diameter of the volatile organic halide to decompose the volatile organic halide. The method for removing volatile organic halides, in particular, when the metal compound is the third compound in the table except for the elements of the IA and IIA groups of the periodic table.
A volatile organic halogen comprising a metal belonging to the period from the sixth period to the sixth period and at least one metal compound selected from silica titania and titania zirconia having a pore diameter not less than the molecular diameter of the volatile organic halide. The present invention relates to a method for removing a compound.

次に本発明を詳述する。 Next, the present invention will be described in detail.

本発明で処理の対象となる有機ハロゲン化物は、比較
的分子量が小さく、且つ炭素原子に塩素、弗素、臭素等
のハロゲン原子の一種以上が結合した化合物で、具体的
にはトリクロロフルオロメタン(CFC−11)、ジクロロ
ジフルオロメタン(CFC−12)、1,1,2−トリクロロ−1,
2,2−トリフルオロエタン(CFC−113)、ブロモトリフ
ルオロメタン、四塩化炭素、トリクロロエチレン、テト
ラクロロエチレン、1,1,1−トリクロロエタン等々であ
る。これらの化合物の分子径は、最大の物で約7.5Åで
ある。
The organic halide to be treated in the present invention is a compound having a relatively small molecular weight and one or more halogen atoms such as chlorine, fluorine and bromine bonded to a carbon atom, and specifically, trichlorofluoromethane (CFC). -11), dichlorodifluoromethane (CFC-12), 1,1,2-trichloro-1,
2,2-trifluoroethane (CFC-113), bromotrifluoromethane, carbon tetrachloride, trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane, and the like. The molecular size of these compounds is about 7.5 ° for the largest.

本発明は、これらの有機ハロゲン化物を金属化合物と
接触させることが特長である。
The present invention is characterized in that these organic halides are brought into contact with a metal compound.

本発明で用いる第1の金属化合物の金属種は周期律表
の第3周期〜第6周期に属するもので、同I A及びII A
に属する元素以外のものである。
The metal species of the first metal compound used in the present invention belong to the third to sixth periods of the periodic table, and are the same as those of the IA and IIA.
Other than elements belonging to

本発明で用いる金属は、Al,Si,V,Fe,Co,Cu,Zn,Zr,Mo,
Pd,Pt,Ag,Hg等の1種以上の金属で、これらの1種又は
混合物として用いられる。又通常、触媒の担体として用
いられる担体例えば、後述のゼオライト、シリカ、アル
ミナ、粘度鉱物シリカアルミナ、シリカチタニアなどに
これら化合物を担持又は、これら金属化合物を構成する
金属種の金属イオンとイオン交換させて用いることもで
きる。前記した混合物を用いる際の混合組合せ及び混合
割合は特に制限されない。
The metal used in the present invention is Al, Si, V, Fe, Co, Cu, Zn, Zr, Mo,
One or more metals such as Pd, Pt, Ag, Hg, etc., used as one or a mixture thereof. Also, usually, a carrier used as a carrier for the catalyst, for example, zeolite, silica, alumina, viscous mineral silica-alumina, and silica-titania described below, or these compounds are supported or ion-exchanged with metal ions of the metal species constituting these metal compounds. Can also be used. The mixing combination and mixing ratio when using the above-mentioned mixture are not particularly limited.

又担体に担持(又はイオン交換)させる際の割合は担
体量に対して金属として0.1〜50wt%である。又担持
(又はイオン交換)方法は一般的な方法で行なうことが
出来る。即ち、対象とする成分を含む水溶液と担体を接
触させた後乾燥するなどの方法、両者を混合し混練する
方法である。
The ratio of the metal to be supported (or ion-exchanged) on the carrier is 0.1 to 50% by weight as a metal relative to the amount of the carrier. The loading (or ion exchange) method can be performed by a general method. That is, a method in which an aqueous solution containing a target component is brought into contact with a carrier and then drying, or a method in which both are mixed and kneaded.

本発明で用いる金属化合物は、シリカチタニア及びチ
タニアジルコニアから選ばれた1種以上の金属化合物で
ある。
The metal compound used in the present invention is at least one metal compound selected from silica titania and titania zirconia.

本発明で用いる際のシリカチタニア及びチタニアジル
コニアと金属との複合化(金属の担持、混合)は、イオ
ン交換法や金属との混合により行うことができる。
The compounding (supporting and mixing of a metal) of silica titania and titania zirconia with a metal when used in the present invention can be performed by an ion exchange method or mixing with a metal.

本発明で用いる金属、金属化合物の実際の使用形態
は、粉末状でも良く、通常の方法で成形した成形体及び
それを解砕したもの等いずれでも良い。又これらの使用
の際の大きさはそれらの使用規模によっても異なるが、
造粒した場合の造粒物の径は0.2〜10mmであることが好
ましい。
The actual use form of the metal or metal compound used in the present invention may be in the form of powder, or may be any of a molded article molded by a usual method and a crushed article. In addition, the size at the time of use varies depending on the scale of use,
The diameter of the granulated material when granulated is preferably 0.2 to 10 mm.

本発明で有機ハロゲン化物と上述の金属化合物を接触
させる方法は、気相、液相のいずれでも良いが、被処理
物質の性質、例えば高揮発性などの面から気相でこれを
行なうのが好ましい。即ち、粉体、粒体、ペレット状の
金属化合物を充填した層又はハニカム状とした層に有機
ハロゲン化物を含む気体を導入する方法である。この際
の接触温度は室温以上で、好ましくは100℃〜800℃、更
に好ましくは150℃〜600℃の範囲である。又、触媒の層
に導入する気体中の有機ハロゲン化物の量は0.1ppm〜10
0%、好ましくは10ppm〜10000ppmである。この有機ハロ
ゲン化物を含む気体の触媒層への導入割合(空間速度:S
V)は100,000h-1以下、好ましくは50,000h-1以下であ
る。更に、本発明での分解処理に於いて、反応系に水分
を存在させてこれを行なうと、水分は有機ハロゲン化物
と反応して、二酸化炭素、一酸化炭素、ハロゲン化水素
となるので、後の工程で処理物を処理する上で好まし
い。この際用いる水の量は有機ハロゲン化物と水が反応
して二酸化炭素、一酸化炭素、ハロゲン化水素を生成す
るに充分な化学量論量以上の量を用いることが好まし
い。又被処理ガス中の前記以外の成分は特に制限されな
い。本発明での分解処理後の成分中にはハロゲン化水素
等が含まる場合があり、これらは水酸化ナトリウム、水
酸化カリウム、水酸化カルシウム、アンモニア、アミン
等のアルカリと接触させることにより除去することがで
きる。
In the present invention, the method of contacting the organic halide with the above-mentioned metal compound may be any of a gas phase and a liquid phase. preferable. That is, this is a method in which a gas containing an organic halide is introduced into a layer filled with a metal compound in the form of powder, granules, or pellets, or into a layer made into a honeycomb shape. The contact temperature at this time is not lower than room temperature, preferably 100 ° C to 800 ° C, more preferably 150 ° C to 600 ° C. The amount of organic halide in the gas introduced into the catalyst layer is 0.1 ppm to 10 ppm.
0%, preferably 10 ppm to 10000 ppm. The rate of introduction of this organic halide-containing gas into the catalyst layer (space velocity: S
V) is 100,000 h -1 or less, preferably 50,000 h -1 or less. Further, in the decomposition treatment in the present invention, when water is present in the reaction system and this is performed, the water reacts with the organic halide to form carbon dioxide, carbon monoxide, and hydrogen halide. It is preferable to process the processed material in the step. The amount of water used at this time is preferably a stoichiometric amount or more that is sufficient for the reaction between the organic halide and water to produce carbon dioxide, carbon monoxide, and hydrogen halide. Components other than the above in the gas to be treated are not particularly limited. The components after the decomposition treatment in the present invention may contain hydrogen halide and the like, and these are removed by contact with an alkali such as sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, and amine. be able to.

又、一酸化炭素が含まれる場合は、酸化触媒を用い、
容易に二酸化炭素に変換できる。
When carbon monoxide is contained, use an oxidation catalyst,
It can be easily converted to carbon dioxide.

〔発明の効果〕〔The invention's effect〕

本発明は、簡便な方法であり、操作も簡単で大量処理
用大型装置としてのみならず少量処理用の小型装置とし
ても利用可能である。又有機ハロゲン化物の分解によ
り、後の工程で処理が困難な分解物や、捕集困難な有害
副生物が少なく、この方法による二次的な環境汚染も発
生することはない。
INDUSTRIAL APPLICABILITY The present invention is a simple method, is easy to operate, and can be used not only as a large device for large-scale processing but also as a small device for small-volume processing. In addition, the decomposition of organic halides reduces the amount of decomposed products that are difficult to treat in the subsequent steps and harmful by-products that are difficult to collect, and does not cause secondary environmental pollution by this method.

〔実施例〕 次に実施例で本発明を更に詳述する。[Examples] Next, the present invention will be described in more detail with reference to Examples.

実施例1 クロロフルオロカーボン(CFC−113)0.1Vol%、及び
水分0.4Vol%を含むガス(他の成分:乾燥空気)を被処
理ガスとして用いた。
Example 1 A gas containing chlorofluorocarbon (CFC-113) 0.1 Vol% and water 0.4 Vol% (other components: dry air) was used as a gas to be treated.

用いた触媒は、SiO2−TiO2(SiO2/TiO2モル比=1.5
4)を成形して径0.2〜0.6mmの粒度の物に揃え、その1g
を、径12mm、長さ150mmの石英製反応管に充填して用い
た。反応温度500℃で被処理ガスを500ml/min.でこの反
応管に導入し分解処理をした。合計50時間反応を継続し
反応開始後10時間目及び50時間目の反応物をガスクロマ
ト法(カラム:クロモソルブ−102充填、カラム温度:15
0℃)により分析した。結果を表1に示した。分解生成
物として炭素を含有する生成物はCO2及びCO以外はほと
んど検出されず、また、HF及びHClの発生が確認され
た。
The catalyst used was SiO 2 -TiO 2 (SiO 2 / TiO 2 molar ratio = 1.5
4) Formed and made into a particle size of 0.2-0.6mm in diameter, 1g of it
Was used by filling it in a quartz reaction tube having a diameter of 12 mm and a length of 150 mm. At a reaction temperature of 500 ° C., the gas to be treated was introduced into this reaction tube at 500 ml / min. The reaction was continued for a total of 50 hours, and the reaction products at 10 hours and 50 hours after the start of the reaction were subjected to gas chromatography (column: packed with Chromosolve-102, column temperature: 15
(0 ° C.). The results are shown in Table 1. Almost no products other than CO 2 and CO were detected as products containing carbon as decomposition products, and generation of HF and HCl was confirmed.

実施例2 TiCl2 16gとZrOCl2 10gを500mlのメタノールに溶解
し、その溶液にアンモニア水溶液(28wt%)をpH7〜8
になるまで加えた。生じた沈殿物は、ろ過してCl-イオ
ンがなくなるまで純水で洗浄した。その後120℃の温度
で乾燥し650℃で焼成してTiO2−ZrO2とした。
Example 2 16 g of TiCl 2 and 10 g of ZrOCl 2 were dissolved in 500 ml of methanol, and an aqueous ammonia solution (28 wt%) was added to the solution at pH 7 to 8.
Until it becomes. The resulting precipitate was filtered and washed with pure water until Cl - ions disappeared. Thereafter, it was dried at a temperature of 120 ° C. and calcined at 650 ° C. to obtain TiO 2 —ZrO 2 .

このTiO2−ZrO2を用いた以外は実施例1と同様の条件
で反応及び分析をした。結果を表1に示した。この例に
於ても分解生成物として炭素を含有する生成物はCO2
びCO以外はほとんど検出されなかった。又実施例1と同
様の方法で分析した結果HF及びHClの発生が確認され
た。
The reaction and analysis were performed under the same conditions as in Example 1 except that this TiO 2 -ZrO 2 was used. The results are shown in Table 1. Also in this example, the products containing carbon as the decomposition products were hardly detected except for CO 2 and CO. Further, as a result of analysis in the same manner as in Example 1, generation of HF and HCl was confirmed.

実施例3 実施例2で調製したTiO2−ZrO2を、硝酸銅水溶液と接
触させてイオン交換し銅イオン5wt%を含むものを用い
た以外は実施例1と同様の条件で反応及び分析をした。
結果を表1に示した。この例に於ても分解生成物として
炭素を含有する生成物はCO2及びCO以外はほとんど検出
されなかった。又実施例1と同様の方法で分析した結果
HF及びHClの発生が確認された。
Example 3 The reaction and analysis were performed under the same conditions as in Example 1 except that the TiO 2 -ZrO 2 prepared in Example 2 was contacted with an aqueous solution of copper nitrate and ion-exchanged to use copper ion containing 5 wt%. did.
The results are shown in Table 1. Also in this example, the products containing carbon as the decomposition products were hardly detected except for CO 2 and CO. Also, the result of analysis in the same manner as in Example 1
Generation of HF and HCl was confirmed.

実施例4 実施例2で用いたTiO2−ZrO2を用い、有機ハロゲン化
物をトリクロロエチレンとし、反応温度を500℃とした
以外は、実施例1と同様の条件で反応を行なった。反応
物は実施例1と同様にして分析した。分解率を表2に示
した。この例に於ても生成物としてCO2及びCO以外の成
分はほとんど検出されなかった。又実施例1と同様の方
法で分析した結果HF及びHClの発生が確認された。
Example 4 A reaction was performed under the same conditions as in Example 1 except that TiO 2 —ZrO 2 used in Example 2 was used, the organic halide was trichloroethylene, and the reaction temperature was 500 ° C. The reaction was analyzed as in Example 1. Table 2 shows the decomposition rates. In this example, almost no components other than CO 2 and CO were detected as products. Further, as a result of analysis in the same manner as in Example 1, generation of HF and HCl was confirmed.

尚分解率は、単位時間当りの次の量から求めた。 The decomposition rate was determined from the following amount per unit time.

A:導入有機ハロゲン化物量 B:未反応有機ハロゲン化物量 分解率=(A−B)/A×100 A: amount of introduced organic halide B: amount of unreacted organic halide Decomposition rate = (AB) / A × 100

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫛山 暁 茨城県つくば市小野川16番3 工業技術 院公害資源研究所内 (72)発明者 相澤 玲司 茨城県つくば市小野川16番3 工業技術 院公害資源研究所内 (72)発明者 大内 日出夫 茨城県つくば市小野川16番3 工業技術 院公害資源研究所内 (72)発明者 田島 政弘 茨城県つくば市稲荷前17御2 (72)発明者 浅野 精一 山口県光市虹ケ丘3丁目29番15号 審査官 関 美祝 (56)参考文献 特開 昭51−147469(JP,A) 特開 昭52−87106(JP,A) 特開 昭63−190621(JP,A) 特開 平3−8415(JP,A) 特公 昭54−22792(JP,B2) 特公 昭48−1297(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B01D 53/86 - 53/94 B01J 21/00 - 38/74 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akira Kushiyama 16-3 Onogawa Tsukuba, Ibaraki Pref. Pollution and Resource Research Institute, Industrial Technology Institute (72) Inventor Reiji Aizawa 16-3 Onogawa Tsukuba, Ibaraki Pref. In-house (72) Inventor Hideo Ouchi 16-3 Onogawa Tsukuba, Ibaraki Pref.Institute for Pollution and Resource Research, National Institute of Advanced Industrial Science and Technology (72) Inventor Masahiro Tajima 17-2 Inari-mae, Tsukuba, Ibaraki Pref. 3-29-15, Nijigaoka, Hikari-shi Examiner Yoshihisa Seki (56) References JP-A-51-147469 (JP, A) JP-A-52-87106 (JP, A) JP-A-63-190621 (JP, A) JP-A-3-8415 (JP, A) JP-B-54-22792 (JP, B2) JP-B-48-1297 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) ) B01D 53/86-53/94 B01J 21/00- 38/74

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】揮発性有機ハロゲン化物の分子径以上の細
孔径を持つシリカチタニア及びチタニアジルコニアから
選ばれた1種以上の金属化合物に、当該揮発性有機ハロ
ゲン化物を接触させてこれを分解することを特徴とする
揮発性有機ハロゲン化物の除去方法。
1. The volatile organic halide is brought into contact with at least one metal compound selected from silica titania and titania zirconia having a pore size not less than the molecular diameter of the volatile organic halide to decompose the volatile organic halide. A method for removing volatile organic halides, comprising:
【請求項2】金属化合物が周期律表のI A族及びII A族
元素を除く同表の第3周期から第6周期に属する金属と
揮発性有機ハロゲン化物の分子径以上の細孔径を持つシ
リカチタニア及びチタニアジルコニアから選ばれた1種
以上の金属化合物とから成ることを特徴とする請求項1
記載の方法。
2. Silica having a metal compound whose pore diameter is equal to or larger than the molecular diameters of metals and volatile organic halides belonging to the third to sixth periods of the table, excluding Group IA and IIA elements of the periodic table. 2. The method according to claim 1, wherein the material comprises at least one metal compound selected from titania and titania zirconia.
The described method.
【請求項3】揮発性有機ハロゲン化物がフロンガス又は
トリクロロエチレンを含む化合物である請求項1または
請求項2記載の方法。
3. The method according to claim 1, wherein the volatile organic halide is a compound containing chlorofluorocarbon or trichloroethylene.
JP2052701A 1989-03-06 1990-03-06 How to remove organic halides Expired - Lifetime JP2976041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052701A JP2976041B2 (en) 1989-03-06 1990-03-06 How to remove organic halides

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5199589 1989-03-06
JP1-101151 1989-04-20
JP1-51995 1989-04-20
JP10115189 1989-04-20
JP2052701A JP2976041B2 (en) 1989-03-06 1990-03-06 How to remove organic halides

Publications (2)

Publication Number Publication Date
JPH0347516A JPH0347516A (en) 1991-02-28
JP2976041B2 true JP2976041B2 (en) 1999-11-10

Family

ID=27294508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052701A Expired - Lifetime JP2976041B2 (en) 1989-03-06 1990-03-06 How to remove organic halides

Country Status (1)

Country Link
JP (1) JP2976041B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714459B2 (en) * 1990-09-06 1995-02-22 正勝 平岡 Exhaust gas treatment method
DE69231273T2 (en) * 1991-04-30 2001-03-15 Nippon Shokubai Co. Ltd., Osaka Process for the disposal of an organic halogen compound by oxidation
US5759504A (en) * 1994-12-28 1998-06-02 Hitachi, Ltd. Method for treating organohalogen compounds with catalyst
US20010001652A1 (en) 1997-01-14 2001-05-24 Shuichi Kanno Process for treating flourine compound-containing gas
JP4596432B2 (en) * 1997-06-20 2010-12-08 昭和電工株式会社 Method and apparatus for decomposing fluorine-containing compounds
WO2000009258A1 (en) * 1998-08-17 2000-02-24 Ebara Corporation Method and apparatus for treating waste gas containing fluorochemical
JP2001062290A (en) * 1999-08-27 2001-03-13 Nippon Chem Ind Co Ltd Organic halogen compound remover and removing method
KR20020069429A (en) * 2001-02-26 2002-09-04 주식회사 옵티라이더 Portable canopy which can unfolding function
GB0228810D0 (en) * 2002-12-11 2003-01-15 Univ Dundee Halocarbon destruction
JP4902715B2 (en) * 2009-09-30 2012-03-21 栄造 尾浪 Repellent eyeglasses

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147469A (en) * 1975-06-13 1976-12-17 Asahi Glass Co Ltd A process for cracking of brominated hydrocarbons
CA1070088A (en) * 1976-01-09 1980-01-22 Edward J. Sare Catalytic oxidation of c2-c4 halogenated hydrocarbons
JPS5915206B2 (en) * 1977-07-21 1984-04-07 株式会社精工舎 Piezoelectric vibrator holding device and its manufacturing method
JPS63190621A (en) * 1987-02-03 1988-08-08 Kanto Denka Kogyo Kk Method of removing 1,1,1-trichloroethane out of gas containing 1,1,1-trichloroethane

Also Published As

Publication number Publication date
JPH0347516A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
Hansen et al. Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extension
JP2976041B2 (en) How to remove organic halides
KR920003770B1 (en) Purifying process of exhaust gas
JP3340510B2 (en) Hazardous gas purification method
EP0516850B1 (en) Method of removing organic halides
JP2691927B2 (en) How to remove harmful components
JPH10286439A (en) Decomposing method of fluorine-containing compound
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JPH0673613B2 (en) Exhaust gas purification method
JPH08206445A (en) Purification of exhaust gas
JP3650588B2 (en) Perfluoro compound recycling method
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JP3362918B2 (en) Exhaust gas purification method
JP3538635B2 (en) Manufacturing method of harmful chemical substance removing material
JP3630615B2 (en) Hypofluorite removal method
JPH04313344A (en) Catalyst for decomposition of fluorocarbon and treatment of exhaust gas containing fluorocarbon
JP3240316B2 (en) Methyl bromide decomposition catalyst and method for treating exhaust gas containing methyl bromide
JPH0720533B2 (en) Exhaust gas purification method
JP3939085B2 (en) Method for treating exhaust gas containing dioxins
JP3340513B2 (en) Hazardous gas purification method
JPH115018A (en) Method for purifying noxious gas
JPH0760054A (en) Purification of harmful gas
JPH0663399A (en) Methylchloroform decomposition catalyst and treatment of exhaust gas containing methylchloroform
JPS63190621A (en) Method of removing 1,1,1-trichloroethane out of gas containing 1,1,1-trichloroethane
JPH0747270A (en) Manufacture of catalyst for removing organic chlorine compound and removal of organic chlorine compound using this catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term