JP3538635B2 - Manufacturing method of harmful chemical substance removing material - Google Patents

Manufacturing method of harmful chemical substance removing material

Info

Publication number
JP3538635B2
JP3538635B2 JP2000261493A JP2000261493A JP3538635B2 JP 3538635 B2 JP3538635 B2 JP 3538635B2 JP 2000261493 A JP2000261493 A JP 2000261493A JP 2000261493 A JP2000261493 A JP 2000261493A JP 3538635 B2 JP3538635 B2 JP 3538635B2
Authority
JP
Japan
Prior art keywords
titanium compound
harmful chemical
silica
chemical substance
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000261493A
Other languages
Japanese (ja)
Other versions
JP2002066319A (en
Inventor
智 依田
勝人 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000261493A priority Critical patent/JP3538635B2/en
Publication of JP2002066319A publication Critical patent/JP2002066319A/en
Application granted granted Critical
Publication of JP3538635B2 publication Critical patent/JP3538635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、住居内や環境中の有害
化学物質を迅速に吸着し、光分解による無害化を行うこ
とができる、高い吸着能と光触媒能を併せ持った、透明
かつ多孔質な吸着光分解材料の調製法およびこの方法で
得られた吸着光分解材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent and porous porous material having a high adsorptive capacity and a photocatalytic ability, which can quickly adsorb harmful chemical substances in a house or the environment and can detoxify it by photolysis. The present invention relates to a method for preparing a high quality adsorptive photodecomposable material and an adsorptive photodecomposable material obtained by this method.

【0002】[0002]

【従来の技術】従来、有害化学物質を除去するためのチ
タニア等の光触媒を吸着能をもつ各種材料と組み合わせ
て使用する例としては、金属酸化物ゾルと光触媒を複合
化して調製する方法(特開平9−299809)、粘土
鉱物として複合化する方法(特開平9−29016
4)、シリカゲルにチタン含有溶液を含浸した後に焼成
する方法など、数多くの例がある.
2. Description of the Related Art Heretofore, as an example of using a photocatalyst such as titania for removing harmful chemical substances in combination with various materials having an adsorbing ability, a method of preparing a composite of a metal oxide sol and a photocatalyst (see, for example, Kaihei 9-299809), a method of compounding as a clay mineral (JP-A-9-29016)
4) There are many examples such as a method in which the silica gel is impregnated with a titanium-containing solution and then fired.

【0003】[0003]

【発明が解決しようとする課題】チタニア光触媒は、有
害物質の分解に対して高い光触媒能を持つことが知られ
ているが、結晶性チタニア触媒はその比表面積があまり
大きくなく、また表面の活性が低いため、有害物質の吸
着過程が全分解過程の律速過程となる場合が多いという
問題点があった。また通常結晶性チタニア触媒は通常微
粉末として得られハンドリングに難があった。このた
め、上記の例のように、光触媒を吸着能力の高い多孔質
体に結合させて、除去能力を高め、またハンドリングを
容易にしようとする試みがなされている。しかし、これ
らの方法では、空隙率の高い材料は得にくく、特に大気
中の希薄な有害物質を除去する場合、材料内での拡散が
限られるため、吸着容量、吸着速度の点で十分でないこ
とが多かった.また比表面積と光吸収を稼ぐためにペレ
ットや粉末、あるいはハニカム状に成形して用いられる
場合が多く、使用の形態が限定される場合が多かった。
It is known that titania photocatalyst has a high photocatalytic activity for decomposing harmful substances. However, crystalline titania catalyst does not have a large specific surface area and has a low surface activity. Therefore, there has been a problem that the adsorption process of the harmful substance often becomes a rate-determining process of the total decomposition process because of its low concentration. In addition, the crystalline titania catalyst is usually obtained as a fine powder and has difficulty in handling. For this reason, as in the above example, attempts have been made to combine the photocatalyst with a porous body having a high adsorptivity to increase the removal ability and to facilitate handling. However, these methods make it difficult to obtain a material with a high porosity, and especially when removing dilute harmful substances in the atmosphere, diffusion in the material is limited, so that the adsorption capacity and the adsorption speed are not sufficient. There were many. In addition, in order to increase the specific surface area and light absorption, they are often used after being formed into pellets, powders, or honeycombs, and the form of use is often limited.

【0004】そこで、本発明は、著しく多孔質性で高い
有害物質の吸着能と、吸着した物質を無害化する光触媒
能を併せ持ち、かつ透明度が高く、光触媒と吸着剤が高
度に融合したモノリスの調製が可能な有害化学物質の除
去材を得ることを課題とする。
Accordingly, the present invention provides a monolith having a highly porous and highly harmful substance adsorbing ability and a photocatalytic ability for detoxifying the adsorbed substance, having high transparency, and a highly fused photocatalyst and adsorbent. It is an object to obtain a harmful chemical substance removing material that can be prepared.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、シリカ湿潤ゲル体に、チタン化合物を
含浸し、チタン化合物の分解、溶解および再析出が起き
やすいアルコールを乾燥媒体に用いて臨界点または超臨
界乾燥を行うか、あるいは、二酸化炭素等不燃性の乾燥
媒体を用い、チタン化合物の分解が進行する温度で臨界
点あるいは超臨界乾燥を行うことにより、結晶性のチタ
ニアを著しい多孔性のシリカ骨格に生成させることを特
徴とする有害化学物質除去材の製造方法を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention impregnates a wet gel of silica with a titanium compound and impregnates the alcohol, which is liable to decompose, dissolve and reprecipitate the titanium compound, into a dry medium. Performing the critical point or supercritical drying using, or, using a non-combustible drying medium such as carbon dioxide, by performing the critical point or supercritical drying at a temperature at which the decomposition of the titanium compound proceeds, to obtain crystalline titania Disclosed is a method for producing a harmful chemical substance removing material, which is formed on a highly porous silica skeleton.

【0006】この発明におけるシリカ湿潤ゲル体は、ケ
イ酸分を主成分とし、内部に溶媒を不含むゼリー状の物
質であれば、種類および調製方法は特に限定されない.
具体例をあげると、例えばテトラメトキシシランを用
い、アンモニア等の塩基触媒または塩酸等の酸触媒の存
在下で加水分解して得られるシリカ湿潤ゲル体、ケイ酸
ナトリウム溶液(水ガラス)に塩酸等の酸を加えて得ら
れるシリカ湿潤ゲル体などが用いられる。
The type and preparation method of the silica wet gel body in the present invention are not particularly limited as long as it is a jelly-like substance containing silica as a main component and containing no solvent therein.
Specific examples include, for example, a silica wet gel obtained by hydrolysis using tetramethoxysilane in the presence of a base catalyst such as ammonia or an acid catalyst such as hydrochloric acid, and a solution of sodium silicate (water glass) with hydrochloric acid or the like. A silica wet gel obtained by adding an acid is used.

【0007】これらのシリカ湿潤ゲルは、チタン化合物
を溶解する溶媒もしくはそれと親和性のある溶媒中に含
浸して内部の溶媒を置換する.溶媒はチタン化合物の性
質に応じて適宜選択すればよく、例えばチタンアルコキ
シドの場合はアルコキシル基の炭素数に相当するアルコ
ールが用いられる。
[0007] These silica wet gels are impregnated with a solvent dissolving the titanium compound or a solvent having an affinity for the titanium compound to replace the internal solvent. The solvent may be appropriately selected according to the properties of the titanium compound. For example, in the case of titanium alkoxide, an alcohol corresponding to the number of carbon atoms of the alkoxyl group is used.

【0008】ついで、これらのシリカ湿潤ゲルは、チタ
ン化合物を含む溶媒中に含浸し、その骨格表面にチタン
化合物を担持する。また、チタン化合物を含む乾燥媒体
を臨界点もしくは超臨界の状態としてより迅速かつ均質
に含浸させることも可能である.チタン化合物はシリカ
湿潤ゲルと反応もしくは吸着して担持される物質であれ
ば種類は特に限定されない。具体例をあげると、チタン
テトライソプロポキシド等のアルコキシド類およびそれ
らを適当な配位子で修飾した複合体、チタニルアセチル
アセトナトなどのチタン錯体およびその誘導体等が用い
られる。
Next, these silica wet gels are impregnated with a solvent containing a titanium compound to support the titanium compound on the surface of the skeleton. It is also possible to impregnate the drying medium containing the titanium compound more quickly and homogeneously at a critical point or supercritical state. The type of the titanium compound is not particularly limited as long as it is a substance that is supported by reacting or adsorbing with the silica wet gel. Specific examples include alkoxides such as titanium tetraisopropoxide, complexes obtained by modifying them with an appropriate ligand, titanium complexes such as titanylacetylacetonate and derivatives thereof, and the like.

【0009】上記のチタン化合物を担持したシリカ湿潤
ゲル体は、アルコール類を用いて臨界点もしくは超臨界
乾燥法より乾燥するか、あるいは二酸化炭素等を用いて
チタン化合物が分解する温度以上の条件で臨界点もしく
は超臨界乾燥法により乾燥される。乾燥が臨界点近傍も
しくは超臨界の状態で行われるためシリカ湿潤ゲル骨格
は界面張力による収縮の影響をほとんど受けず、極めて
多孔質な乾燥ゲルの状態で得られる。
The above silica wet gel supporting titanium compound is dried by a critical point or supercritical drying method using alcohols, or at a temperature not lower than the temperature at which the titanium compound is decomposed using carbon dioxide or the like. It is dried by a critical point or supercritical drying method. Since the drying is performed near the critical point or in a supercritical state, the silica wet gel skeleton is hardly affected by shrinkage due to interfacial tension and can be obtained in a very porous dry gel state.

【0010】アルコール類を用いる臨界点もしくは超臨
界乾燥法においては、アルコールの種類はシリカ湿潤ゲ
ル体を溶解せず、チタン化合物に親和性を持つものを適
宜選択すればよく、特に限定されない。一般的にはエタ
ノール、1−プロパノール、2−プロパノール等が用い
られるが、メタノールはシリカ湿潤ゲルを溶解する効果
が大きいため好ましくない。
[0010] In the critical point or supercritical drying method using alcohols, the type of alcohol is not particularly limited as long as it does not dissolve the silica wet gel and has an affinity for the titanium compound. Generally, ethanol, 1-propanol, 2-propanol and the like are used, but methanol is not preferred because it has a large effect of dissolving the silica wet gel.

【0011】チタン化合物が分解する温度以上の条件で
おこなう臨界点もしくは超臨界乾燥法においては、乾燥
媒体はチタン化合物の分解温度で安定であり、シリカ湿
潤ゲル体を損なうものでなければ特に限定されない。例
えば二酸化炭素、フロン、アセトンおよびこれらの混合
物、またはこれらとアルコールの混合物が用いられる。
In the critical point or supercritical drying method performed at a temperature higher than the temperature at which the titanium compound decomposes, the drying medium is not particularly limited as long as it is stable at the decomposition temperature of the titanium compound and does not impair the silica wet gel body. . For example, carbon dioxide, chlorofluorocarbon, acetone, and mixtures thereof, or mixtures of these and alcohols are used.

【0012】シリカ湿潤ゲル体に担持されたチタン化合
物は乾燥の過程で、溶解、加水分解または熱分解、溶解
度の低下による再析出および結晶化等の過程を経て結晶
性チタニアとしてシリカ骨格上に析出する。この結晶性
チタニアは通常光触媒能の高いアナターゼ型として得ら
れる。
The titanium compound supported on the silica wet gel body is precipitated on the silica skeleton as crystalline titania through processes such as dissolution, hydrolysis or thermal decomposition, reprecipitation due to a decrease in solubility, and crystallization during drying. I do. This crystalline titania is usually obtained as an anatase type having high photocatalytic activity.

【0013】最適な乾燥の条件は、乾燥媒体の臨界点
と、チタン化合物の性質によって決定される.例えばチ
タン化合物としてチタンテトライソプロポキシド−アセ
チルアセトナトを、乾燥媒体としてエタノールを用いた
場合には250-280℃、90-110atm程度の条件が、チタン化
合物としてチタンテトライソプロポキシド−アセチルア
セトナトを用い、乾燥媒体として二酸化炭素を用いた場
合は280-310℃、90-160atm程度の条件が望ましい。
[0013] The optimum drying conditions are determined by the critical point of the drying medium and the properties of the titanium compound. For example, when titanium tetraisopropoxide-acetylacetonate is used as the titanium compound and ethanol is used as the drying medium, the conditions at 250-280 ° C. and about 90-110 atm are used, and titanium tetraisopropoxide-acetylacetonato is used as the titanium compound. When carbon dioxide is used as a drying medium, the conditions are preferably 280-310 ° C. and 90-160 atm.

【0014】臨界点もしくは超臨界乾燥によって得られ
た乾燥ゲル体は通常有機残基の除去のため大気中500℃
程度で1−2時間熱処理を行う。熱処理の温度が高い、
あるいは時間が長い場合にはゲル体の収縮による空隙率
の低下が起こるため、なるべく低温で短時間処理するこ
とが望ましい。
The dried gel obtained by the critical point or supercritical drying is usually at 500 ° C. in air to remove organic residues.
Heat treatment is performed for about 1-2 hours. High heat treatment temperature,
Alternatively, if the time is long, the porosity decreases due to the shrinkage of the gel body. Therefore, it is desirable to perform the treatment at a temperature as low as possible for a short time.

【0015】このようにして得られた乾燥ゲル体は、全
体積の90%以上が空隙である著しい多孔質性と巨大な
比表面積をもち、かつチタニアの光触媒能を合わせも
つ.またこのゲル体は極めて透明度が高く、チタニアの
光吸収を阻害しない。調製法にもよるがチタニアは数1
0nm以下の微細な結晶とすることができ、シリカ骨格
に高度に分散されているため剥落等の問題は起こらな
い。またこのゲル体は透明なモノリス状として容易に得
ることができ、任意の形状を付与することが可能であ
る。
The dry gel thus obtained has a remarkable porosity in which more than 90% of the total volume is voids, a huge specific surface area, and has the photocatalytic activity of titania. Further, this gel body has extremely high transparency and does not inhibit light absorption of titania. Depending on the preparation method, titania is number 1
Fine crystals with a size of 0 nm or less can be obtained, and since they are highly dispersed in the silica skeleton, problems such as peeling do not occur. Further, this gel body can be easily obtained as a transparent monolithic shape, and can be given an arbitrary shape.

【0016】この乾燥ゲル体は、有害物質を含む空気と
接触させることにより、有害物質をその骨格表面に吸着
することができる。得られたゲル体の空隙率および批評
面積が大きいため、有害物質の吸着速度および吸着容量
は非常に大きい。吸着した有害物質は光照射によって二
酸化炭素にまで分解することが可能である。従って例え
ば居住空間で光の当たる場所に設置し、シックハウス症
候群の原因となる有害物質を永続的に吸着および分解す
る空気清浄材として使用する、あるいは事故等により高
濃度に放出された有害化学物質を迅速に吸着して固定
し、その後光照射によって無害化する汚染処理材として
使用する等の用途に適用可能である。
The dried gel body can adsorb harmful substances on the surface of its skeleton by bringing it into contact with air containing harmful substances. Since the porosity and critical area of the obtained gel body are large, the adsorption speed and adsorption capacity of harmful substances are very large. The adsorbed harmful substances can be decomposed into carbon dioxide by light irradiation. Therefore, for example, it is installed in a place exposed to light in a living space, and used as an air purifier that permanently absorbs and decomposes harmful substances that cause sick house syndrome, or uses harmful chemical substances released in high concentrations due to accidents etc. The present invention can be applied to uses such as a contamination treatment material which is quickly adsorbed and fixed and then rendered harmless by light irradiation.

【0017】[0017]

【本発明の実施の形態】本発明の実施の形態は、以下の
通りである。 (1) シリカの湿潤ゲル体にチタン化合物溶液を含浸
させ、次いで乾燥媒体を用いて、乾燥媒体の臨界点ない
し超臨界において、乾燥することにより、結晶性のチタ
ニアをシリカ骨格上に生成させる有害化学物質除去材用
多孔質ゲルの製造方法。 (2) シリカの湿潤ゲル体にチタン化合物溶液を溶剤
の臨界点ないし超臨界において含浸させ、次いでチタン
化合物溶液の溶剤と乾燥媒体との混合物を用いて、当該
混合物の臨界点ないし超臨界において、乾燥することに
より、結晶性のチタニアをシリカ骨格上に生成させる有
害化学物質除去材用多孔質ゲルの製造方法。 (3) チタン化合物の分解反応が進行する温度以上で
かつ、乾燥媒体の臨界点ないし超臨界において、乾燥さ
せる上記1又は上記2記載の有害化学物質除去材用多孔
質ゲルの製造方法。 (4) 乾燥工程の後、有機物を加熱除去する工程を設
ける上記1ないし上記3のいずれかひとつに記載の有害
化学物質除去材用多孔質ゲルの製造方法。 (5) チタン化合物が、チタンテトライソプロポキシ
ド、チタンテトラエトキシド、チタンテトラメトキシド
で代表される金属アルコキシドおよびそれらを配位子で
修飾した複合体、チタニルアセチルアセトナトで代表さ
れる金属アセチルアセトナトおよびその誘導体のいずれ
かひとつである上記1ないし上記4のいずれかに該当す
る大気中有害化学物質除去材の製造方法。 (6) 乾燥媒体がエタノール、1−プロパノール、2
−プロパノールで代表されるアルコールの1種又は2種
以上、及び又は、二酸化炭素である上記1ないし上記5
のいずれかひとつに記載された有害化学物質除去材の製
造方法。 (7) チタン化合物溶液の溶剤がエタノール、1−プ
ロパノール、2−プロパノールで代表されるアルコール
の1種又は2種以上である上記1ないし上記4のいずれ
かひとつに記載された有害化学物質除去材の製造方法。
(8) シリカの湿潤ゲルがアルコゲルである上記1な
いし上記7のいずれかひとつに記載された有害化学物質
除去材の製造方法。 (9) 上記1ないし上記8のいずれかひとつに記載さ
れた製造方法に記載された有害化学物質除去材。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention are as follows. (1) A harmful effect of impregnating a wet gel body of silica with a titanium compound solution and then using a drying medium at a critical point or supercritical of the drying medium to form crystalline titania on the silica skeleton. A method for producing a porous gel for a chemical substance removing material. (2) wet gel of silica to the titanium compound solution is impregnated in a critical point or supercritical solvent and then titanium
Mixture using a solvent and drying medium compound solution, the
A method for producing a porous gel for a harmful chemical substance removing material, wherein crystalline titania is formed on a silica skeleton by drying at a critical point or supercritical of a mixture . (3) The method for producing a porous gel for a toxic chemical substance removing material according to the above (1) or (2), wherein the porous gel is dried at a temperature not lower than a temperature at which a decomposition reaction of a titanium compound proceeds and at a critical point or supercritical of a drying medium. (4) The method for producing a porous gel for a harmful chemical substance removing material according to any one of (1) to (3) above, wherein a step of heating and removing organic substances is provided after the drying step. (5) A titanium compound is a metal alkoxide represented by titanium tetraisopropoxide, titanium tetraethoxide, titanium tetramethoxide, a complex obtained by modifying them with a ligand, a metal acetyl represented by titanyl acetylacetonate A method for producing a material for removing airborne harmful chemical substances corresponding to any one of the above items 1 to 4, which is any one of acetonate and derivatives thereof. (6) The drying medium is ethanol, 1-propanol, 2
One or more of alcohols represented by propanol and / or carbon dioxide,
The method for producing a harmful chemical substance removing material according to any one of the above. (7) The material for removing harmful chemical substances according to any one of (1) to (4) above, wherein the solvent of the titanium compound solution is one or more of alcohols represented by ethanol, 1-propanol and 2-propanol. Manufacturing method.
(8) The method for producing a harmful chemical substance removing material as described in any one of (1) to (7) above, wherein the silica wet gel is an alcogel. (9) The material for removing harmful chemical substances according to any one of the above-mentioned items 1 to 8.

【0018】シリカ湿潤ゲルを臨界点もしくは超臨界乾
燥することにより、界面張力による収縮を避けることが
でき、著しく多孔質かつ高比表面積で透明なシリカ骨格
が得られる。このシリカ骨格は表面の活性が高く、有害
物質に対して高い吸着能を持つ。シリカ湿潤ゲルに担持
されたチタン化合物は、乾燥の際に適切な条件を選ぶこ
とにより、シリカ骨格近傍で乾燥媒体もしくは湿潤ゲル
に含まれる溶媒に溶解し、加水分解あるいは熱分解を受
け、溶解度が低下することにより、シリカ骨格上結晶性
チタニアとして析出する。シリカ骨格がチタン成分の凝
集を防ぐ担体として機能するため、チタニアは極めて微
細な状態で分散され、高い光触媒活性を示すと共に、得
られるゲル体の透明度や吸着能を損なうことがない。シ
リカ骨格に吸着された大気中の有害物質は表面拡散等に
よりチタニア表面に移動し、光照射により二酸化炭素に
まで完全に分解される。
By drying the silica wet gel at a critical point or by supercritical drying, shrinkage due to interfacial tension can be avoided, and a remarkably porous transparent skeleton having a high specific surface area can be obtained. This silica skeleton has a high surface activity and has a high adsorption capacity for harmful substances. The titanium compound supported on the silica wet gel is dissolved in a solvent contained in the drying medium or the wet gel in the vicinity of the silica skeleton by selecting appropriate conditions during drying, undergoes hydrolysis or thermal decomposition, and has a solubility of By lowering, it precipitates as crystalline titania on the silica skeleton. Since the silica skeleton functions as a carrier for preventing aggregation of the titanium component, titania is dispersed in an extremely fine state, exhibits high photocatalytic activity, and does not impair the transparency or adsorption ability of the obtained gel. The harmful substances in the air adsorbed on the silica skeleton move to the titania surface by surface diffusion or the like, and are completely decomposed into carbon dioxide by light irradiation.

【0019】本発明においては乾燥過程でチタン化合物
の溶解―再析出の過程が適切に機能する条件を設定する
ことが重要である。例えば乾燥媒体がシリカ骨格を溶解
する効果が大きいとチタニアは骨格から剥離してしま
う。また乾燥過程でチタン化合物が分解されない場合、
チタン化合物はシリカ骨格にそのまま保持される。乾燥
後の熱処理により結晶化を行うことは可能であるが、固
体状態での原子の再配列は進行しにくいため高い温度で
の処理を必要とし、シリカ骨格の収縮による空隙率の低
下が著しくなる。アルコール類を超臨界乾燥の媒体とし
て用いた場合、その臨界条件と溶媒としての性質が上記
溶解―再析出過程の進行に適しているため効果的に結晶
性チタニアが生成する。また二酸化炭素等、アルコール
以外の乾燥媒体を用いた場合でも、乾燥過程でチタン化
合物の分解が進行する条件とすれば、湿潤ゲル中にわず
かに残存する溶媒の作用によって溶解―再析出の過程は
進行する。
In the present invention, it is important to set conditions under which the process of dissolving and reprecipitating the titanium compound functions properly during the drying process. For example, if the drying medium has a large effect of dissolving the silica skeleton, the titania peels off from the skeleton. If the titanium compound is not decomposed in the drying process,
The titanium compound is retained as it is on the silica skeleton. Although it is possible to crystallize by heat treatment after drying, the rearrangement of atoms in the solid state is difficult to proceed, so processing at a high temperature is required, and the porosity is significantly reduced due to shrinkage of the silica skeleton. . When alcohols are used as a medium for supercritical drying, crystalline titania is effectively produced because the critical conditions and properties as a solvent are suitable for the progress of the above-mentioned dissolution-reprecipitation process. In addition, even when a drying medium other than alcohol, such as carbon dioxide, is used, if the conditions under which the decomposition of the titanium compound proceeds during the drying process, the process of dissolution-reprecipitation due to the action of the solvent that slightly remains in the wet gel can be reduced. proceed.

【0020】[0020]

【実施例】以下に、この発明の具体的な実施例および比
較例を示すが、本発明はこれらによって何ら限定される
べきものではない。 <実施例1>テトラメトキシシラン、メタノール、0.
0135mol/lアンモニア水溶液を体積比2:4:
1で20℃の条件下で混合し、内径30mm、深さ10
mmの容器中に流し込んで静置し、シリカの湿潤ゲル体
を得た。このゲルを密閉して、48時間、60℃で熟成
した。その後、2−プロパノールに24時間含浸して内
部溶媒の置換を行った。
EXAMPLES Specific examples and comparative examples of the present invention will be shown below, but the present invention should not be limited by these. <Example 1> Tetramethoxysilane, methanol, 0.1.
0135 mol / l aqueous ammonia solution in a volume ratio of 2: 4:
1 at 20 ° C., 30 mm inner diameter, 10 depth
It was poured into a vessel having a diameter of 2 mm and allowed to stand to obtain a wet gel of silica. The gel was sealed and aged at 60 ° C. for 48 hours. Then, it was impregnated with 2-propanol for 24 hours to replace the internal solvent.

【0021】このシリカ湿潤ゲルを、1.24mol/
lのチタンテトライソプロポキシド−アセチルアセトナ
トの2−プロパノール溶液に24時間含浸してチタン化
合物を担持した。次に、500mlの圧力容器中に、上
記シリカ湿潤ゲル体を3個、エタノール溶液210ml
を入れ、密閉後加熱して280℃、110気圧の超臨界
状態とした。
This silica wet gel was added at 1.24 mol /
l of titanium tetraisopropoxide-acetylacetonate in 2-propanol for 24 hours to support the titanium compound. Next, in a 500 ml pressure vessel, the above three silica wet gel bodies and 210 ml of an ethanol solution were added.
And sealed and heated to a supercritical state of 280 ° C. and 110 atm.

【0022】次に、同圧力容器内の温度を保ったまま、
1分あたり1気圧の減圧となるよう徐々にエタノールを
抜いて常圧まで戻し、冷却して乾燥ゲル体を得た。この
乾燥ゲル体を空気中、500℃で焼成して有機物を除去
して試料Aを得た。
Next, while maintaining the temperature inside the pressure vessel,
Ethanol was gradually removed so that the pressure was reduced to 1 atm per minute, the pressure was returned to normal pressure, and the mixture was cooled to obtain a dried gel. The dried gel body was calcined at 500 ° C. in air to remove organic substances to obtain a sample A.

【0023】<実施例2>実施例1と同様にして調製し
た、チタン化合物含浸シリカ湿潤ゲル3個を、50ml
の圧力容器中に、2−プロパノール溶液25mlと共に
入れ、二酸化炭素を導入後昇温して、160気圧、80
℃の2成分系超臨界状態とした。圧力容器内の圧力は圧
力調整器で一定とした。続いて超臨界二酸化炭素を毎分
2mlで3時間流通させ、残存する2―プロパノールお
よび上記チタン化合物を容器内より除去して、圧力容器
内を超臨界二酸化炭素のみの状態とした。この状態から
温度を280℃に上昇させ、この温度を保持したまま、
1分あたり1気圧の減圧となるよう徐々に二酸化炭素を
抜いて常圧とし乾燥ゲル体を得た。以降は実施例1と同
様にして、熱処理を行い、試料Bを得た。
Example 2 Three titanium compound-impregnated silica wet gels prepared in the same manner as in Example 1 were mixed with 50 ml
Into a pressure vessel together with 25 ml of a 2-propanol solution.
A two-component supercritical state at ℃. The pressure in the pressure vessel was kept constant with a pressure regulator. Subsequently, supercritical carbon dioxide was allowed to flow at 2 ml per minute for 3 hours to remove the remaining 2-propanol and the titanium compound from the inside of the vessel, and the pressure vessel was made to contain only supercritical carbon dioxide. From this state, raise the temperature to 280 ° C, and while maintaining this temperature,
Carbon dioxide was gradually removed so that the pressure was reduced to 1 atm per minute, and the pressure was reduced to normal pressure to obtain a dried gel. Thereafter, heat treatment was performed in the same manner as in Example 1 to obtain Sample B.

【0024】<比較例1>実施例2において、圧力容器
内を超臨界二酸化炭素のみの状態としたのち、温度を8
0℃のままで減圧を行う以外は実施例2と同様にして、
試料Cを得た。この温度ではチタンテトライソプロポキ
シド−アセチルアセトナトは安定である。
<Comparative Example 1> In Example 2, after the pressure vessel was made to contain only supercritical carbon dioxide, the temperature was increased to 8%.
In the same manner as in Example 2 except that the pressure was reduced at 0 ° C,
Sample C was obtained. At this temperature, titanium tetraisopropoxide-acetylacetonato is stable.

【0025】<比較例2>光触媒反応用として市販され
ているデグッサ社製結晶性チタニアP-25を150℃で2
4時間真空乾燥して試料Dとした。
Comparative Example 2 Crystalline titania P-25 manufactured by Degussa, which is commercially available for photocatalytic reaction, was added at 150 ° C.
Sample D was obtained by vacuum drying for 4 hours.

【0026】試料A、B、Cを粉末X線回折法により評
価したところ、A、Bは光触媒活性の高いアナターゼの
結晶を含んでいた。また、溶解−再析出機構への寄与が
大きいエタノール超臨界乾燥で調製したAの方が二酸化
炭素超臨界乾燥で調製したBより結晶化度が高かった。
一方試料Cは500℃で熱処理しているにもかかわらず
非晶質であった。このことから、本発明の製造法が光触
媒活性の高い有害物資除去剤を得るのに有効であること
がわかった。
When the samples A, B, and C were evaluated by the powder X-ray diffraction method, A and B contained crystals of anatase having high photocatalytic activity. A prepared by ethanol supercritical drying, which has a large contribution to the dissolution-reprecipitation mechanism, had a higher crystallinity than B prepared by carbon dioxide supercritical drying.
On the other hand, Sample C was amorphous despite being heat-treated at 500 ° C. This indicates that the production method of the present invention is effective for obtaining a harmful substance remover having high photocatalytic activity.

【0027】試料A、B、C、Dのそれぞれについて窒
素吸着法により測定した比表面積、蒸気吸着法により測
定した30℃におけるベンゼン吸着容量について表1に
まとめた。試料A、B、Cは市販の結晶性チタニアに比
べて比表面積、ベンゼン吸着容量共に10倍以上の値を
示しており、本発明の有害物質除去剤は吸着による有害
物質の除去効果が高いことがわかった。
Table 1 summarizes the specific surface area of each of Samples A, B, C and D measured by the nitrogen adsorption method and the benzene adsorption capacity at 30 ° C. measured by the vapor adsorption method. Samples A, B, and C show a specific surface area and a benzene adsorption capacity of 10 times or more as compared with commercially available crystalline titania, and the harmful substance remover of the present invention has a high effect of removing harmful substances by adsorption. I understood.

【0028】[0028]

【表1】 [Table 1]

【0029】以下の手順により光触媒作用による有害物
質除去能力の評価を行った。試料A、B、C各0.2g
を粉砕後、直径0.5mmのガラスビーズ20gと混合
してガラス反応管内に保持し、100ppmのベンゼン
を含む湿潤空気を30ml/minで流通させ、ベンゼ
ンを試料表面に完全に飽和させて吸着の影響を消去し
た。この状態で4Wのブラックライトを反応管に照射
し、反応管入り口側と出口側でベンゼン濃度をガスクロ
マトグラフによって測定し、両者の比からベンゼン分解
率を算出して、表2にまとめた。また出口側ではベンゼ
ンの分解により生成する二酸化炭素の濃度を測定して、
これも表2にまとめた。試料Dについては試料A〜Cと
チタニアの総量が等しくなるよう試料量を0.06gを
取り、他は試料A〜Cと同様にして評価を行った。
The ability to remove harmful substances by photocatalysis was evaluated according to the following procedure. Sample A, B, C 0.2g each
After crushing, the mixture was mixed with 20 g of glass beads having a diameter of 0.5 mm and held in a glass reaction tube, and humid air containing 100 ppm of benzene was passed at a flow rate of 30 ml / min to completely saturate the benzene on the sample surface and to adsorb the sample. Eliminated effects. In this state, the reaction tube was irradiated with 4 W of black light, the benzene concentration was measured by gas chromatography at the inlet side and the outlet side of the reaction tube, and the benzene decomposition rate was calculated from the ratio between the two. On the outlet side, the concentration of carbon dioxide generated by the decomposition of benzene is measured,
This is also summarized in Table 2. For sample D, 0.06 g of the sample was taken so that the total amount of titania was equal to that of samples A to C, and the other samples were evaluated in the same manner as samples A to C.

【0030】[0030]

【表2】 [Table 2]

【0031】表2に見るように、結晶性のアナターゼを
含む試料A、Bでは高いベンゼン分解率と二酸化炭素の
濃度を示しており、本発明で得た有害物質除去剤の光分
解能力が確認できた。以上の結果より、本発明の有害物
質除去剤は優れた有害物質の除去能力を有することがわ
かった。
As shown in Table 2, Samples A and B containing crystalline anatase show a high benzene decomposition rate and a high carbon dioxide concentration, and the photodegradation ability of the harmful substance removing agent obtained in the present invention was confirmed. did it. From the above results, it was found that the harmful substance removing agent of the present invention has an excellent ability to remove harmful substances.

【0032】[0032]

【発明の効果】この発明により、極めて多孔質で有害物
質の高い吸着能と、光分解能を併せ持ち、透明で形状の
付与が容易な有害化学物質の除去材を得ることができ
る。
According to the present invention, it is possible to obtain a transparent and easy-to-shape removing material for harmful chemical substances, which is extremely porous and has both a high adsorptivity for harmful substances and optical resolution.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 20/30 B01J 20/30 35/02 ZAB 35/02 ZABJ 37/02 101 37/02 101E C07B 37/06 C07B 37/06 C07C 15/04 C07C 15/04 (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86,53/94 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI B01J 20/30 B01J 20/30 35/02 ZAB 35/02 ZABJ 37/02 101 37/02 101E C07B 37/06 C07B 37/06 C07C 15/04 C07C 15/04 (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53 / 86,53 / 94

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリカの湿潤ゲル体にチタン化合物溶液
を含浸させ、次いで乾燥媒体を用いて、乾燥媒体の臨界
点ないし超臨界において、乾燥することにより、結晶性
のチタニアをシリカ骨格上に生成させる有害化学物質除
去材用多孔質ゲルの製造方法。
1. A wet gel body of silica is impregnated with a titanium compound solution, and then dried using a drying medium at a critical point or supercritical of the drying medium to produce crystalline titania on a silica skeleton. Of producing a porous gel for a harmful chemical substance removing material.
【請求項2】 シリカの湿潤ゲル体にチタン化合物溶液
を溶剤の臨界点ないし超臨界において含浸させ、次いで
チタン化合物溶液の溶剤と乾燥媒体との混合物を用い
て、当該混合物の臨界点ないし超臨界において、乾燥す
ることにより、結晶性のチタニアをシリカ骨格上に生成
させる有害化学物質除去材用多孔質ゲルの製造方法。
2. A wet gel body of silica is impregnated with a titanium compound solution at a critical point or supercritical point of a solvent.
Using a mixture of a solvent of a titanium compound solution and a drying medium, drying at the critical point or supercritical point of the mixture to form crystalline titania on a silica skeleton. Manufacturing method.
【請求項3】 チタン化合物の分解反応が進行する温度
以上でかつ、乾燥媒体の臨界点ないし超臨界において、
乾燥させる請求項1又は請求項2記載の有害化学物質除
去材用多孔質ゲルの製造方法。
3. At a temperature not lower than the temperature at which the decomposition reaction of the titanium compound proceeds and at a critical point or supercritical of the drying medium,
The method for producing a porous gel for a harmful chemical substance removing material according to claim 1 or 2, wherein the porous gel is dried.
【請求項4】 乾燥工程の後、有機物を加熱除去する工
程を設ける請求項1ないし請求項3のいずれかひとつに
記載の有害化学物質除去材用多孔質ゲルの製造方法。
4. The method for producing a porous gel for a harmful chemical substance removing material according to claim 1, wherein a step of removing organic substances by heating is provided after the drying step.
【請求項5】 チタン化合物が、チタンテトライソプロ
ポキシド、チタンテトラエトキシド、チタンテトラメト
キシドで代表される金属アルコキシドおよびそれらを配
位子で修飾した複合体、チタニルアセチルアセトナトで
代表される金属アセチルアセトナトおよびその誘導体の
いずれかひとつである請求項1ないし請求項4のいずれ
かに該当する大気中有害化学物質除去材の製造方法。
5. A titanium compound represented by a metal alkoxide represented by titanium tetraisopropoxide, titanium tetraethoxide and titanium tetramethoxide, a complex obtained by modifying the metal alkoxide with a ligand, and titanyl acetylacetonate. The method for producing a material for removing atmospheric harmful chemical substances according to any one of claims 1 to 4, which is one of metal acetylacetonate and a derivative thereof.
【請求項6】 乾燥媒体がエタノール、1−プロパノー
ル、2−プロパノールで代表されるアルコールの1種又
は2種以上、及び又は、二酸化炭素である請求項1ない
し請求項5のいずれかひとつに記載された有害化学物質
除去材の製造方法。
6. The method according to claim 1, wherein the drying medium is one or more alcohols represented by ethanol, 1-propanol and 2-propanol, and / or carbon dioxide. Manufacturing method of the used harmful chemical substance removing material.
【請求項7】 チタン化合物溶液の溶剤がエタノール、
1−プロパノール、2−プロパノールで代表されるアル
コールの1種又は2種以上である請求項1ないし請求項
4のいずれかひとつに記載された有害化学物質除去材の
製造方法。
7. The solvent of the titanium compound solution is ethanol,
The method for producing a harmful chemical substance removing material according to any one of claims 1 to 4, which is one or more of alcohols represented by 1-propanol and 2-propanol.
【請求項8】 シリカの湿潤ゲルがアルコゲルである請
求項1ないし請求項7のいずれかひとつに記載された有
害化学物質除去材の製造方法。
8. The method for producing a harmful chemical substance removing material according to claim 1, wherein the wet gel of silica is an alcogel.
【請求項9】 請求項1ないし請求項8のいずれかひと
つに記載された製造方法に記載された有害化学物質除去
材。
9. A material for removing harmful chemical substances according to any one of claims 1 to 8.
JP2000261493A 2000-08-30 2000-08-30 Manufacturing method of harmful chemical substance removing material Expired - Lifetime JP3538635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261493A JP3538635B2 (en) 2000-08-30 2000-08-30 Manufacturing method of harmful chemical substance removing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261493A JP3538635B2 (en) 2000-08-30 2000-08-30 Manufacturing method of harmful chemical substance removing material

Publications (2)

Publication Number Publication Date
JP2002066319A JP2002066319A (en) 2002-03-05
JP3538635B2 true JP3538635B2 (en) 2004-06-14

Family

ID=18749325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261493A Expired - Lifetime JP3538635B2 (en) 2000-08-30 2000-08-30 Manufacturing method of harmful chemical substance removing material

Country Status (1)

Country Link
JP (1) JP3538635B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358587B2 (en) * 2003-09-29 2009-11-04 東北リコー株式会社 Method for producing photocatalyst adsorbent and photocatalyst adsorbent
JP7020007B2 (en) * 2017-09-12 2022-02-16 富士フイルムビジネスイノベーション株式会社 Silica titania composite airgel particles, method for producing silica titania composite airgel particles, photocatalyst forming composition, photocatalyst, and structure.

Also Published As

Publication number Publication date
JP2002066319A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
JP3949374B2 (en) Titanium oxide, photocatalyst and photocatalyst coating using the same
AU728032B2 (en) Acid contacted enhanced adsorbent and/or catalyst and binder system
KR101319064B1 (en) Method of preparing platinum catalyst for removing formaldehyde, carbon dioxide, methanol and hydrogen
JPH07187846A (en) Reticular ceramic article
CN111715205B (en) Moisture-resistant catalyst for air pollution control and preparation method thereof
US20130153483A1 (en) Photocatalytic composite material
WO2012016118A1 (en) Oxidation catalysts useful for ambient temperature operation
JP2002187712A (en) Spheric porous silica or silica/metal composite particle and method for manufacturing the same
JPH11505760A (en) Photocatalyst composition and method for producing the same
JP3538635B2 (en) Manufacturing method of harmful chemical substance removing material
Tamizhdurai et al. The catalytic reactivity of titanium dioxide supported on SBA-15 catalyst for selective oxidation of benzyl alcohol
JP2976041B2 (en) How to remove organic halides
JP4868326B2 (en) Titanium oxide / carbon composite particles and production method thereof
EP2158965B1 (en) Method for photooxidation of carbon monoxide in gas phase into carbon dioxide
JP2739128B2 (en) Decomposition method of organic chemicals by titanium ceramic membrane
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP2006326453A (en) Titanium oxide-containing smectite-based photocatalytic composite material
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
JP2003062462A (en) Photocatalyst included between clay layers and method for producing the same
JPH0268140A (en) Adsorbent for removal of iodine in gas
JP3051645B2 (en) Method for producing adsorbent and adsorbent
JP2001096154A (en) Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
KR100751445B1 (en) Transition metal incorporated mesoporous silica catalyst and removal of toxic gas using the same
KR102320964B1 (en) Iron-organic framework photocatalyst for adsorption and decomposition of volatile organic compound, manufacturing method thereof and method for removing volatile organic compound using iron-organic framework photocatalyst
JP2016215157A (en) Method for producing titanium oxide-based photocatalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3538635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term