JP3440295B2 - Novel semiconductor photocatalyst and photocatalytic reaction method using the same - Google Patents
Novel semiconductor photocatalyst and photocatalytic reaction method using the sameInfo
- Publication number
- JP3440295B2 JP3440295B2 JP21986999A JP21986999A JP3440295B2 JP 3440295 B2 JP3440295 B2 JP 3440295B2 JP 21986999 A JP21986999 A JP 21986999A JP 21986999 A JP21986999 A JP 21986999A JP 3440295 B2 JP3440295 B2 JP 3440295B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction
- semiconductor
- semiconductor photocatalyst
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 48
- 239000011941 photocatalyst Substances 0.000 title claims description 33
- 238000013032 photocatalytic reaction Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 title description 14
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 5
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- -1 ruthenium oxide compound Chemical class 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 239000010955 niobium Substances 0.000 claims 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000003054 catalyst Substances 0.000 description 42
- 230000000052 comparative effect Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000000843 powder Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 5
- 238000006303 photolysis reaction Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012263 liquid product Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光反応用触媒及び
それを使用する光触媒反応方法に関するものである。TECHNICAL FIELD The present invention relates to a photoreaction catalyst and a photocatalytic reaction method using the same.
【0002】[0002]
【従来の技術】半導体光触媒は、二酸化チタンや酸化亜
鉛等の半導体又は該半導体に白金、ロジウム、ニッケ
ル、銅等の金属や酸化ルテニウム等の金属酸化物を担持
した触媒である。この触媒に、触媒を構成する半導体の
バンドギャップより大きいエネルギーレベルの光を照射
すると、伝導帯には電子が価電子帯には正孔が形成さ
れ、これらが触媒表面の吸着種に作用して反応が起る。
例えば、水を分解して水素と酸素を発生させたり有害物
を分解して無害化する反応等である。半導体光触媒は、
太陽光を利用する水分解法水素の製造用触媒や有害物分
解無害化用触媒として注目されており、今後の発展が期
待されている。しかし、現在のところ触媒性能が低いた
めに実用化が進んでおらず、そのため半導体光触媒の性
能向上が強く望まれている。2. Description of the Related Art A semiconductor photocatalyst is a semiconductor such as titanium dioxide or zinc oxide, or a catalyst in which a metal such as platinum, rhodium, nickel or copper or a metal oxide such as ruthenium oxide is supported on the semiconductor. When this catalyst is irradiated with light having an energy level larger than the band gap of the semiconductor constituting the catalyst, electrons are formed in the conduction band and holes are formed in the valence band, which act on the adsorbed species on the catalyst surface. The reaction occurs.
For example, it is a reaction that decomposes water to generate hydrogen and oxygen, or decomposes harmful substances to render them harmless. Semiconductor photocatalyst
It has attracted attention as a catalyst for hydrogen production in water splitting method using sunlight and a catalyst for detoxifying harmful substances, and future development is expected. However, at present, it has not been put into practical use due to its low catalytic performance, and therefore, improvement of the performance of the semiconductor photocatalyst is strongly desired.
【0003】[0003]
【発明が解決しようとする課題】本発明は、従来の半導
体光触媒より大幅に高性能な半導体光触媒及び該触媒を
使用する光触媒反応方法を提供することをその課題とす
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor photocatalyst having a significantly higher performance than conventional semiconductor photocatalysts and a photocatalytic reaction method using the catalyst.
【0004】[0004]
【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。本発明によれば、以下の発明が提供される。
(1) 二酸化チタン、チタン酸ストロンチウム、酸
化ジルコニウム、酸化タンタル、酸化亜鉛、酸化ニオ
ブ、硫化カドミウム、及び炭化珪素から選ばれる、異な
る2種類以上の半導体光触媒のそれぞれに、白金、ロジ
ウム、ニッケル、銅から選ばれる金属又は酸化ルテニウ
ム化合物を担持させ、混合することにより得られるもの
であることを特徴とする半導体光触媒。
(2) 光を照射して水素を発生させる反応である光触
媒反応において、(1)に記載した半導体光触媒を使用
することを特徴とする光を照射して水素を発生させる反
応である光触媒反応。The present inventors have completed the present invention as a result of intensive studies to solve the above problems. According to the present invention, the following inventions are provided. (1) Titanium dioxide, strontium titanate, acid
Zirconium oxide, tantalum oxide, zinc oxide, nitric oxide
It is obtained by supporting and mixing a metal selected from platinum, rhodium, nickel and copper or a ruthenium oxide compound on each of two or more different semiconductor photocatalysts selected from bu, cadmium sulfide and silicon carbide. A semiconductor photocatalyst characterized by being present. (2) In is irradiated with light photocatalytic reaction is a reaction for generating hydrogen, photocatalytic reaction is a reaction for generating hydrogen is irradiated with light, characterized by using a semiconductor photocatalyst as described in (1) .
【0005】[0005]
【発明の実施の形態】本発明の触媒は、半導体組成が異
なる2種類以上の半導体光触媒から成る触媒であり、半
導体光触媒としては公知品が使われる。具体的には、二
酸化チタン、チタン酸ストロンチウム、酸化ジルコニウ
ム、酸化タンタル、酸化亜鉛、酸化ニオブの酸化物半導
体;硫化カドミウムからなる硫化物半導体;炭化珪素か
らなる炭化物が使われるが、活性の高い酸化物半導体の
使用が好ましい。また、通常は前記半導体に反応系で安
定な金属や金属酸化物を担持させる。担持させる金属は
白金、ロジウム、ニッケル、銅であり、金属酸化物は酸
化ルテニウムである。そして、その担持量は半導体の
0.001〜50重量%、好ましくは0.01〜10重
量%である。なお、金属や金属酸化物は担持触媒製造の
際の常法で担持させれば良く、例えば含浸法で水溶性金
属塩を担持させてから水素還元する方法で金属を担持さ
せたり、光電着法、沈澱法、イオン交換法等で担持させ
ることができる。BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention is a catalyst composed of two or more kinds of semiconductor photocatalysts having different semiconductor compositions, and known products are used as the semiconductor photocatalyst. Specifically, titanium dioxide, strontium titanate, zirconium oxide, tantalum oxide, zinc oxide, oxide semiconductors of niobium oxide; sulfide semiconductors of cadmium sulfide; carbides of silicon carbide are used. The use of semiconductors is preferred. In addition, a metal or metal oxide that is stable in the reaction system is usually supported on the semiconductor. The metals to be supported are platinum, rhodium, nickel and copper, and the metal oxide is ruthenium oxide. And, the supported amount is 0.001 to 50% by weight, preferably 0.01 to 10% by weight of the semiconductor. The metal or metal oxide may be supported by a conventional method for producing a supported catalyst. For example, a metal is supported by a method of supporting a water-soluble metal salt by an impregnation method and then hydrogen reduction, or a photoelectric deposition method. It can be supported by a precipitation method, an ion exchange method, or the like.
【0006】触媒を構成する半導体光触媒は、2種類で
も3種類以上でも良いが、触媒種が多いほど高活性の傾
向にある。また、通常は高活性半導体光触媒が含まれて
いる方が高活性なので、半導体光触媒の中で格段に高活
性な金属担持二酸化チタンと、高活性で安定性等にも問
題のない酸化物半導体光触媒から成るものが好ましい。
なお、ここで使われる酸化物半導体光触媒としては、金
属担持酸化タンタル、金属担持チタン酸ストロンチウ
ム、酸化ジルコニウム等が挙げられる。触媒を構成する
個々の半導体光触媒は、その存在比や形状を広い範囲で
変えることができる。例えば、一種類の半導体光触媒の
存在比は全触媒の0.01〜99.99重量%、好まし
くは1〜99重量%とすれば良い。しかし、通常は存在
比によって触媒活性が変動し、一般に触媒を構成する触
媒全部がほぼ同重量の場合に最高活性の触媒が得られ
る。The number of semiconductor photocatalysts constituting the catalyst may be two or three or more, but the more catalyst species, the higher the activity tends to be. In addition, since it is usually more active to contain a highly active semiconductor photocatalyst, the metal-supported titanium dioxide, which is remarkably highly active among the semiconductor photocatalysts, and the oxide semiconductor photocatalyst, which is highly active and has no problems in stability, etc. Those consisting of are preferred.
The oxide semiconductor photocatalyst used here includes metal-supported tantalum oxide, metal-supported strontium titanate, zirconium oxide and the like. The abundance ratio and shape of each semiconductor photocatalyst that constitutes the catalyst can be changed within a wide range. For example, the abundance ratio of one kind of semiconductor photocatalyst may be 0.01 to 99.99% by weight, and preferably 1 to 99% by weight of the total catalyst. However, the catalytic activity usually fluctuates depending on the abundance ratio, and in general, the highest activity catalyst is obtained when all the catalysts constituting the catalyst have approximately the same weight.
【0007】触媒を構成する個々の半導体光触媒は、粉
末状、粒子状、膜状等の種々の形状とすることができ
る。そして、個々の触媒は同じ形状でも異なっていても
良いが、全触媒をほぼ同じ大きさの粉末状とするのが好
ましく、その平均粒径は0.005〜100μm、好ま
しくは0.01〜10μmとするのが良い。以上に詳記
した触媒Aは、それを構成する半導体光触媒より大幅に
高活性となる。その理由は不明であるが、複数の触媒が
光反応に関与することによる相乗効果に基づくものと考
えられる。The individual semiconductor photocatalysts constituting the catalyst can be made into various shapes such as powder, particles and films. The individual catalysts may have the same shape or different, but it is preferable that all the catalysts are in the form of powder having substantially the same size, and the average particle size is 0.005 to 100 μm, preferably 0.01 to 10 μm. It is good to The catalyst A detailed above has a significantly higher activity than the semiconductor photocatalyst that constitutes it. Although the reason is unknown, it is considered to be based on the synergistic effect of multiple catalysts involved in the photoreaction.
【0008】削除 Delete
【0009】削除 [ Delete ]
【0010】本発明の光触媒反応方法では、単一の半導
体光触媒を使う代りに触媒を使用するが、それ以外は従
来公知の半導体光触媒反応方法と同様に行えば良い。従
って、光源や反応装置は従来の半導体光触媒反応時と同
じで良いし、反応条件も従来公知の条件をそのまま適用
すれば良い。例えば、本発明法によって水分解法水素を
製造する際は、従来の半導体光触媒を使用する水分解条
件で反応させれば良く、本発明法によって有害有機物を
分解無害化する際は従来の半導体光触媒を使う同一反応
時と同条件で反応させれば良い。そして、光源には触媒
に使う半導体のバンドギャップより大きなエネルギーレ
ベルにある光を照射できるもの、例えば高圧水銀灯やキ
セノンランプ等を使えば良いし、光源は反応器内(内部
照射型)に設けても反応器外(外部照射型)に設けても
よい。また、照射光としては太陽光も使うことができ
る。そして、光源から出る光が半導体光触媒に到達する
までに吸収されないように、光路となる部分の反応器や
光学系は紫外線を透過する石英や透明樹脂で作るのが良
く、半導体光触媒は薄膜状や懸濁状で反応系内に存在さ
せるのが望ましい。そのため、反応系内を良く攪拌した
り反応器と光源の形状及び両者の位置関係について配慮
するのが望ましい。In the photocatalytic reaction method of the present invention, a catalyst is used instead of using a single semiconductor photocatalyst, but other than that, it may be performed in the same manner as a conventionally known semiconductor photocatalytic reaction method. Therefore, the light source and the reaction apparatus may be the same as those used in the conventional semiconductor photocatalytic reaction, and the reaction conditions may be the conventionally known conditions as they are. For example, when hydrogen is produced by the water splitting method according to the method of the present invention, the reaction may be performed under water splitting conditions using a conventional semiconductor photocatalyst, and when decomposing harmful organic substances by the method of the present invention to render them harmless, the conventional semiconductor photocatalyst may be used. The reaction may be performed under the same conditions as the same reaction used. As the light source, one that can irradiate light having an energy level larger than the band gap of the semiconductor used for the catalyst, such as a high-pressure mercury lamp or a xenon lamp, may be used, and the light source may be provided in the reactor (internal irradiation type). May be provided outside the reactor (external irradiation type). Also, sunlight can be used as irradiation light. Then, in order to prevent the light emitted from the light source from being absorbed by the time it reaches the semiconductor photocatalyst, it is better to make the reactor and the optical system of the optical path part with quartz or transparent resin that transmits ultraviolet rays. It is desirable that the suspension be present in the reaction system. Therefore, it is desirable that the reaction system is well agitated, the shape of the reactor and the light source, and the positional relationship between the two are taken into consideration.
【0011】[0011]
【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はこの実施例によって限定されな
い。なお、以下に記す%はいずれも重量%である。EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples. In addition, all the percentages described below are weight percentages.
【0012】実施例1〜8
400Wの高圧水銀灯を光源とし、これを反応器内に設
けた石英製の内部照射型液相反応器を使って有機化合物
又は水の光分解実験を行った。この反応器は、圧力計と
ガスサンプラーを備えた内容積650ミリリットルの気
密反応器で、反応器内容物はマグネチックスターラーで
良く攪拌することができる。この反応器に、精製水35
0ミリリットルと有機化合物又は精製水5ミリリットル
と触媒A1gを仕込み、反応器内を脱気後にアルゴンを
導入して反応器内圧力を約27トールとしてから、液の
攪拌と光照射を開始して室温減圧下に有機化合物又は水
の光分解実験を行った。なお、有機化合物と水が共存し
ている系では有機化合物の光分解反応が優先して進行す
る。Examples 1 to 8 A high-pressure mercury lamp of 400 W was used as a light source, and a photolysis experiment of an organic compound or water was carried out using an internal irradiation type liquid phase reactor made of quartz and provided in the reactor. This reactor is an airtight reactor with an internal volume of 650 ml equipped with a pressure gauge and a gas sampler, and the contents of the reactor can be well stirred with a magnetic stirrer. Purified water 35
Charge 0 ml of organic compound or 5 ml of purified water and 1 g of catalyst A, degas the inside of the reactor, and then introduce argon to bring the pressure inside the reactor to about 27 Torr, and then stir the liquid and start irradiation with light at room temperature. Photolysis experiments of organic compounds or water were performed under reduced pressure. In a system in which an organic compound and water coexist, the photodecomposition reaction of the organic compound preferentially proceeds.
【0013】水や有機化合物の光分解反応では水素を主
成分とするガスと液状物が生成するから、光照射開始後
は反応器内圧が次第に増加する。そこで、反応開始後は
10分毎に反応器内圧を測定するとともに、反応開始後
1時間までに得られたガス状生成物をオンラインでガス
クロマトグラフ法によって分析し、反応開始から1時間
後までの水素生成速度を求めた。また、反応開始後1時
間までに生成した液状生成物をガスクロマトグラフ法と
イオンクロマトグラフ法で分析し、生成物を確認した。
実施例1〜8では、2〜4種の半導体光触媒を等重量混
合した粉末触媒1gを使いた。触媒は、半導体粉末に
0.1%の白金を光電着法によって担持させた触媒であ
る。なお、白金源には塩化白金酸を使った。また、触媒
用半導体粉末の二酸化チタンTiO2は日本エアロ ジ
ル社製P−25、酸化タンタルTa2O5とチタン酸ス
トロンチウムSrTiO3は和光純葉社製品、酸化ジル
コニウムZrO2は添川化学社製品であり、シリカゲル
SiO2はダビソン社製の#57である。実施例1〜8
で使った粉末状半導体光触媒の種類と、被分解物と、水
素生成速度を表1に、確認されたガス状及び液状生成物
の種類を表2に示す。In the photolysis reaction of water or an organic compound, a gas containing hydrogen as a main component and a liquid substance are produced, so that the pressure inside the reactor gradually increases after the start of light irradiation. Therefore, after starting the reaction, the internal pressure of the reactor is measured every 10 minutes, and the gaseous products obtained up to 1 hour after the start of the reaction are analyzed online by a gas chromatograph method. The hydrogen production rate was calculated. Further, the liquid product produced within 1 hour after the start of the reaction was analyzed by gas chromatography and ion chromatography to confirm the product.
In Examples 1 to 8, 1 g of a powder catalyst, in which 2 to 4 kinds of semiconductor photocatalysts were mixed in equal weight, was used. Catalyst is semiconductor powder
0. It is a catalyst in which 1% of platinum is supported by a photoelectric deposition method. Chloroplatinic acid was used as the platinum source. Further, titanium dioxide TiO 2 of the semiconductor powder for catalyst is P-25 manufactured by Nippon Aerosil Co., Ltd., tantalum oxide Ta 2 O 5 and strontium titanate SrTiO 3 are products of Wako Junyo Co., Ltd., and zirconium oxide ZrO 2 is product of Soekawa Chemical Co., Ltd. And silica gel SiO 2 is # 57 from Davison. Examples 1-8
Table 1 shows the types of powdery semiconductor photocatalysts used in the above, the substances to be decomposed, and the hydrogen generation rate, and Table 2 shows the confirmed types of gaseous and liquid products.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】比較例1〜9
実施例1〜8と比較するために、粉末状半導体光触媒及
びシリカゲル粉末を単独使用する以外は実施例と同様に
して比較例の実験を行った。すなわあち、比較例1〜9
では0.1%の白金を担持した粉末状半導体1gを触媒
とし、実施例と同様な光分解反応を試みた。使用した触
媒の種類と被分解物と水素生成速度を表3に、確認され
たガス状及び液状生成物の種類を表4に示す。Comparative Examples 1 to 9 In order to compare with Examples 1 to 8 , experiments of Comparative Examples were conducted in the same manner as in Examples except that the powdery semiconductor photocatalyst and silica gel powder were used alone. That way, Comparative Examples 1-9
Then, the same photodecomposition reaction as in the example was tried using 1 g of the powdery semiconductor supporting 0.1% of platinum as a catalyst . Table 3 shows the types of catalysts used, substances to be decomposed and hydrogen production rates, and Table 4 shows the types of confirmed gaseous and liquid products.
【0017】[0017]
【表3】 [Table 3]
【0018】[0018]
【表4】 [Table 4]
【0019】実施例1と比較例1及び2との比較、実施
例2と比較例1及び3との比較、実施例3と比較例1及
び4との比較、実施例4と比較例1〜3との比較、実施
例5と比較例1〜4との比較、実施例6と比較例5及び
6との比較、実施例7と比較例5〜7との比較、実施例
8と比較例8及び9との比較の比較から2種類以上の粉
末状半導体光触媒を併用すると、触媒活性が大幅に向上
することが明らかに認められる。例えば、実施例1の実
験結果と比較例1及び2の実験結果とを比較すると、2
種類の触媒を併用する実施例1の場合は触媒使用量が合
計1gで水素生成速度11.69ミリモル/hrとなる
のに、触媒を単独使用する比較例1及び2の場合は合計
触媒使用量が2gなのに両実験で生成する水素の生成速
度は合計しても7.43ミリモル/hrにすぎず、実施
例の場合の6割強の水素生成速度しか得られていない。Comparison between Example 1 and Comparative Examples 1 and 2, comparison between Example 2 and Comparative Examples 1 and 3, comparison between Example 3 and Comparative Examples 1 and 4, Example 4 and Comparative Examples 1 to 1 Comparison with Example 3, comparison with Example 5 with Comparative Examples 1 to 4, comparison with Example 6 with Comparative Examples 5 and 6, comparison with Example 7 and Comparative Examples 5 to 7, Example 8 and Comparative Example From the comparison with 8 and 9, it is clearly recognized that the combined use of two or more kinds of powdery semiconductor photocatalysts significantly improves the catalytic activity. For example, comparing the experimental results of Example 1 with the experimental results of Comparative Examples 1 and 2, the result is 2
In the case of Example 1 in which two kinds of catalysts are used together, the total amount of catalyst used is 1 g, and the hydrogen generation rate is 11.69 mmol / hr, but in the case of Comparative Examples 1 and 2 in which the catalyst is used alone, the total amount of catalyst used However, the total production rate of hydrogen produced in both experiments was 7.43 mmol / hr, and only 60% or more of the production rate of hydrogen in the case of Example was obtained.
【0020】[0020]
【発明の効果】本発明によれば、半導体光触媒を使用す
る水分解や環境汚染物質の酸化分解等が従来法より大幅
に効率良く行われるようになる。従って、太陽光線で水
を分解して水素ガスを製造する方法の実現可能性が高く
なると共に、現在でも下記のような用途に利用すること
ができる。 病院や老人ホーム等の建物の内壁に2種
類以上の半導体光触媒粉末の混合物(以下、この混合物
を混合粉末触媒とも云う)を塗布すると、該触媒による
温和な光酸化分解反応が進行するために殺菌及び消臭効
果が得られる。 蛍光灯のフードに混合粉末触媒を塗
布すると、の場合と同様な光酸化分解反応が進行する
から該蛍光灯が存在する室内の消臭に有効である。
ガラス製コップ等の透明食器類の表面に混合粉末触媒を
塗布すると、前記と同様に温和な光酸化分解反応が進行
するから殺菌、消臭及び汚染物除去等に有効である。
貯水池、川、池等の水中に混合粉末触媒を存在させる
と、前記と同様にして太陽光によって農薬、ヘドロ、環
境汚染性有機物等が光酸化分解して除去される。 有
機物で汚染された海水やNOx及びSOx等で汚染された
大気は、太陽光を照射しながら混合粉末触媒が充填して
いる層を通過させると不純物が分解除去される。According to the present invention, water decomposition using a semiconductor photocatalyst, oxidative decomposition of environmental pollutants, and the like can be performed much more efficiently than conventional methods. Therefore, the feasibility of the method for producing hydrogen gas by decomposing water with sunlight is increased, and it can be used for the following purposes even now. When a mixture of two or more kinds of semiconductor photocatalyst powder (hereinafter, this mixture is also referred to as a mixed powder catalyst) is applied to the inner wall of a building such as a hospital or a nursing home, sterilization occurs because a mild photooxidative decomposition reaction by the catalyst proceeds. And a deodorizing effect is obtained. When the mixed powder catalyst is applied to the hood of a fluorescent lamp, a photooxidative decomposition reaction similar to that in the case of (1) proceeds, so that it is effective for deodorizing the room where the fluorescent lamp is present.
When the mixed powder catalyst is applied to the surface of transparent tableware such as a glass cup, a mild photooxidative decomposition reaction proceeds in the same manner as described above, which is effective for sterilization, deodorization and removal of contaminants.
When the mixed powder catalyst is made to exist in the water of a reservoir, river, pond, etc., pesticides, sludge, environmental pollutants, etc. are photooxidatively decomposed and removed by sunlight in the same manner as described above. Impurities are decomposed and removed when seawater contaminated with organic substances and air contaminated with NOx, SOx, etc. are passed through the layer filled with the mixed powder catalyst while being irradiated with sunlight.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 3/22 B01J 23/64 102M (56)参考文献 特開 平6−126189(JP,A) 特開 平3−193191(JP,A) 特開 昭62−68547(JP,A) 特開 平6−182218(JP,A) 特開 平7−124464(JP,A) 特開 平8−257364(JP,A) 実開 平4−117644(JP,U) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C01B 3/22 B01J 23/64 102M (56) References JP-A-6-126189 (JP, A) JP-A-3-193191 ( JP, A) JP 62-68547 (JP, A) JP 6-182218 (JP, A) JP 7-124464 (JP, A) JP 8-257364 (JP, A) Flat 4-117644 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) B01J 21/00-38/74
Claims (2)
ム、酸化ジルコニウム、酸化タンタル、酸化亜鉛、酸化
ニオブ、硫化カドミウム、及び炭化珪素から選ばれる、
異なる2種類以上の半導体光触媒のそれぞれに、白金、
ロジウム、ニッケル、銅から選ばれる金属又は酸化ルテ
ニウム化合物を担持させ、混合することにより得られる
ものであることを特徴とする半導体光触媒。1. Titanium dioxide, strontium titanate
System, zirconium oxide, tantalum oxide, zinc oxide, oxidation
Selected from niobium, cadmium sulfide, and silicon carbide ,
For each of two or more different semiconductor photocatalysts, platinum,
A semiconductor photocatalyst, which is obtained by supporting a metal selected from rhodium, nickel and copper or a ruthenium oxide compound and mixing them.
る光触媒反応において、請求項1に記載した半導体光触
媒を使用することを特徴とする光を照射して水素を発生
させる反応である光触媒反応。2. A photocatalytic reaction, which is a reaction of irradiating light to generate hydrogen, wherein the semiconductor photocatalyst according to claim 1 is used to irradiate light to generate hydrogen. A photocatalytic reaction that is a reaction that occurs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21986999A JP3440295B2 (en) | 1999-08-03 | 1999-08-03 | Novel semiconductor photocatalyst and photocatalytic reaction method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21986999A JP3440295B2 (en) | 1999-08-03 | 1999-08-03 | Novel semiconductor photocatalyst and photocatalytic reaction method using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7237424A Division JPH0975745A (en) | 1995-09-14 | 1995-09-14 | Novel catalyst for photoreaction and photocatalytic reaction method using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000051709A JP2000051709A (en) | 2000-02-22 |
JP3440295B2 true JP3440295B2 (en) | 2003-08-25 |
Family
ID=16742342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21986999A Expired - Lifetime JP3440295B2 (en) | 1999-08-03 | 1999-08-03 | Novel semiconductor photocatalyst and photocatalytic reaction method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3440295B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003265962A (en) * | 2002-03-18 | 2003-09-24 | Nittetsu Mining Co Ltd | Photocatalyst and method of producing the same |
JP4357801B2 (en) | 2002-06-25 | 2009-11-04 | 日鉄鉱業株式会社 | Highly active photocatalyst and method for producing the same |
JP4362695B2 (en) * | 2003-08-18 | 2009-11-11 | ソニー株式会社 | Fuel reformer and fuel reforming method |
JP5890842B2 (en) * | 2010-11-04 | 2016-03-22 | 中国科学院理化技術研究所 | Semiconductor photocatalyst for photocatalysis and reforming of biomass derivatives to produce hydrogen and its production and application |
JP6073520B1 (en) * | 2015-07-31 | 2017-02-01 | Toto株式会社 | Photocatalyst material and method for producing the same |
JP7296627B2 (en) * | 2019-09-10 | 2023-06-23 | 国立研究開発法人産業技術総合研究所 | Method for oxidizing substances in water, and photocatalyst for oxidizing substances |
CN116217332A (en) * | 2021-12-06 | 2023-06-06 | 中国科学院大连化学物理研究所 | Photocatalytic methane dehydrogenation coupling method |
-
1999
- 1999-08-03 JP JP21986999A patent/JP3440295B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000051709A (en) | 2000-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3844823B2 (en) | Photocatalyst, photocatalyst production method and photocatalytic reaction method | |
KR101334970B1 (en) | Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and appatarus for preparation of oxidizing agent | |
JP2009078211A (en) | Photocatalyst | |
JP2001070800A (en) | Photocatalyst film composition and photocatalyst body using the same | |
JP2007216223A (en) | Photocatalytic material having semiconductor properties, and its manufacturing method and use | |
JP4505688B2 (en) | Novel photocatalyst and method for producing the same | |
EP2263795A1 (en) | Photocatalyst, preparation method thereof, photoreactor, and photolysis process | |
JP3440295B2 (en) | Novel semiconductor photocatalyst and photocatalytic reaction method using the same | |
WO2005087371A1 (en) | Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same | |
JP3987289B2 (en) | Photocatalyst, method for producing the same, and photocatalyst using the same | |
JP3612552B2 (en) | Photoreaction catalyst | |
JP2002320862A (en) | Photocatalyst thin film in which metal is supported on titanium oxide thin film | |
JP2003019437A (en) | Photocatalyst, method for producing hydrogen using the photocatalyst, and method for decomposing harmful matter | |
JP4150712B2 (en) | Visible light-activated photocatalyst and process for producing the same | |
JP3987395B2 (en) | Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same | |
JP3096728B2 (en) | Method and apparatus for decomposing water by sunlight | |
JPH0975745A (en) | Novel catalyst for photoreaction and photocatalytic reaction method using same | |
JP2002177775A (en) | Visible ray reaction type photocatalyst and manufacturing method thereof | |
JP4296259B2 (en) | Method for producing hydrogen | |
JP3837548B2 (en) | Bismuth complex oxide visible light responsive photocatalyst and method for decomposing and removing harmful chemicals using the same | |
JP3903179B2 (en) | Indium complex oxide visible light responsive photocatalyst and oxidative decomposition method of materials using the same | |
JP2000189806A (en) | Photocatalyst | |
WO2013185328A1 (en) | Photocatalytic compositions and methods for their preparation and use | |
JPS61178402A (en) | Method of decomposition treatment of ozone | |
JP2007190556A (en) | Visible light-responsive photocatalyst, method for manufacturing the same and photocatalytic body using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |