JP2002177775A - Visible ray reaction type photocatalyst and manufacturing method thereof - Google Patents

Visible ray reaction type photocatalyst and manufacturing method thereof

Info

Publication number
JP2002177775A
JP2002177775A JP2000380341A JP2000380341A JP2002177775A JP 2002177775 A JP2002177775 A JP 2002177775A JP 2000380341 A JP2000380341 A JP 2000380341A JP 2000380341 A JP2000380341 A JP 2000380341A JP 2002177775 A JP2002177775 A JP 2002177775A
Authority
JP
Japan
Prior art keywords
solution
photocatalyst
visible light
reactive
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000380341A
Other languages
Japanese (ja)
Inventor
Atsushi Toyoda
淳 豊田
Kazuyuki Shimogishi
和之 下岸
Tatsuo Kamiyoshi
達夫 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Himeka Engineering KK
Original Assignee
Himeka Engineering KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himeka Engineering KK filed Critical Himeka Engineering KK
Priority to JP2000380341A priority Critical patent/JP2002177775A/en
Publication of JP2002177775A publication Critical patent/JP2002177775A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide stable visible-ray-reaction type photocatalyst that is comparatively easy to produce and a manufacturing method thereof. SOLUTION: The visible-ray-reaction type photocatalyst is obtained by adding hydrogen peroxide water into a 1st solution which contains one or more kinds of metals selected from the group of V, Fe, Ni, Cu, Cr, Mg, Ag, Mn, Pd, and Pt, and titanium, or a 2nd solution which is prepared by dispersing a hydroxide, oxide or complex obtained by adding hydrogen peroxide into the 1st solution to react.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、可視光により、
有機化合物や窒素酸化物を光触媒反応によって分解し、
あるいは殺菌・消臭する等の作用を奏する可視光反応型
の光触媒とその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to
Decompose organic compounds and nitrogen oxides by photocatalytic reaction,
Alternatively, the present invention relates to a visible light reactive photocatalyst having an action such as sterilization and deodorization, and a method for producing the same.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
から、廃液あるいは空気中の有機化合物や窒素酸化物を
分解等するために、酸化チタンを触媒とする光反応が実
用化されつつあり、本出願人も実用化している。そし
て、上記酸化チタンを触媒とする場合、照射される光
は、身近な太陽光や蛍光灯等の光に含まれる光のうち、
波長が400nm以下の、所謂紫外光が光反応に寄与す
る。ところが、上記太陽光あるいは蛍光灯には、上記4
00nm以下の波長の紫外光の全体の光量に占める割合
は比較的少なく、従って、従来の場合、効果的に光反応
を生じさせるためには、光反応に適した波長の光を照射
する「紫外線ランプ」が必要になる。
2. Description of the Related Art Conventionally, photoreactions using titanium oxide as a catalyst for decomposing organic compounds and nitrogen oxides in waste liquid or air have been practically used. The applicant has also put it into practical use. When the titanium oxide is used as a catalyst, the light to be irradiated is light included in light such as sunlight or a fluorescent light, which is nearby.
So-called ultraviolet light having a wavelength of 400 nm or less contributes to the photoreaction. However, the above-mentioned sunlight or fluorescent lamp has
The ratio of ultraviolet light having a wavelength of 00 nm or less to the total amount of ultraviolet light is relatively small. Therefore, in the related art, in order to effectively generate a photoreaction, light having a wavelength suitable for the photoreaction is irradiated with “ultraviolet light”. A lamp is needed.

【0003】このような状況の元、最も利用し易い、つ
まり最も身近な上記太陽光や蛍光灯が多量に有する可視
光に対して光反応を生ずるような、「可視光反応型の光
触媒」が最近注目されている。ところが、上記「可視光
反応型の光触媒」は、安定したものを容易に製造するこ
とが困難で、現在のところ酸化チタンに金属イオンを注
入する「イオン注入式」が提案されている。しかし、こ
の「イオン注入式」の場合、大きなエネルギーで酸化チ
タンに金属イオンを注入するため、大がかりな設備が必
要となる。また、酸化チタンの酸素分子の一つを欠落さ
せた「酸素欠落式」の製造方法も提案されているが、こ
の場合、酸素分子が欠落していることから、化学性状的
に非常に不安定で、その状態(酸素が欠落した状態)で
長時間安定させておくことが困難な点において問題があ
る。
[0003] Under such circumstances, a "visible light-reactive photocatalyst" which is most easily used, that is, generates a photoreaction with the most familiar visible light of the sunlight or the fluorescent lamp, has been developed. Recently, it has attracted attention. However, it is difficult to easily produce a stable “visible light-reaction type photocatalyst”, and at present, an “ion implantation type” in which metal ions are implanted into titanium oxide has been proposed. However, in the case of the “ion implantation method”, since metal ions are implanted into titanium oxide with large energy, a large-scale facility is required. In addition, there has been proposed an "oxygen depletion type" production method in which one of the oxygen molecules of titanium oxide is deleted. Thus, there is a problem in that it is difficult to stabilize in that state (a state where oxygen is lacking) for a long time.

【0004】このような状況下、各光触媒メーカとも試
行錯誤しているのが現状である。
[0004] Under such circumstances, it is the current situation that each photocatalyst maker makes trial and error.

【0005】本発明は、このような現況に鑑みおこなわ
れたのもので、比較的簡単に且つ安定した「可視光反応
型の光触媒」とその製造方法を提供することを目的とす
る。
The present invention has been made in view of such a situation, and has as its object to provide a relatively simple and stable "visible light-reaction type photocatalyst" and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本第1の発明にかかる可
視光反応型の光触媒は、V、Fe、Ni、Cu、Cr、
Mg、Ag、Mn、Pd、Ptの群から選択される1種
以上の金属と、チタンとを含有する第1の溶液、あるい
は、該第1の溶液に過酸化水素水を添加して得られる水
酸化物、水和物、酸化物あるいは錯体、または上記水酸
化物、水和物、酸化物あるいは錯体のいずれかが分散し
た分散溶液、のうちのいずれかに、過酸化水素水を添加
して反応させることによって得られることを特徴とす
る。
The visible light reaction type photocatalyst according to the first invention comprises V, Fe, Ni, Cu, Cr,
A first solution containing one or more metals selected from the group consisting of Mg, Ag, Mn, Pd, and Pt and titanium, or obtained by adding a hydrogen peroxide solution to the first solution. Hydrogen peroxide water is added to any one of a hydroxide, a hydrate, an oxide or a complex, or a dispersion solution in which any of the above hydroxide, hydrate, oxide or a complex is dispersed. Characterized in that it is obtained by reacting

【0007】しかして、この可視光反応型の光触媒によ
れば、V、Fe、Ni、Cu、Cr、Mg、Ag、M
n、Pd、Ptの群から選択される1種以上の金属が、
過酸化水素水を添加することによって、ペルオキソ基が
介在して、それによって溶液中にチタンと上記金属が分
散状態を保つことから、上記金属がチタン内に取り込ま
れる。このため、可視光に対しても活性化する。(勿論
の紫外線に対しても酸化チタンと同様に活性化する。)
そして、上記可視光反応型の光触媒は、大きなエネルギ
ーや設備を必要とすること無く、、簡単に且つ容易に生
成することができ、しかも、組成的に、生成後長時間安
定したものとなる。
According to the visible light reaction type photocatalyst, V, Fe, Ni, Cu, Cr, Mg, Ag, M
one or more metals selected from the group consisting of n, Pd, and Pt;
The addition of the aqueous hydrogen peroxide causes the peroxo group to intervene, thereby keeping the titanium and the metal dispersed in the solution, so that the metal is incorporated into the titanium. For this reason, it is activated also for visible light. (Of course, it is activated against ultraviolet rays in the same manner as titanium oxide.)
The visible light reaction type photocatalyst can be easily and easily produced without requiring large energy or equipment, and is stable in composition for a long time after production.

【0008】また、本第2の発明にかかる可視光反応型
の光触媒の製造方法は、溶液に、チタンと、V、Fe、
Ni、Cu、Cr、Mg、Ag、Mn、Pd、Ptの群
から選択される1種以上の金属とを含有させた第1の溶
液を得る第1の工程と、第1の工程で生成された第1の
溶液に、過酸化水素水を添加して反応させる第2の工程
を有することを特徴とする。
The method for producing a visible light reactive photocatalyst according to the second aspect of the present invention comprises the steps of: adding titanium, V, Fe,
A first step of obtaining a first solution containing at least one metal selected from the group consisting of Ni, Cu, Cr, Mg, Ag, Mn, Pd, and Pt; A second step of adding a hydrogen peroxide solution to the first solution to cause a reaction.

【0009】また、本第3の発明にかかる可視光反応型
の光触媒の製造方法は、溶液に、チタンと、V、Fe、
Ni、Cu、Cr、Mg、Ag、Mn、Pd、Ptの群
から選択される1種以上の金属とを含有させる第1の工
程と、第1の工程で生成された第1の溶液に、過酸化水
素水を添加して、チタンの水酸化物、水和物、酸化物又
は錯体が分散した分散溶液を得る第2の工程と、上記分
散溶液に、過酸化水素水を添加して反応させる第3の工
程を有することを特徴とする。
The method for producing a visible light reactive photocatalyst according to the third aspect of the present invention comprises the steps of: adding titanium, V, Fe,
A first step of containing at least one metal selected from the group consisting of Ni, Cu, Cr, Mg, Ag, Mn, Pd, and Pt; and a first solution generated in the first step, A second step of adding a hydrogen peroxide solution to obtain a dispersion solution in which a hydroxide, hydrate, oxide or complex of titanium is dispersed, and reacting by adding a hydrogen peroxide solution to the dispersion solution. And a third step of causing

【0010】しかして、上記第2および第3の発明によ
れば、大きなエネルギーおよび設備を必要とすることな
く、化学性状的に安定した、上記第1の発明にかかる可
視光反応型の光触媒を得ることができる。
According to the second and third aspects of the present invention, the visible light reaction type photocatalyst according to the first aspect of the invention is chemically stable without requiring large energy and equipment. Obtainable.

【0011】また、上記第1の発明において、さらに加
熱処理することによって得られる、溶液中に可視光反応
型の光触媒微粒子が生成された形態の光触媒であると、
その溶液を支持体上に塗布するだけで、乾燥後に、表面
で可視光によって光触媒反応を生じさせる支持体を簡単
に得ることができる。また、かかる場合には、上記ペル
オキソ基が介在して、それによって溶液中にチタンと上
記金属が分散状態した状態を維持したまま結晶化するた
め、該結晶化した光触媒は、可視光に対してより高い活
性化(例えば、下記の実施例に記載するように、同じ条
件下で加熱しない場合に比べて、約2倍程度の活性化)
を示す。
In the first invention, the photocatalyst in the form of visible light reactive type photocatalyst fine particles formed in a solution, which is obtained by further performing a heat treatment,
By simply applying the solution on a support, a support capable of causing a photocatalytic reaction by visible light on the surface after drying can be easily obtained. In such a case, since the peroxo group is interposed, thereby crystallizing the titanium and the metal in a state of being dispersed in the solution, the crystallized photocatalyst is exposed to visible light. Higher activation (eg, about twice as much activation as without heating under the same conditions, as described in the examples below)
Is shown.

【0012】また、上記第1の発明において、さらに乾
燥することによって得られる、粉末状の形態の光触媒で
あると、保管および搬送に便利な形態の可視光反応型の
光触媒となる。
In the first aspect of the present invention, the photocatalyst in the form of a powder, which is obtained by further drying, becomes a visible light reaction type photocatalyst that is convenient for storage and transportation.

【0013】また、上記第2又は第3の発明において、
後の工程において、さらに加圧・加熱処理する工程を有
すると、溶液中に可視光反応型の光触媒微粒子が生成さ
れた形態の光触媒が生成できる。また、かかる場合に
は、上記ペルオキソ基が介在して、それによって溶液中
にチタンと上記金属が分散状態した状態を維持したまま
結晶化するため、該結晶化した光触媒は、可視光に対し
てより高い活性化(例えば、下記の実施例に記載するよ
うに、同じ条件下で加熱しない場合に比べて、約2倍程
度の活性化)を示す。
[0013] In the second or third invention,
If the subsequent step further includes a step of performing pressure / heat treatment, a photocatalyst in a form in which visible light reactive type photocatalyst fine particles are generated in a solution can be generated. In such a case, since the peroxo group is interposed, thereby crystallizing the titanium and the metal in a state of being dispersed in the solution, the crystallized photocatalyst is exposed to visible light. It shows higher activation (eg, about twice as much activation without heating under the same conditions, as described in the examples below).

【0014】また、上記発明において、上記加圧・加熱
処理する工程の後に、乾燥する工程を有することによっ
て、粉末状の可視光反応型の光触媒を得ることができ、
かかる場合には、製品として保管あるいは搬送に便利な
形態となる。
In the above invention, a powdery visible light reaction type photocatalyst can be obtained by having a drying step after the pressurizing / heating step.
In such a case, it is in a form convenient for storage or transportation as a product.

【0015】また、上記第1〜3の発明において、チタ
ンと上記1種以上の金属を含有した溶液中に、さらに、
塩基性物質を添加すると、該溶液が中性化し、光触媒を
支持体表面に塗布するときに、酸によって支持体側を損
傷することが無くなる。また、水酸化物の析出をし易く
するという効果がある点で、好ましい。
[0015] In the first to third inventions, the solution containing titanium and the one or more metals may further comprise:
When the basic substance is added, the solution is neutralized, and the acid does not damage the support side when the photocatalyst is applied to the support surface. Further, it is preferable in that it has an effect of facilitating precipitation of hydroxide.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を具体的
に説明する。しかし、この実施形態にのみ拘束されるも
のではない。 〔実施例1〕蒸留水450ccに、硫酸バナジル0.0
1gを溶解し、その溶液に、濃度97%の4塩化チタン
を2.6cc添加する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described specifically. However, it is not limited only to this embodiment. Example 1 Vanadyl sulfate 0.0 in 450 cc of distilled water
After dissolving 1 g, 2.6 cc of 97% titanium tetrachloride is added to the solution.

【0017】次に、上記工程で得た溶液(第1の溶液)
に、蒸留水を加えて500ccのバナジウム・チタン混
合溶液を調合する。
Next, the solution obtained in the above step (first solution)
Then, distilled water is added thereto to prepare a 500 cc vanadium / titanium mixed solution.

【0018】次に、上記調合した溶液に、濃度3%のア
ンモニア水溶液をpHが7(中性)になるまで、添加す
る。
Next, an aqueous ammonia solution having a concentration of 3% is added to the prepared solution until the pH becomes 7 (neutral).

【0019】上記添加後の溶液中に沈殿しているバナジ
ウム・チタンの沈殿ゲル(水酸化物、水和物、酸化物あ
るいは錯体のゲル)に、脱水と洗浄操作を適宜回数繰り
返す。そして、この結果得られたゲルに、再び蒸留水を
加えて、90ccの懸濁溶液(分散液)とし、この懸濁
溶液に、濃度30%の過酸化水素水を10cc加えて、
1昼夜スターラーで攪拌し、可視光反応型の光触媒形成
用液体を得る。
Dehydration and washing operations are repeated as appropriate on the vanadium / titanium precipitated gel (a hydroxide, hydrate, oxide or complex gel) precipitated in the solution after the addition. Then, distilled water was again added to the resulting gel to form a 90 cc suspension solution (dispersion solution). To this suspension solution, 10 cc of 30% hydrogen peroxide solution was added.
The mixture is stirred for one day and night with a stirrer to obtain a visible light reactive type photocatalyst forming liquid.

【0020】次に、得られた上記光触媒形成用液体の半
分の量を、オートクレーブにて100°Cで8時間加熱
処理(加熱・加圧処理)して、可視光反応型の光触媒微
粒子を溶液中に形成する。この溶液は、溶液中にバナジ
ウム・チタン酸化物微粒子が安定した状態で分散した、
可視光反応型の光触媒形成用液体となる。上記オートク
レーブにて加熱処理しなかった残りの半分の上記「可視
光反応型の光触媒形成用液体」と、上記加熱処理によっ
て得られた「バナジウム・チタン酸化物微粒子が安定し
て分散した可視光反応型の光触媒形成用液体」とを、各
等量混合する。この混合した溶液中に、ガラス板を浸漬
させることによって、該ガラス板表面に溶液中の可視光
反応型の光触媒をコーティング(膜形成)する。次に、
このコーティングした後のガラス板を、300°Cで加
熱・硬化させて、可視光反応型の光触媒膜付ガラス板を
作製する。
Next, half the amount of the obtained liquid for forming a photocatalyst is subjected to a heating treatment (heating and pressurizing treatment) at 100 ° C. for 8 hours in an autoclave, so that the visible light reactive type photocatalyst fine particles are dissolved. Form inside. In this solution, the vanadium / titanium oxide fine particles were dispersed in the solution in a stable state,
It becomes a visible light reactive liquid for photocatalyst formation. The other half of the “liquid for forming a visible light-reactive photocatalyst” that was not heat-treated in the autoclave and the “visible light reaction in which the vanadium-titanium oxide fine particles obtained by the heat treatment were stably dispersed. And an equal amount of a liquid for forming a photocatalyst. A glass plate is immersed in the mixed solution to coat a visible light reactive photocatalyst in the solution (film formation) on the surface of the glass plate. next,
The coated glass plate is heated and cured at 300 ° C. to produce a visible light reactive type glass plate with a photocatalytic film.

【0021】上記可視光反応型の光触媒膜付ガラス板を
用いて、可視光による光反応作用について確認した。即
ち、500ppmのメチレンブルー溶液に浸漬して、メ
チレンブルーをガラス板表面に塗布し、このガラス板
に、70Wのメタルハライドランプの光を、紫外線カッ
トフィルムによって400nm以下の波長の光をカット
した状態で、照射したところ、照射後20時間で、完全
に脱色した。つまり、光反応が生じたことが確認でき
た。
Using the above-mentioned glass plate with a photocatalytic film of the visible light reaction type, the photoreaction by visible light was confirmed. That is, it was immersed in a 500 ppm methylene blue solution, and methylene blue was applied to the surface of a glass plate. The glass plate was irradiated with light from a 70 W metal halide lamp while cutting light having a wavelength of 400 nm or less with an ultraviolet cut film. Then, 20 hours after the irradiation, the color was completely bleached. That is, it was confirmed that a photoreaction occurred.

【0022】比較のため、上記実施例と製造の条件を同
じにして、バナジウム(V)を混合しない光触媒溶液を
ガラス板表面にコーティングしたものを用いて、同様に
光反応の作用を確認する実験を実施したところ、上記7
0Wのメタルハライドランプの光を同じ時間(20時
間)照射したが、ガラス板表面の色は全く変化しなかっ
た。つまり、バナジウム(V)を添加しない場合には、
可視光応答性が生じないことが確認できた。 〔実施例2〕上記「実施例1」では、「可視光反応型の
光触媒形成用液体」の半量のみオートクレーブにて処理
したが、これに代えて、全量をオートクレーブにて10
0°Cで8時間加熱処理して、可視光反応型の光触媒微
粒子を溶液中に形成させ、バナジウム・チタン酸化物粒
子が安定して分散した液体を得る。この溶液を、さらに
150°Cで加熱処理し、バナジウム・チタン酸化物粒
子の粉末を得る。
For comparison, an experiment was conducted to confirm the effect of the photoreaction by using a photocatalyst solution in which vanadium (V) was not mixed and coated on the surface of a glass plate under the same manufacturing conditions as in the above example. The above 7
Irradiation with a 0 W metal halide lamp for the same time (20 hours) did not change the color of the glass plate surface at all. That is, when vanadium (V) is not added,
It was confirmed that no visible light response was generated. [Example 2] In the above "Example 1", only half the amount of the "visible light-reactive photocatalyst forming liquid" was treated in an autoclave.
Heat treatment is performed at 0 ° C. for 8 hours to form visible light reactive photocatalyst fine particles in the solution, thereby obtaining a liquid in which vanadium / titanium oxide particles are stably dispersed. This solution is further heated at 150 ° C. to obtain a powder of vanadium / titanium oxide particles.

【0023】このバナジウム・チタン酸化物粒子の粉末
を用いて、可視光反応型の光触媒作用について以下の実
験をおこなった。即ち、石英ガラス性の反応容器内に、
TOCで10ppmの酢酸溶液を20cc投入し、その
溶液にバナジウム・チタン酸化物粒子を、500ppm
になるように添加する。この添加した溶液に、可視光と
して、70Wのメタルハライドランプの光を、紫外線カ
ットフィルムによって400nm以下の波長の光をカッ
トした状態で、照射したところ、照射後3時間で、TO
Cで50%減少した。つまり、可視光と上記光触媒とに
よって、酢酸を無機化(分解)できたことが確認され
た。
Using the powder of the vanadium / titanium oxide particles, the following experiment was conducted for the photocatalytic action of the visible light reaction type. That is, in a quartz glass reaction vessel,
20 cc of a 10 ppm acetic acid solution is added by TOC, and vanadium / titanium oxide particles are added to the solution at 500 ppm.
Add so that The added solution was irradiated with 70 W metal halide lamp light as visible light in a state where light having a wavelength of 400 nm or less was cut by an ultraviolet cut film.
C reduced by 50%. That is, it was confirmed that acetic acid could be mineralized (decomposed) by the visible light and the photocatalyst.

【0024】比較実験として、バナジウムを含まないチ
タン酸化粒子の粉末を用いて、同様の実験をおこなった
ところ、同様に照射3時間後、TOCで酢酸濃度の減少
が全く認められなかった。
As a comparative experiment, a similar experiment was carried out using powder of titanium oxide particles containing no vanadium. Similarly, after 3 hours of irradiation, no decrease in acetic acid concentration was observed in TOC after irradiation for 3 hours.

【0025】上記バナジウム・チタン酸化物粒子の粉末
を用いて、可視光反応型の光触媒作用について、以下の
実験をおこなった。即ち、石英ガラス製の反応容器内
に、1ppmのメチレンブルーの水溶液を20cc投入
し、バナジウム・チタン酸化物粒子を500ppm濃度
になるまで、添加する。この添加後の溶液に、可視光と
して、70Wのメタルハライドランプの光を紫外線カッ
トフィルムによって400nm以下の波長の光をカット
した状態で、照射したところ、照射後6時間で、完全に
脱色した。
The following experiment was conducted on the visible light reaction type photocatalysis using the above-mentioned vanadium / titanium oxide particles. That is, 20 cc of a 1 ppm aqueous solution of methylene blue is charged into a reaction vessel made of quartz glass, and vanadium / titanium oxide particles are added until the concentration becomes 500 ppm. The solution after the addition was irradiated with 70 W light of a metal halide lamp as visible light in a state where the light having a wavelength of 400 nm or less was cut by an ultraviolet cut film, and completely decolorized 6 hours after the irradiation.

【0026】比較のため、上記実施例と製造の条件を同
じにして、バナジウム(V)を混合しないものに置き換
えて、実験したところ、上記70Wのメタルハライドラ
ンプの光を同じ条件で照射したが、ガラス板表面の色は
全く変化しなかった。つまり、バナジウム(V)を添加
しない場合には、可視光応答性が生じないことが確認で
きた。
For comparison, an experiment was carried out under the same conditions as those of the above-mentioned embodiment, except that vanadium (V) was not mixed, and the light was irradiated from the above 70 W metal halide lamp under the same conditions. The color of the glass plate surface did not change at all. That is, it was confirmed that when vanadium (V) was not added, visible light responsiveness did not occur.

【0027】また、比較のため、上記実施例と製造の条
件を同じくして、懸濁溶液にしたものに上記「濃度30
%の過酸化水素水」を加えないで製造したものに置き換
えて、実験したところ、上記70Wのメタルハライドラ
ンプの光を同じ条件で照射したが、ガラス板表面の色は
全く変化しなかった。つまり、「過酸化水素水」を添加
しない場合には、ペルオキソ基が介在しないため、チタ
ンと金属(この場合「V」)が分散した状態とならず、
従って、可視光応答性が生じないものと推測される。
For comparison, a suspension was prepared in the same manner as in the above example, except that the "concentration of 30
% Hydrogen peroxide solution ", the experiment was carried out. The light from the 70 W metal halide lamp was irradiated under the same conditions, but the color of the glass plate surface did not change at all. In other words, when "hydrogen peroxide solution" is not added, since the peroxo group is not interposed, titanium and the metal (in this case, "V") are not dispersed,
Therefore, it is presumed that no visible light response occurs.

【0028】次に、上記バナジウム・チタン酸化物粒子
の粉末を用いて、可視光以外の紫外光における光反応に
ついて、以下のように実験して確認した。つまり、パイ
レックス(登録商標)ガラス製反応容器内に、TOCで
30ppmの酢酸溶液を120cc投入し、バナジウム
・チタン酸化物粒子を500ppm濃度になるまで、添
加する。この溶液に、照射光として、6Wの殺菌灯を照
射したところ、照射後3時間で、TOCで略30%程度
減少した。同様に、上記バナジウム・チタン酸化物粒子
に代えて、チタン酸化物粒子でおこなったところ、同じ
くTOCで略30%程度減少した。
Next, using the powder of the above-mentioned vanadium / titanium oxide particles, the photoreaction under ultraviolet light other than visible light was confirmed by the following experiment. That is, 120 cc of a 30 ppm acetic acid solution in TOC is charged into a Pyrex (registered trademark) glass reaction vessel, and vanadium / titanium oxide particles are added until the concentration becomes 500 ppm. When this solution was irradiated with a 6 W germicidal lamp as irradiation light, the TOC decreased by about 30% in 3 hours after irradiation. Similarly, when titanium oxide particles were used in place of the vanadium / titanium oxide particles, the TOC also reduced about 30%.

【0029】このように、本発明にかかる可視光反応型
の光触媒形成用の液体および粉末によれば、可視光に応
答して、光反応をおこなうことができ、且つ、可視光以
外の紫外光にも酸化チタンと同程度に反応(光分解)す
ることが確認できた。
As described above, according to the liquid and powder for forming a visible light-reactive photocatalyst according to the present invention, a photoreaction can be performed in response to visible light, and ultraviolet light other than visible light can be used. The reaction (photolysis) was confirmed to be similar to that of titanium oxide.

【0030】[0030]

【発明の効果】本願発明に係る可視光反応型の光触媒と
その製造方法によれば、安定した「可視光反応型の光触
媒」を大きなエネルギーを必要とすること無く比較的簡
単に製造することができ、且つ、得られた可視光反応型
の光触媒は、可視光にも且つ紫外光にも応答して、光反
応をおこなう。従って、太陽光あるいは蛍光灯等の身近
な光によって、効率的に、有害物質を分解処理すること
ができる。
According to the visible light reactive photocatalyst and the method for producing the same according to the present invention, a stable "visible light reactive photocatalyst" can be relatively easily produced without requiring large energy. The resulting visible light reactive photocatalyst performs a photoreaction in response to both visible light and ultraviolet light. Therefore, harmful substances can be efficiently decomposed by sunlight or familiar light such as a fluorescent lamp.

フロントページの続き Fターム(参考) 4G069 AA02 AA08 AA09 BA14B BA48A BB01C BB02A BB04A BB05A BB06A BB06B BC10A BC31A BC32A BC50A BC50B BC54A BC54B BC58A BC62A BC66A BC68A BC72A BC75A BD01C BD02C CA01 CA10 CA11 CA13 CA17 DA03 EA01X EA11 FA01 FA03 FB05 FB09 FB10 FB23 FB57 FB78 FC03Continued on the front page F-term (reference) 4G069 AA02 AA08 AA09 BA14B BA48A BB01C BB02A BB04A BB05A BB06A BB06B BC10A BC31A BC32A BC50A BC50B BC54A BC54B BC58A BC62A BC66A BC68A BC72A BC01ACA11CA01 BD02 FB57 FB78 FC03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 V、Fe、Ni、Cu、Cr、Mg、A
g、Mn、Pd、Ptの群から選択される1種以上の金
属と、チタンとを含有する第1の溶液、あるいは、該第
1の溶液に過酸化水素水を添加して得られる水酸化物、
水和物、酸化物あるいは錯体、または上記水酸化物、水
和物、酸化物あるいは錯体のいずれかが分散した分散溶
液、のうちのいずれかに、過酸化水素水を添加して反応
させることによって得られることを特徴とする可視光反
応型の光触媒。
1. V, Fe, Ni, Cu, Cr, Mg, A
g, a first solution containing one or more metals selected from the group consisting of Mn, Pd, and Pt, and titanium, or a hydroxide obtained by adding aqueous hydrogen peroxide to the first solution. object,
Adding a hydrogen peroxide solution to any one of a hydrate, an oxide, or a complex, or a dispersion solution in which any of the above hydroxide, hydrate, oxide, or complex is dispersed; A visible light reaction type photocatalyst obtained by the following method.
【請求項2】 さらに加圧・加熱処理することによって
得られる、溶液中に可視光反応型の光触媒微粒子が生成
された形態の光触媒であることを特徴とする請求項1記
載の可視光反応型の光触媒。
2. The visible light reactive type according to claim 1, wherein the photocatalyst is a form in which visible light reactive type photocatalyst fine particles are formed in a solution, which is obtained by further performing pressure and heat treatment. Photocatalyst.
【請求項3】 さらに乾燥することによって得られる、
粉末状の形態の光触媒であることを特徴とする請求項2
記載の可視光反応型の光触媒。
3. Obtained by further drying.
3. A photocatalyst in the form of a powder.
The visible light-reactive photocatalyst according to the above.
【請求項4】 溶液に、チタンと、V、Fe、Ni、C
u、Cr、Mg、Ag、Mn、Pd、Ptの群から選択
される1種以上の金属とを含有させた第1の溶液を得る
第1の工程と、第1の工程で生成された第1の溶液に、
過酸化水素水を添加して反応させる第2の工程を有する
ことを特徴とする可視光反応型の光触媒の製造方法。
4. A solution comprising titanium, V, Fe, Ni, C
a first step of obtaining a first solution containing at least one metal selected from the group consisting of u, Cr, Mg, Ag, Mn, Pd, and Pt; and a first step formed in the first step. In the solution of 1,
A method for producing a visible-light-reactive photocatalyst, comprising a second step of reacting by adding aqueous hydrogen peroxide.
【請求項5】 溶液に、チタンと、V、Fe、Ni、C
u、Cr、Mg、Ag、Mn、Pd、Ptの群から選択
される1種以上の金属とを含有させる第1の工程と、第
1の工程で生成された溶液に、過酸化水素水を添加し
て、チタンの水酸化物、水和物、酸化物又は錯体が分散
した分散溶液を得る第2の工程と、上記分散溶液に、過
酸化水素水を添加して反応させる第3の工程を有するこ
とを特徴とする可視光反応型の光触媒の製造方法。
5. A solution comprising titanium, V, Fe, Ni, C
a first step of containing at least one metal selected from the group consisting of u, Cr, Mg, Ag, Mn, Pd, and Pt; and a solution of hydrogen peroxide in the solution produced in the first step. A second step of obtaining a dispersion in which hydroxides, hydrates, oxides or complexes of titanium are dispersed, and a third step of reacting by adding aqueous hydrogen peroxide to the dispersion. A method for producing a visible light reactive photocatalyst, comprising:
【請求項6】 後の工程において、さらに加圧・加熱処
理する工程を有することを特徴とする請求項4又は5記
載の可視光反応型の光触媒の製造方法。
6. The method for producing a visible light-reactive photocatalyst according to claim 4, further comprising a step of performing a pressure / heat treatment in a subsequent step.
【請求項7】 可視光反応型の光触媒を粉末状にするべ
く、前記加圧・加熱処理する工程の後に、乾燥する工程
を有することを特徴とする請求項6記載の可視光反応型
の光触媒の製造方法。
7. The visible light-reactive photocatalyst according to claim 6, further comprising a drying step after the pressurizing / heating step in order to make the visible light-reactive photocatalyst powdery. Manufacturing method.
JP2000380341A 2000-12-14 2000-12-14 Visible ray reaction type photocatalyst and manufacturing method thereof Pending JP2002177775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000380341A JP2002177775A (en) 2000-12-14 2000-12-14 Visible ray reaction type photocatalyst and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000380341A JP2002177775A (en) 2000-12-14 2000-12-14 Visible ray reaction type photocatalyst and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002177775A true JP2002177775A (en) 2002-06-25

Family

ID=18848545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000380341A Pending JP2002177775A (en) 2000-12-14 2000-12-14 Visible ray reaction type photocatalyst and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002177775A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004105958A (en) * 2002-08-30 2004-04-08 Sk Kaken Co Ltd Method for manufacturing porous photocatalyst composite powder
JP2009189952A (en) * 2008-02-14 2009-08-27 National Institute Of Advanced Industrial & Technology Semiconductor photocatalyst
JP2011136879A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Visible light-responsive titanium oxide-based fine particle dispersion and method for producing the same
JP2011219320A (en) * 2010-04-12 2011-11-04 Sekisui Chem Co Ltd Amorphous titanium peroxide particle, hydrophilic coating material, hydrophilic coating film layer, and building material
KR20130079306A (en) * 2010-05-18 2013-07-10 신에쓰 가가꾸 고교 가부시끼가이샤 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
WO2014045861A1 (en) * 2012-09-19 2014-03-27 信越化学工業株式会社 Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface
WO2016152487A1 (en) * 2015-03-23 2016-09-29 信越化学工業株式会社 Visible-light-responsive photocatalytic-titanium-oxide-particulate dispersion liquid, manufacturing method therefor, and member having thin photocatalytic film on surface thereof
JPWO2015056556A1 (en) * 2013-10-16 2017-03-09 信越化学工業株式会社 Titanium oxide / tungsten oxide composite photocatalyst fine particle dispersion, production method thereof, and member having photocatalytic thin film on surface
WO2018047694A1 (en) * 2016-09-12 2018-03-15 信越化学工業株式会社 Mixture of visible light-responsive photocatalytic titanium oxide fine particles, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004105958A (en) * 2002-08-30 2004-04-08 Sk Kaken Co Ltd Method for manufacturing porous photocatalyst composite powder
JP2009189952A (en) * 2008-02-14 2009-08-27 National Institute Of Advanced Industrial & Technology Semiconductor photocatalyst
JP2011136879A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Visible light-responsive titanium oxide-based fine particle dispersion and method for producing the same
JP2011219320A (en) * 2010-04-12 2011-11-04 Sekisui Chem Co Ltd Amorphous titanium peroxide particle, hydrophilic coating material, hydrophilic coating film layer, and building material
KR101685675B1 (en) 2010-05-18 2016-12-12 신에쓰 가가꾸 고교 가부시끼가이샤 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
KR20130079306A (en) * 2010-05-18 2013-07-10 신에쓰 가가꾸 고교 가부시끼가이샤 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
US9604198B2 (en) 2012-09-19 2017-03-28 Shin-Etsu Chemical Co., Ltd. Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface
JP5896034B2 (en) * 2012-09-19 2016-03-30 信越化学工業株式会社 Visible light responsive photocatalyst fine particle dispersion, method for producing the same, and member having photocatalytic thin film on surface
WO2014045861A1 (en) * 2012-09-19 2014-03-27 信越化学工業株式会社 Visible light-responsive photocatalytic nanoparticle dispersion liquid, method for producing same, and member having photocatalytic thin film on surface
JPWO2015056556A1 (en) * 2013-10-16 2017-03-09 信越化学工業株式会社 Titanium oxide / tungsten oxide composite photocatalyst fine particle dispersion, production method thereof, and member having photocatalytic thin film on surface
JPWO2016152487A1 (en) * 2015-03-23 2017-08-03 信越化学工業株式会社 Visible light responsive photocatalytic titanium oxide fine particle dispersion, method for producing the same, and member having photocatalytic thin film on surface
WO2016152487A1 (en) * 2015-03-23 2016-09-29 信越化学工業株式会社 Visible-light-responsive photocatalytic-titanium-oxide-particulate dispersion liquid, manufacturing method therefor, and member having thin photocatalytic film on surface thereof
US11446640B2 (en) 2015-03-23 2022-09-20 Shin-Etsu Chemical Co., Ltd. Visible-light-responsive photocatalytic-titanium- oxide-particulate dispersion liquid, manufacturing method therefor, and member having thin photocatalytic film on surface thereof
WO2018047694A1 (en) * 2016-09-12 2018-03-15 信越化学工業株式会社 Mixture of visible light-responsive photocatalytic titanium oxide fine particles, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface
CN109789396A (en) * 2016-09-12 2019-05-21 信越化学工业株式会社 Visible light responsive photocatalytic titanium oxide microparticle mixture, its dispersion liquid, the manufacturing method of dispersion liquid, photocatalyst film and surface have photocatalyst film component
JPWO2018047694A1 (en) * 2016-09-12 2019-06-24 信越化学工業株式会社 Visible light responsive photocatalyst titanium oxide fine particle mixture, dispersion liquid thereof, method of producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on the surface
US11059036B2 (en) 2016-09-12 2021-07-13 Shin-Etsu Chemical Co., Ltd. Mixture of visible light-responsive photocatalytic titanium oxide fine particles, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface
CN109789396B (en) * 2016-09-12 2022-04-05 信越化学工业株式会社 Visible light-responsive photocatalytic titanium oxide fine particle mixture, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface

Similar Documents

Publication Publication Date Title
Vieira et al. CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension
Chowdhury et al. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation
US6558553B1 (en) Photocatalyst
Nikazara et al. Using TiO 2 supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water
TW200827024A (en) Photocatalyst composite and fabrication method thereof
KR100444892B1 (en) Synthesis of highly active photocatalytic TiO2-sol containing active metals
JP2002177775A (en) Visible ray reaction type photocatalyst and manufacturing method thereof
Maki et al. LED-activated immobilized Fe-Ce-N tri-doped TiO2 nanocatalyst on glass bed for photocatalytic degradation organic dye from aqueous solutions
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
Amigun et al. Photocatalytic degradation of malachite green dye using nitrogen/sodium/iron-TiO2 nanocatalysts
CN102698777A (en) Method for preparing Ag/AgCl/BiMg2VO6 composite photocatalyst
JP5282735B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP2021112728A (en) Heterogeneous fenton reaction catalyst, method for producing heterogeneous reaction catalyst, and method for decomposing organic matter
CN109277094A (en) A kind of method of modifying of visible light responsive photocatalyst and its application in artificial seawater system
CN113600205A (en) Copper-based Cu-Al2O3Catalyst and application thereof in treatment of estrogen-containing wastewater
KR20220095952A (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
Wang et al. In-situ surface chlorination strategy enables highly efficient metal-support catalyst toward chlorophenols pollutants degradation
JP2005281031A (en) Metal-supporting titanium dioxide sol and production method therefor
CN110639611A (en) Polyethylene glycol thermal reduction grafting modified graphene photocatalyst and preparation and application thereof
JP4496427B2 (en) Method for producing titanium oxide for visible light responsive photocatalyst
CN108906032A (en) A kind of GOQDS/TiO2/WO3The preparation and its application of photochemical catalyst
CN106881130A (en) A kind of silver carbonate loads the preparation method of cobalt carbonate/silver chlorate photochemical catalyst
JP7347097B2 (en) photocatalyst
CN114713259B (en) Preparation of cobalt carbon nitrogen hollow polyhedral catalyst and application thereof in degradation of emerging pollutants
Dadvar et al. Photocatalytic degradation of water disinfection by-products using zirconium doped zinc oxide nanoparticles