JP7347097B2 - photocatalyst - Google Patents

photocatalyst Download PDF

Info

Publication number
JP7347097B2
JP7347097B2 JP2019186679A JP2019186679A JP7347097B2 JP 7347097 B2 JP7347097 B2 JP 7347097B2 JP 2019186679 A JP2019186679 A JP 2019186679A JP 2019186679 A JP2019186679 A JP 2019186679A JP 7347097 B2 JP7347097 B2 JP 7347097B2
Authority
JP
Japan
Prior art keywords
photocatalyst
oxide
molar amount
mnni
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019186679A
Other languages
Japanese (ja)
Other versions
JP2021062317A (en
Inventor
秀明 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2019186679A priority Critical patent/JP7347097B2/en
Publication of JP2021062317A publication Critical patent/JP2021062317A/en
Application granted granted Critical
Publication of JP7347097B2 publication Critical patent/JP7347097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

本発明は、光触媒に関する。 The present invention relates to a photocatalyst.

近年、光エネルギーを用いて水を分解し、水素を得るために用いられる光触媒の研究が進められている。光触媒は、より多くの水素を得るために、水の分解活性が高いことが好ましい。 In recent years, research has been progressing on photocatalysts that are used to decompose water using light energy and obtain hydrogen. The photocatalyst preferably has high water decomposition activity in order to obtain more hydrogen.

特許文献1には、水の分解活性を高めることを目的として、希土類元素、アルカリ土類金属元素、チタン属元素のうちのいずれかの元素を組み込んだチタン酸バリウム塩に、酸化ルテニウム、酸化イリジウムまたは酸化タンタルの単独酸化物または少なくとも2種類の上記酸化物の混合物を担持させた光触媒が記載されている。 Patent Document 1 discloses that ruthenium oxide and iridium oxide are added to barium titanate salt incorporating any one of rare earth elements, alkaline earth metal elements, and titanium group elements for the purpose of increasing water decomposition activity. Alternatively, a photocatalyst in which a single oxide of tantalum oxide or a mixture of at least two of the above-mentioned oxides is supported is described.

特開平7-88370号公報Japanese Patent Application Publication No. 7-88370

しかしながら、特許文献1に記載の光触媒は、酸化ルテニウムや酸化イリジウムなどの希少金属を使用するものであるため、コストがかかるとともに、環境保全の観点から好ましくない。 However, since the photocatalyst described in Patent Document 1 uses rare metals such as ruthenium oxide and iridium oxide, it is costly and unfavorable from the viewpoint of environmental conservation.

本発明は、上記課題を解決するものであり、希少金属を使用することなく、水の分解活性が高い光触媒を提供することを目的とする。 The present invention solves the above problems, and aims to provide a photocatalyst with high water decomposition activity without using rare metals.

本発明の光触媒は、
TiO2を含む粒子に、MnNi酸化物が担持されており、
前記MnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)は、0.5以上0.9以下であることを特徴とする。
The photocatalyst of the present invention is
MnNi oxide is supported on particles containing TiO 2 ,
The MnNi oxide is characterized in that the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide is 0.5 or more and 0.9 or less.

本発明の別の態様による光触媒は、BaTi49を含む粒子に、MnNi酸化物が担持されている。 In a photocatalyst according to another aspect of the present invention, MnNi oxide is supported on particles containing BaTi 4 O 9 .

本発明の光触媒は、希少金属が含まれていないが、活性が高い。したがって、水の分解により、より多くの水素を発生させることができる。 Although the photocatalyst of the present invention does not contain rare metals, it has high activity. Therefore, more hydrogen can be generated by water decomposition.

第1の実施形態における光触媒の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the configuration of a photocatalyst in the first embodiment. 光触媒の活性を評価するために用いた装置の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the configuration of an apparatus used to evaluate the activity of a photocatalyst. TiO2を含む粒子にMnNi酸化物を担持させた光触媒において、MnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)と、水素の発生量との関係を示す図である。In a photocatalyst in which MnNi oxide is supported on particles containing TiO 2 , the relationship between the ratio of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide (Ni/(Mn+Ni)) and the amount of hydrogen generated FIG. 第2の実施形態における光触媒の構成を模式的に示す図である。FIG. 3 is a diagram schematically showing the configuration of a photocatalyst in a second embodiment. BaTi49を含む粒子にMnNi酸化物を担持させた光触媒において、MnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)と、水素の発生量との関係を示す図である。In a photocatalyst in which MnNi oxide is supported on particles containing BaTi 4 O 9 , the ratio of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide (Ni/(Mn+Ni)), the amount of hydrogen generated, and FIG.

本発明による光触媒は、チタニアを含む酸化物に、MnNi酸化物を助触媒として担持させた構造を有し、希少金属を含まない。 The photocatalyst according to the present invention has a structure in which an oxide containing titania supports MnNi oxide as a promoter, and does not contain rare metals.

以下に本発明の実施形態を示して、本発明の特徴を具体的に説明する。 Embodiments of the present invention will be shown below, and features of the present invention will be specifically explained.

<第1の実施形態> <First embodiment>

図1は、第1の実施形態における光触媒10の構成を模式的に示す図である。第1の実施形態における光触媒10は、TiO2を含む粒子11に、MnNi酸化物12が担持された構造を有する。助触媒であるMnNi酸化物12は、MnとNiが主成分の酸化物であって、MnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)が0.5以上0.9以下である。なお、MnNi酸化物は、MnやNiと異なり、導電性を有する。 FIG. 1 is a diagram schematically showing the configuration of a photocatalyst 10 in the first embodiment. The photocatalyst 10 in the first embodiment has a structure in which MnNi oxide 12 is supported on particles 11 containing TiO 2 . The MnNi oxide 12 which is a co-catalyst is an oxide mainly composed of Mn and Ni, and the ratio of the molar amount of Ni to the total molar amount of Mn and Ni (Ni/(Mn+Ni)) is 0.5 or more and 0.9. It is as follows. Note that, unlike Mn and Ni, MnNi oxide has electrical conductivity.

TiO2を含む粒子11は、例えばTiO2粒子であるが、TiO2以外の成分が含まれていてもよい。 The particles 11 containing TiO 2 are, for example, TiO 2 particles, but may contain components other than TiO 2 .

(実施例1)
硝酸Ni水溶液および硝酸Mn水溶液を所望の組成比および量で配合した水溶液に、TiO2の原料粉を浸漬して攪拌した後、150℃に設定したホットプレートで加熱して乾燥物を得た。その後、乾燥物を、大気中500℃で熱処理することによって硝酸を揮発させてMnNi酸化物を結晶化させることにより、TiO2粒子にMnNi酸化物が担持した光触媒の粉体を作製した。
(Example 1)
TiO 2 raw material powder was immersed and stirred in an aqueous solution containing a Ni nitrate aqueous solution and a Mn nitrate aqueous solution in the desired composition ratio and amount, and then heated on a hot plate set at 150 ° C. to obtain a dried product. Thereafter, the dried product was heat-treated at 500° C. in the atmosphere to volatilize nitric acid and crystallize MnNi oxide, thereby producing a photocatalyst powder in which MnNi oxide was supported on TiO 2 particles.

作製した光触媒の活性を、以下の方法により評価した。 The activity of the produced photocatalyst was evaluated by the following method.

図2は、光触媒の活性を評価するために用いた装置の構成を模式的に示す図である。シャーレ21に、作製した光触媒の粉体0.3gと純水1gを混合して得られるスラリーを入れた。そして、そのシャーレ21を密封容器22内に入れた後、石英ガラスからなる蓋23をして密封した。なお、石英ガラスからなる蓋23は、紫外線を透過させる。 FIG. 2 is a diagram schematically showing the configuration of an apparatus used to evaluate the activity of a photocatalyst. A slurry obtained by mixing 0.3 g of the produced photocatalyst powder and 1 g of pure water was placed in a petri dish 21. Then, after putting the Petri dish 21 into a sealed container 22, the container was sealed with a lid 23 made of quartz glass. Note that the lid 23 made of quartz glass transmits ultraviolet rays.

続いて、1リットルのアルゴンガスを満たしたパック24から、送風ポンプ25を用いて、アルゴンガスを送出させて、1cc/分の量のアルゴンガスを循環させた。すなわち、パック24内のアルゴンガスを、密封容器22内を通過して、再びパック24内へと戻るように循環させた。なお、アルゴンガスは、水の分解により発生した水素が酸素等と反応することを抑制するために、密封容器22内に導入させた。 Subsequently, the air pump 25 was used to send out argon gas from the pack 24 filled with 1 liter of argon gas, thereby circulating the argon gas at a rate of 1 cc/min. That is, the argon gas in the pack 24 was circulated through the sealed container 22 and back into the pack 24. Note that argon gas was introduced into the sealed container 22 in order to suppress hydrogen generated by water decomposition from reacting with oxygen and the like.

続いて、石英ガラスからなる蓋23を介して、シャーレ21内のスラリーに紫外線を照射した。スラリーに紫外線を照射することによって水の分解が生じ、水素が発生する。この状態を1時間継続し、1時間後の混合ガス中の水素の含有割合をガスクロマトグラフィーにより求めた。混合ガス中の水素の含有割合は、アルゴンと水素の混合ガス中の水素の含有割合を意味する。 Subsequently, the slurry in the petri dish 21 was irradiated with ultraviolet rays through the lid 23 made of quartz glass. By irradiating the slurry with ultraviolet light, water decomposition occurs and hydrogen is generated. This state was continued for 1 hour, and the hydrogen content in the mixed gas after 1 hour was determined by gas chromatography. The content ratio of hydrogen in the mixed gas means the content ratio of hydrogen in the mixed gas of argon and hydrogen.

なお、紫外線の照射源として、200Wの水銀キセノンランプを用いた。この水銀キセノンランプは、4cm□の範囲に均一に紫外線を照射することができるので、平面視で直径が3cmの円形のシャーレ21の全体に紫外線を照射することが可能である。 Note that a 200 W mercury xenon lamp was used as the ultraviolet irradiation source. Since this mercury-xenon lamp can uniformly irradiate ultraviolet rays over a range of 4 cm square, it is possible to irradiate the entire circular Petri dish 21 with a diameter of 3 cm in plan view with ultraviolet rays.

ここでは、光触媒の助触媒であるMnNi酸化物の、MnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)を変えたときの水素の発生量を調べた。光触媒の助触媒であるMnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)と、混合ガス中の水素の含有割合との関係を図3に示す。 Here, the amount of hydrogen generated was investigated when the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni of MnNi oxide, which is a promoter of the photocatalyst, was changed. FIG. 3 shows the relationship between the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide, which is a promoter of the photocatalyst, and the content rate of hydrogen in the mixed gas.

図3に示すように、MnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)が0.4より高く、かつ、1.0より低い場合に、水素が発生した。また、上記モル量の比Ni/(Mn+Ni)が0.5以上0.9以下のときに、混合ガス中の水素の割合は0.0005%以上と多くなった。 As shown in FIG. 3, when the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide is higher than 0.4 and lower than 1.0, hydrogen There has occurred. Further, when the molar ratio Ni/(Mn+Ni) was 0.5 or more and 0.9 or less, the proportion of hydrogen in the mixed gas increased to 0.0005% or more.

すなわち、TiO2を含む粒子に、MnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)が0.5以上0.9以下であるMnNi酸化物を助触媒として担持させた第1の実施形態における光触媒10は、触媒活性が高く、水の分解により発生する水素の量が多い。 That is, particles containing TiO 2 support MnNi oxide as a co-catalyst in which the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni is 0.5 or more and 0.9 or less. The photocatalyst 10 in the first embodiment has high catalytic activity and generates a large amount of hydrogen by decomposing water.

また、図3に示すように、上記モル量の比Ni/(Mn+Ni)が0.6以上0.8以下の場合には、混合ガス中の水素の含有割合が0.002%以上とさらに高くなった。したがって、第1の実施形態における光触媒10は、上記モル量の比Ni/(Mn+Ni)が0.6以上0.8以下であることが好ましい。 Further, as shown in FIG. 3, when the molar ratio Ni/(Mn+Ni) is 0.6 or more and 0.8 or less, the hydrogen content in the mixed gas is even higher at 0.002% or more. became. Therefore, in the photocatalyst 10 according to the first embodiment, the molar ratio Ni/(Mn+Ni) is preferably 0.6 or more and 0.8 or less.

<第2の実施形態>
図4は、第2の実施形態における光触媒の構成を模式的に示す図である。第2の実施形態における光触媒40は、BaTi49を含む粒子41に、MnNi酸化物42が担持された構造を有する。助触媒であるMnNi酸化物42は、MnとNiが主成分の酸化物である。
<Second embodiment>
FIG. 4 is a diagram schematically showing the configuration of a photocatalyst in the second embodiment. The photocatalyst 40 in the second embodiment has a structure in which MnNi oxide 42 is supported on particles 41 containing BaTi 4 O 9 . The MnNi oxide 42, which is a promoter, is an oxide whose main components are Mn and Ni.

BaTi49を含む粒子41は、BaTi49を主成分として含む粒子であって、例えば、BaTi49からなる粒子であるが、組成比の異なるチタン酸バリウムが含まれていてもよい。ただし、BaTi49は60%以上含まれていることが好ましく、80%以上含まれていることがより好ましい。 The particles 41 containing BaTi 4 O 9 are particles containing BaTi 4 O 9 as a main component, for example, particles made of BaTi 4 O 9 , but even if barium titanate with a different composition ratio is included. good. However, the content of BaTi 4 O 9 is preferably 60% or more, more preferably 80% or more.

(実施例2)
BaCO3とTiO2の原料粉を、BaCO3:TiO2=1:4のモル比で配合し、水とジルコニアビーズとともにポットミルの中に入れて5時間混合して乾燥させた後、大気中1100℃で熱処理することによって、BaTi49の粉体を得た。
(Example 2)
Raw material powders of BaCO 3 and TiO 2 were blended at a molar ratio of BaCO 3 :TiO 2 = 1:4, placed in a pot mill with water and zirconia beads, mixed for 5 hours, dried, and then heated at 1100 °C in the air. A BaTi 4 O 9 powder was obtained by heat treatment at °C.

続いて、硝酸Ni水溶液および硝酸Mn水溶液を所望の組成比および量で配合した水溶液に、BaTi49の粉体を浸漬して攪拌した後、150℃に設定したホットプレートで加熱して乾燥物を得た。その後、乾燥物を、大気中500℃で熱処理することによって硝酸を揮発させてMnNi酸化物を結晶化させることにより、BaTi49を含む粒子にMnNi酸化物が担持された光触媒の粉体を作製した。 Next, the BaTi 4 O 9 powder was immersed and stirred in an aqueous solution containing a Ni nitrate aqueous solution and a Mn nitrate aqueous solution in the desired composition ratio and amount, and then heated and dried on a hot plate set at 150°C. I got something. Thereafter, the dried material is heat-treated at 500°C in the atmosphere to volatilize nitric acid and crystallize MnNi oxide, thereby producing photocatalyst powder in which MnNi oxide is supported on particles containing BaTi 4 O 9 . Created.

作製した実施例2の光触媒の活性を、実施例1の光触媒の活性を評価した方法と同じ方法で評価した。図5は、実施例2の光触媒において、MnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)と、水素の発生量との関係を示す図である。 The activity of the produced photocatalyst of Example 2 was evaluated by the same method as that of the photocatalyst of Example 1. FIG. 5 is a diagram showing the relationship between the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide and the amount of hydrogen generated in the photocatalyst of Example 2. .

図5に示すように、実施例2の光触媒は、助触媒であるMnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)に関わらず、水素が発生した。 As shown in FIG. 5, the photocatalyst of Example 2 generates hydrogen regardless of the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide that is the promoter. did.

特に、上記モル量の比Ni/(Mn+Ni)が0.5以上0.9以下である場合に、混合ガス中の水素の含有割合がより高くなった。したがって、第2の実施形態における光触媒40は、上記モル量の比Ni/(Mn+Ni)が0.5以上0.9以下であることが好ましい。 In particular, when the molar ratio Ni/(Mn+Ni) was 0.5 or more and 0.9 or less, the hydrogen content in the mixed gas became higher. Therefore, in the photocatalyst 40 in the second embodiment, the molar ratio Ni/(Mn+Ni) is preferably 0.5 or more and 0.9 or less.

また、図5に示すように、発生する水素の量を多くするためには、上記モル量の比Ni/(Mn+Ni)が0.6以上0.9以下であることがより好ましく、0.7以上0.9以下であることがさらにより好ましい。 Further, as shown in FIG. 5, in order to increase the amount of hydrogen generated, it is more preferable that the molar amount ratio Ni/(Mn+Ni) is 0.6 or more and 0.9 or less, and 0.7 It is even more preferable that it be 0.9 or less.

本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiments, and various applications and modifications can be made within the scope of the present invention.

10 光触媒
11 TiO2を含む粒子
12 MnNi酸化物
21 シャーレ
22 密封容器
23 蓋
24 パック
25 送風ポンプ
40 光触媒
41 BaTi49を含む粒子
42 MnNi酸化物
10 Photocatalyst 11 Particles containing TiO 2 12 MnNi oxide 21 Petri dish 22 Sealed container 23 Lid 24 Pack 25 Air pump 40 Photocatalyst 41 Particles containing BaTi 4 O 9 42 MnNi oxide

Claims (3)

TiO2を含む粒子に、MnNi酸化物が担持されており、
前記MnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)は、0.6以上0.8以下であることを特徴とする光触媒。
MnNi oxide is supported on particles containing TiO 2 ,
A photocatalyst characterized in that the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide is 0.6 or more and 0.8 or less .
BaTi49を含む粒子に、MnNi酸化物が担持されていることを特徴とする光触媒。 A photocatalyst characterized in that MnNi oxide is supported on particles containing BaTi 4 O 9 . 前記MnNi酸化物に含まれるMnとNiの合計モル量に対するNiのモル量の比Ni/(Mn+Ni)は、0.5以上0.9以下であることを特徴とする請求項に記載の光触媒。 The photocatalyst according to claim 2 , wherein the ratio Ni/(Mn+Ni) of the molar amount of Ni to the total molar amount of Mn and Ni contained in the MnNi oxide is 0.5 or more and 0.9 or less. .
JP2019186679A 2019-10-10 2019-10-10 photocatalyst Active JP7347097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019186679A JP7347097B2 (en) 2019-10-10 2019-10-10 photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019186679A JP7347097B2 (en) 2019-10-10 2019-10-10 photocatalyst

Publications (2)

Publication Number Publication Date
JP2021062317A JP2021062317A (en) 2021-04-22
JP7347097B2 true JP7347097B2 (en) 2023-09-20

Family

ID=75487265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019186679A Active JP7347097B2 (en) 2019-10-10 2019-10-10 photocatalyst

Country Status (1)

Country Link
JP (1) JP7347097B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246264A (en) 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd Photocatalyst
JP2007216197A (en) 2006-02-20 2007-08-30 Univ Kinki Photocatalytic film, photocatalytic material and methods for manufacturing them
JP2014000502A (en) 2012-06-15 2014-01-09 Mitsubishi Chemical Holdings Corp Photocatalyst for water decomposition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253486A (en) * 1995-10-26 1997-09-30 Riken Corp Photocatalyst and its preparation
JP3096728B2 (en) * 1997-02-05 2000-10-10 工業技術院長 Method and apparatus for decomposing water by sunlight

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246264A (en) 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd Photocatalyst
JP2007216197A (en) 2006-02-20 2007-08-30 Univ Kinki Photocatalytic film, photocatalytic material and methods for manufacturing them
JP2014000502A (en) 2012-06-15 2014-01-09 Mitsubishi Chemical Holdings Corp Photocatalyst for water decomposition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hailang QI et al.,"Photocatalytic Performance of Titanium Dioxide Nanoparticles Doped with Multi-metals",Journal of Advanced Oxidation Technologies,2016年11月30日,Vol. 19, No. 2,p. 302-309,DOI: 10.1515/jaots-2016-0214
Noor Zalikha MOHAMED ISLAM et al.,"Effect of Single and Bimetallic Ni, V and Mn Transition Metal Ion Doping on the Properties of Anatase/Brookite TiO2 Photocatalyst",Advanced Materials Research,2016年01月,Vol. 1133,p.527-531,DOI: 10.4028/www.scientific.net/AMR.1133.527
Sankara Rao MIDITANA et al.,"Study on Structural and Optical Properties of Ni and Mn Codoped TiO2 Nanomaterials and Its Application in Visible Light Photocatalytic Activity of Indigo Caramine Dye",Journal of Nanoscience and Technology,2019年05月16日,Vol. 5, No. 2,p.682-687,DOI: 10.30799/jnst.239.19050209

Also Published As

Publication number Publication date
JP2021062317A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
CN108380235B (en) Preparation method and application of graphite-phase carbon nitride-based heterogeneous Fenton-like catalyst
Zhang et al. Enhanced visible light photocatalytic activity for TiO2 nanotube array films by codoping with tungsten and nitrogen
JP2015231593A (en) Photocatalytic composite body material and method for producing the same
JP5946096B2 (en) A novel visible light responsive photocatalyst with environmental resistance
JP4528944B2 (en) Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
JP7347097B2 (en) photocatalyst
Zhang et al. Fabrication of Mo+ N‐Codoped TiO2 Nanotube Arrays by Anodization and Sputtering for Visible Light‐Induced Photoelectrochemical and Photocatalytic Properties
CN108514885B (en) Preparation method and application of Cu (II) -modified BiOCl
CN1736593A (en) Copper doped niobium potassium compound oxide photocatalyst and preparation process
JP7435369B2 (en) photocatalyst
JP7447738B2 (en) photocatalyst
JP2002306963A (en) Photocatalyst substance absorbing visible light, method for decomposing water and method for fixing carbon
JP2023114532A (en) photocatalyst
JP2021529082A (en) Its use in UV-activated photocatalytic materials and decomposition of volatile compounds
CN105600866A (en) Preparing method of electro-assisted photocatalysis cathode used for removing inorganic halite in water
JP7392516B2 (en) photocatalyst
JP2022081905A (en) photocatalyst
JP2023114537A (en) photocatalyst
JP2002177775A (en) Visible ray reaction type photocatalyst and manufacturing method thereof
JP5750319B2 (en) Method for producing brookite type titanium oxide
JP2007136394A (en) Manufacturing method of sulfur-doped titanium oxide
JP5517375B1 (en) A method for producing a calcium carbonate-containing photocatalytic composite composition, and a calcium carbonate-containing photocatalytic composite composition.
JP3138738B1 (en) Photocatalyst and method for producing the same
CN107754781B (en) Preparation and application of powder catalytic material and silicon-zinc-containing molecular sieve composite porous nano catalytic material
JP6789566B2 (en) Manufacturing method of photocatalytic glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150