JP6789566B2 - Manufacturing method of photocatalytic glass - Google Patents

Manufacturing method of photocatalytic glass Download PDF

Info

Publication number
JP6789566B2
JP6789566B2 JP2016094204A JP2016094204A JP6789566B2 JP 6789566 B2 JP6789566 B2 JP 6789566B2 JP 2016094204 A JP2016094204 A JP 2016094204A JP 2016094204 A JP2016094204 A JP 2016094204A JP 6789566 B2 JP6789566 B2 JP 6789566B2
Authority
JP
Japan
Prior art keywords
glass
photocatalytic
snox
sio
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016094204A
Other languages
Japanese (ja)
Other versions
JP2017202437A (en
Inventor
久冨木 志郎
志郎 久冨木
バラシュ コブシ
バラシュ コブシ
晃佑 砂川
晃佑 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2016094204A priority Critical patent/JP6789566B2/en
Publication of JP2017202437A publication Critical patent/JP2017202437A/en
Application granted granted Critical
Publication of JP6789566B2 publication Critical patent/JP6789566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、可視光で十分な光触媒活性を示す光触媒ガラスに関するものである。 The present invention relates to a photocatalytic glass that exhibits sufficient photocatalytic activity with visible light.

1972年にアナターゼ型の二酸化チタン電極が紫外光で、水を水素と酸素に分解する活性が発見され(非特許文献1)、二酸化チタンの半導体が有する光触媒活性を用い効率的に光エネルギーを化学エネルギーに変換させることを最終目的する研究が幅広くなされている。
しかしながら、アナターゼ型二酸化チタンの半導体の光触媒は、3.2eVという比較的大きなバンドギャップがあり、それは388nm以下の波長に相当するものである。端的にいえば、二酸化チタンを用いた光触媒の場合、その光触媒活性には紫外光が必要であり、地表に到達する全太陽光エネルギー中の3〜4%である紫外光しか利用することができない。
このため、この数十年の間に、太陽光エネルギーの利用効率を高くするため、可視光で触媒活性を有する光触媒の開発が行われ、アナターゼ型二酸化チタンを主成分とする光触媒が多数開発されている(例えば、非特許文献2〜7)。また、少数ではあるが、アナターゼ型二酸化チタンを含まない触媒も開発されている。
たとえば、特許文献1には、光触媒反応ユニットに使用されるシリカガラスであって、光触媒の反応効率を向上させるために、250nm程度以下の光を約250nm〜450nm程度の長波長側へ効率よく波長変換することができ、それとともに、長時間紫外線を照射しても性能が低下しにくい、耐紫外線性等に優れた特性を兼ね備えた光触媒用シリカガラスとして、シリカガラスにおいて、少なくとも、前記シリカガラスは、OH基含有量が10wt.ppm以下であり、厚さ10mmの波長245nmでの直線透過率が90.0%〜30.0%の範囲であり、塩素及びフッ素の合計含有量が100wt.ppm以下であることを特徴とする光触媒用シリカガラスが提案されている。
本願発明者らは、近年、地方自治体のゴミ焼却施設から排出されるリサイクル焼却灰から調製した鉄含有ソーダ石灰シリカガラスが、模擬排水の化学的要求酸素量(COD)を減少させ、そしてその水浄化活性とメスバウアースペクトル分析により示される局所構造とには相関があることを報告している。(非特許文献8、9)この結果は、鉄含有ソーダ石灰シリカガラスが、水質汚染浄化に有用な光触媒として作用することを示唆するものである。
また、本願発明者らは、可視光で光触媒活性を示すガラスとして、鉄含有シリカガラスを提案している(非特許文献10)。
In 1972, anatase-type titanium dioxide electrodes were discovered to have the activity of decomposing water into hydrogen and oxygen with ultraviolet light (Non-Patent Document 1), and the photocatalytic activity of titanium dioxide semiconductors was used to efficiently chemical light energy. A wide range of research has been done with the ultimate goal of converting it into energy.
However, the anatase-type titanium dioxide semiconductor photocatalyst has a relatively large bandgap of 3.2 eV, which corresponds to a wavelength of 388 nm or less. In short, in the case of a photocatalyst using titanium dioxide, ultraviolet light is required for its photocatalytic activity, and only 3 to 4% of the total solar energy reaching the surface of the earth can be used. ..
For this reason, in the last few decades, in order to increase the utilization efficiency of solar energy, photocatalysts having catalytic activity with visible light have been developed, and many photocatalysts containing anatase-type titanium dioxide as a main component have been developed. (For example, Non-Patent Documents 2 to 7). A small number of catalysts that do not contain anatase-type titanium dioxide have also been developed.
For example, Patent Document 1 describes silica glass used in a photocatalytic reaction unit, which efficiently wavelengths light of about 250 nm or less toward a long wavelength side of about 250 nm to 450 nm in order to improve the reaction efficiency of the photocatalyst. As a silica glass for a photocatalyst that can be converted, and at the same time, its performance does not easily deteriorate even when irradiated with ultraviolet rays for a long period of time and has excellent characteristics such as ultraviolet resistance, at least the above silica glass is used. , OH group content is 10 wt. It is ppm or less, the linear transmittance at a wavelength of 245 nm with a thickness of 10 mm is in the range of 90.0% to 30.0%, and the total content of chlorine and fluorine is 100 wt. Silica glass for photocatalyst characterized by being less than ppm has been proposed.
In recent years, the inventors of the present application have found that iron-containing soda lime silica glass prepared from recycled incineration ash discharged from municipal waste incineration facilities reduces the chemically required oxygen content (COD) of simulated wastewater, and its water. It has been reported that there is a correlation between purification activity and the local structure shown by Mesbauer spectrum analysis. (Non-Patent Documents 8 and 9) This result suggests that iron-containing soda lime silica glass acts as a photocatalyst useful for water pollution purification.
In addition, the inventors of the present application have proposed iron-containing silica glass as a glass that exhibits photocatalytic activity with visible light (Non-Patent Document 10).

特開2009−154090号公報JP-A-2009-154090

Fujishima A, and Honda K, (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38.Fujishima A, and Honda K, (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38. H. Ozaki, et al, (2007) Marked Promotive Effect of Ion on Visible-Light-Induced Photocatalytic Activities of Nitrogen-and Silicon-Codoped Titanias, J. Phys. Chem. C, 11117061.H. Ozaki, et al, (2007) Marked Promotive Effect of Ion on Visible-Light-Induced Photocatalytic Activities of Nitrogen-and Silicon-Codoped Titanias, J. Phys. Chem. C, 11117061. Wang Z, et al., (2005), Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem Mater l7(6), 1548-1552Wang Z, et al., (2005), Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem Mater l7 (6), 1548-1552 Khan S U M, et al, (2002), Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science, 297, (5590), 2243-2245Khan SUM, et al, (2002), Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science, 297, (5590), 2243-2245 Yanfang S, et al, (2009), Phosphorous, nitrogen and molybdenum ternary co-doped TiO2: preparation and photocatalytic activities under visible light, Journal of Sol-Gel Science and Technology, 50(1), 98-102Yanfang S, et al, (2009), Phosphorous, nitrogen and molybdenum ternary co-doped TiO2: preparation and photocatalytic activities under visible light, Journal of Sol-Gel Science and Technology, 50 (1), 98-102 Zhang D, et al., (2011), Graphite-like carbon deposited anatase TiO2 single crystals as efficient visible-light photocatalysts., Journal of Sol-Gel Science and Technology., 58(3), 594-601Zhang D, et al., (2011), Graphite-like carbon deposited anatase TiO2 single crystals as efficient visible-light photocatalysts., Journal of Sol-Gel Science and Technology., 58 (3), 594-601 Smirnova N, et al., (2001), Synthesis and Characterization of Photocatalytic Porous Fe3+/TiO2 Layers on Glass., Journal of Sol-Gel Science and Technology., 21, 109-113Smirnova N, et al., (2001), Synthesis and characterization of Photocatalytic Porous Fe3 + / TiO2 Layers on Glass., Journal of Sol-Gel Science and Technology., 21, 109-113 Kubuki S, et al, (2012), 57Fe Mossbauer study of iron-containing soda-lime silicate glass with COD reducing ability., American Institute of Physics Conference Proceeding Series., 1489, 41-46Kubuki S, et al, (2012), 57Fe Mossbauer study of iron-containing soda-lime silicate glass with COD reducing ability., American Institute of Physics Conference Proceeding Series., 1489, 41-46 Kubuki S, et al, (2012), Water Cleaning Ability and Local Structure of Iron Containing Soda-lime Silicate glass, Hyperfine Interact, 218, 41-45Kubuki S, et al, (2012), Water Cleaning Ability and Local Structure of Iron Containing Soda-lime Silicate glass, Hyperfine Interact, 218, 41-45 Takahashi Y, et al., (2013), Visible Light Activated Photo-Catalytic Effect and Local Structure of Iron Silicate Glass Prepared by Sol-Gel Method, Hyperfine Interact, DOI: 10.1007/s10751-013-0928-0.Takahashi Y, et al., (2013), Visible Light Activated Photo-Catalytic Effect and Local Structure of Iron Silicate Glass Prepared by Sol-Gel Method, Hyperfine Interact, DOI: 10.1007 / s10751-013-0928-0.

しかしながら、上述の特許文献1及び非特許文献8〜10の提案に係る光触媒は、未だ、可視光領域における光触媒活性が不十分であるという問題がある。
また、アナターゼ型二酸化チタンを含む光触媒(非特許文献2〜7)は、可視光領域における光触媒活性が不十分である問題に加え、レアメタルであるチタンを用いているため、コストが高いという問題がある。
要するに、従来提案されている光触媒ガラスは、高価なレアメタルを用いなくては十分な光触媒活性が得られていないのが現状であり、レアメタル等の高価な材料を用いずに十分な光触媒活性の得られる光触媒ガラスの開発が要望されている。
このため、レアメタルを使用せず、可視光で十分な光触媒活性を示す光触媒ガラスの開発が要望されており、ヘマタイト系の光触媒ガラスを提案している。このヘマタイト系の光触媒ガラスも高い触媒活性を示してはいるが、より触媒活性が高く、簡易に製造できる光触媒ガラスの開発が要望されているのが現状である。
However, the photocatalysts according to the proposals of Patent Document 1 and Non-Patent Documents 8 to 10 described above still have a problem that the photocatalytic activity in the visible light region is insufficient.
Further, the photocatalyst containing anatase-type titanium dioxide (Non-Patent Documents 2 to 7) has a problem that the photocatalytic activity in the visible light region is insufficient and that titanium, which is a rare metal, is used, so that the cost is high. is there.
In short, the photocatalytic glass that has been conventionally proposed does not have sufficient photocatalytic activity without using an expensive rare metal, and sufficient photocatalytic activity can be obtained without using an expensive material such as a rare metal. There is a demand for the development of photocatalytic glass.
Therefore, there is a demand for the development of a photocatalytic glass that exhibits sufficient photocatalytic activity in visible light without using rare metals, and a hematite-based photocatalytic glass has been proposed. Although this hematite-based photocatalytic glass also exhibits high catalytic activity, the current situation is that there is a demand for the development of a photocatalytic glass that has higher catalytic activity and can be easily produced.

したがって、本発明の目的は、レアメタルを使用せず、より触媒活性が高く、簡易に製造できる光触媒ガラスを提供することにある。 Therefore, an object of the present invention is to provide a photocatalytic glass that does not use a rare metal, has a higher catalytic activity, and can be easily produced.

本発明者らは、上記課題を解消すべく鋭意検討した結果、鉄イオン以外にスズが高い触媒活性を示しうることを知見し、本発明を完成するに至った。
すなわち、本発明は以下の各発明を提供するものである。
1.SnOx.SiO2を含有する、ガラス組成物を熱処理してなる光触媒ガラス。
2.上記SnOx.SiO2がSnCl2を原料成分としてなる1記載の光触媒ガラス。
3.テトラエチルオルトシリケートと2価のスズの塩とを混合してゾル−ゲル法によりSnOx.SiO2ガラスを得、次いで得られたSnOx.SiO2ガラスを所定温度で熱処理することを特徴とする光触媒ガラスの製造方法。
As a result of diligent studies to solve the above problems, the present inventors have found that tin can exhibit high catalytic activity in addition to iron ions, and have completed the present invention.
That is, the present invention provides the following inventions.
1. 1. A photocatalytic glass containing SnOx.SiO 2 obtained by heat-treating a glass composition.
2. 2. 1. The photocatalytic glass according to 1, wherein the SnOx.SiO 2 contains SnCl 2 as a raw material component.
3. 3. A photocatalytic glass characterized by mixing tetraethyl orthosilicate and a divalent tin salt to obtain SnOx.SiO 2 glass by a sol-gel method, and then heat-treating the obtained SnOx.SiO 2 glass at a predetermined temperature. Manufacturing method.

本発明の光触媒ガラスは、レアメタルを使用せず、より触媒活性が高く、簡易に製造できるものである。 The photocatalytic glass of the present invention does not use a rare metal, has higher catalytic activity, and can be easily produced.

図1は、本発明の光触媒ガラスの各原料成分のメスバウアースペクトルの結果を示すチャートである。FIG. 1 is a chart showing the results of the Mössbauer spectrum of each raw material component of the photocatalytic glass of the present invention. 図2は、本発明の光触媒ガラスの粉末X線回折の結果を示すチャートである。FIG. 2 is a chart showing the results of powder X-ray diffraction of the photocatalytic glass of the present invention. 図3は、本発明の光触媒ガラスのバンドギャップ測定結果を示す表である。FIG. 3 is a table showing the bandgap measurement results of the photocatalytic glass of the present invention. 図4は、原料成分ごとに得られた光触媒ガラスの光活性を示すチャートである。FIG. 4 is a chart showing the photoactivity of the photocatalytic glass obtained for each raw material component. 図5は、SnCl2を原料成分した光触媒ガラスとSn(COO)2を原料成分した光触媒ガラスとの光活性についての吸光分析結果を示すチャートである。FIG. 5 is a chart showing the results of absorption analysis of the photocatalytic glass containing SnCl 2 as a raw material and the photocatalytic glass containing Sn (COO) 2 as a raw material. 図6は、参考実施例における40Fe・60Pの粉末X線回折の結果を示すチャートである。Figure 6 is a chart showing the 40Fe 2 O 3 · 60P 2 results for O 5 powder X-ray diffraction at Reference Example. 図7に、40Fe・60Pを300℃で熱処理をした場合のFeMSの結果を示すチャートである。Figure 7 is a chart showing the results of FeMS in the case where the heat-treated 40Fe 2 O 3 · 60P 2 O 5 at 300 ° C..

以下、本発明をさらに詳細に説明する。
本発明の光触媒ガラスは、SnOx.SiO2を含有する、ガラス組成物を熱処理してなるものである。
なお、本明細書において、光触媒ガラスとは、可視光により触媒活性を示すガラスをいう。また、ガラスには、アモルファス構造のガラスの他、結晶成分を含む結晶化ガラス(ガラスセラミック)も含まれる。
Hereinafter, the present invention will be described in more detail.
The photocatalytic glass of the present invention is obtained by heat-treating a glass composition containing SnOx.SiO 2 .
In the present specification, the photocatalytic glass refers to a glass that exhibits catalytic activity by visible light. Further, the glass includes not only glass having an amorphous structure but also crystallized glass (glass ceramic) containing a crystal component.

<ガラス組成物>
本発明において用いられる上記ガラス組成物は、SnOx.SiO2を必須成分として含有するSnOx.SiO2ガラスである。
(SnOx.SiO2ガラス)
上記SnOx.SiO2ガラスは、いわゆるスズ含有ケイ酸塩ガラスであり、SnOx, 50とSiO2との含有比は重量比で、30〜70:70〜30であるのが好ましく、50:50であるのが最も好ましい。
また、上記xは1又は2を示す。すなわちスズは2価又は4価である。
2価のスズと4価のスズとの混合比、すなわちSnOはとSnO2との混合比は、モル比で 1〜 3: 19〜 7とするのが好ましい。この範囲内とすることによりバンドギャップエネルギーが十分に低い値となり、十分な光触媒活性が発揮される。
また、上記ガラスは後述するように2価のスズ化合物を用いてゾルゲル法により製造できるものであるが、ここで用いられる原料成分としての2価のスズ化合物(以下、単に「原料成分」という場合もある)としては、SnCl 、SnF 、SnO、 Sn(COO)2 等を挙げることができ、使用に際しては単独または2種以上の混合物として用いることができる。原料成分としては、特にSnClが、得られる光触媒ガラスの光活性が向上するので好ましい。
<Glass composition>
The glass composition used in the present invention is SnOx.SiO 2 glass containing SnOx.SiO 2 as an essential component.
(SnOx.SiO 2 glass)
The SnOx.SiO 2 glass is a so-called tin-containing silicate glass, and the content ratio of SnOx, 50 to SiO 2 is preferably 30 to 70:70 to 30, preferably 50:50. Most preferably.
Further, x above indicates 1 or 2. That is, tin is divalent or tetravalent.
The mixing ratio of divalent tin and tetravalent tin, that is, the mixing ratio of SnO and SnO 2 is preferably 1 to 3: 19 to 7 in terms of molar ratio. Within this range, the bandgap energy becomes a sufficiently low value, and sufficient photocatalytic activity is exhibited.
Further, the above glass can be produced by the solgel method using a divalent tin compound as described later, but the divalent tin compound as a raw material component used here (hereinafter, simply referred to as "raw material component"). (There is also), SnCl 2 , SnF 2 , SnO, Sn (COO) 2, etc. can be mentioned, and when used, it can be used alone or as a mixture of two or more kinds. As a raw material component, SnCl 2 is particularly preferable because it improves the photoactivity of the obtained photocatalytic glass.

(その他の成分)
本発明の光触媒ガラスにおける上記ガラス組成物においては、上述の各成分に加えてさらに本発明の趣旨を逸脱しない範囲で種々添加物を配合することができる。ここで用いられる添加物としては、通常ガラスに用いられるガラス安定化剤やガラス修飾剤を挙げることができる。
(Other ingredients)
In the glass composition of the photocatalytic glass of the present invention, in addition to the above-mentioned components, various additives can be further blended within a range not deviating from the gist of the present invention. Examples of the additive used here include a glass stabilizer and a glass modifier usually used for glass.

<製造方法>
本発明の光触媒ガラスの製造方法を説明する。
本発明の光触媒ガラスの製造方法は、テトラエチルオルトシリケート(以下「TEOS」という)と2価のスズの塩とを混合してゾル−ゲル法によりSnOx.SiO2ガラスを得、次いで得られたSnOx.SiO2ガラスを所定温度で熱処理することにより実施できる。
以下、さらに詳述する。
(SiO.SnOxガラスの製造)
SiO.SnOx ガラスの製造は以下の様にゾルゲル法を用いて、TEOSと2価のスズ塩とを反応させることにより行った。
まず、TEOSをプロパノール及び硝酸の酸成分の存在下、50〜150℃で1〜5時間加熱することにより、加水分解用溶液を得る。ついで得られた加水分解用溶液に上記原料成分を上述の含有比となるように加えて撹拌し、50〜100℃で10〜40時間乾燥させることにより、SiO.SnOx ガラスを得ることができる。
(熱処理)
次に得られたSiO.SnOx ガラスを空気雰囲気下で250〜400℃で 1〜 2時間熱処理して本発明の光触媒ガラスを得ることができる。
<Manufacturing method>
The method for producing the photocatalytic glass of the present invention will be described.
In the method for producing a photocatalytic glass of the present invention, tetraethyl orthosilicate (hereinafter referred to as "TEOS") and a divalent tin salt are mixed to obtain SnOx.SiO 2 glass by a sol-gel method, and then the obtained SnOx. It can be carried out by heat-treating .SiO 2 glass at a predetermined temperature.
The details will be described below.
(Production of SiO 2 .SnOx glass)
Preparation of SiO 2 .SnOx glass using the sol-gel method as follows was carried out by reacting TEOS and divalent tin salt.
First, a solution for hydrolysis is obtained by heating TEOS at 50 to 150 ° C. for 1 to 5 hours in the presence of an acid component of propanol and nitric acid. The raw material components then the resulting hydrolyzed solution was stirred added to a content ratio of the above, and dried at 50 to 100 ° C. 10 to 40 hours to give a SiO 2 .SnOx glass ..
(Heat treatment)
Next, the obtained SiO 2. SnOx glass is heat-treated at 250 to 400 ° C. for 1 to 2 hours in an air atmosphere to obtain the photocatalytic glass of the present invention.

本発明においては、上述の各工程の他に必要に応じて適宜他の工程を用いて製造を行ってもよい。 In the present invention, in addition to each of the above-mentioned steps, the production may be carried out by appropriately using other steps as needed.

<光触媒ガラス>
本発明の光触媒ガラスは、上述のようにゾルゲル法で2価のスズ化合物を原料成分として、スズ含有ケイ酸塩ガラス(SnOx・SiOガラス)を得、得られたSnOx・SiOガラスを熱処理することにより得られる、SnOx・SiOガラスである。
本発明の光触媒ガラスは、Sn2+とSn4+との両方を含有するために優れた光触媒活性が発生していると考えられる。そして、この光触媒活性は原料成分としてSnClを用いた場合に最も優れたものとなり、その場合のSn2+とSn4+との含有比は特に制限されず、任意である。
<Photocatalytic glass>
In the photocatalyst glass of the present invention, tin-containing silicate glass (SnOx · SiO 2 glass) is obtained by using a divalent tin compound as a raw material component by the sol-gel method as described above, and the obtained SnOx · SiO 2 glass is heat-treated. SnOx · SiO 2 glass obtained by the above.
It is considered that the photocatalytic glass of the present invention has excellent photocatalytic activity because it contains both Sn 2+ and Sn 4+ . The photocatalytic activity is most excellent when SnCl 2 is used as a raw material component, and the content ratio of Sn 2+ and Sn 4+ in that case is not particularly limited and is arbitrary.

<用途・効果>
本発明の光触媒は、可視光で光触媒活性を有するものであり、光触媒として各種の用途に用いることができ、例えば、汚染物質の分解などによる浄化などに用いることができる。
<Use / effect>
The photocatalyst of the present invention has photocatalytic activity in visible light and can be used for various purposes as a photocatalyst, for example, for purification by decomposition of pollutants and the like.

本発明は上述した実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形可能である。
本発明の光触媒の形状は、特に制限されず、たとえば、微粒子、薄膜、ファイバー(線材)など、公知の成形方法により、さまざまな形状にすることができる。中でも、触媒活性を向上させる点から、表面積が大きい方が好ましく、微粒子、薄膜、ファイバーなどの形状が好ましい。
The present invention is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the present invention.
The shape of the photocatalyst of the present invention is not particularly limited, and various shapes can be obtained by a known molding method such as fine particles, thin films, and fibers (wire rods). Above all, from the viewpoint of improving the catalytic activity, a large surface area is preferable, and shapes such as fine particles, thin films, and fibers are preferable.

以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。
〔実施例1〕
(SiO.SnOxガラスの製造)
SiO.SnOx ガラスの製造は以下の様にゾルゲル法を用いて、TEOSと2価のスズ塩とを反応させることにより行った。
まず、TEOS6.7mlをプロパノール19ml及び硝酸3.2 mlの存在下、80℃で2時間加熱することにより、加水分解用溶液を得た。これらに表1に示す原料成分をそれぞれ 13.4mmol加えて撹拌し、4種類のゲル状物を得た。得られたゲル状物をそれぞれ60℃で1日乾燥させてSiO.SnOx ガラスを得た。
(熱処理)
次に得られたSiO.SnOx ガラスを300℃で2時間熱処理して光触媒ガラスを調整した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[Example 1]
(Production of SiO 2 .SnOx glass)
Preparation of SiO 2 .SnOx glass using the sol-gel method as follows was carried out by reacting TEOS and divalent tin salt.
First, a solution for hydrolysis was obtained by heating 6.7 ml of TEOS at 80 ° C. for 2 hours in the presence of 19 ml of propanol and 3.2 ml of nitric acid. 13.4 mmol of each of the raw material components shown in Table 1 was added to these and stirred to obtain four types of gels. The resulting gel was dried for 1 day at 60 ° C. respectively to obtain a SiO 2 .SnOx glass.
(Heat treatment)
Adjusting the photocatalyst glass of SiO 2 .SnOx glass obtained then heat-treated for 2 hours at 300 ° C..

メスバウアースペクトルから、各原料成分から得られるSiO.SnOx ガラスにおける全てのピークはSn(IV)化合物に起因するものであり、それぞれ2価のスズの酸化により生じていると考えられる。その一方Sn(COO)を原料成分とする場合にはほとんどピークが認められなかったため、Sn(IV)化合物は発生してしないと認めらえる。
またX線分析の結果から、原料成分をSnCl又はSnFとするSiO.SnOx ガラスはいずれも非晶質であることが判るが、特にSn(COO)についてはSn(COO)粒子が溶解しきれずに残渣として存在していることが判る。
また、バンドギャップを算出した。その結果を表1に示す。表1に示す結果から、いずれの原料成分もバンドギャップエネルギーは高いものであったが、SiO.SnOx ガラスにおけるバンドギャップはいずれも増加しているのがわかる。さらに熱処理後はSnClを原料成分とした場合のみ可視光における活性を示すのに十分な低いバンドギャップエネルギーを示した。
From Mössbauer spectra, all peaks in the SiO 2 .SnOx glass obtained from each raw material component is due to the Sn (IV) compounds, believed to be caused by oxidation of divalent tin, respectively. On the other hand, when Sn (COO) 2 was used as a raw material component, almost no peak was observed, so it can be recognized that the Sn (IV) compound was not generated.
Also from the results of X-ray analysis, the ingredients SiO 2 .SnOx glass with SnCl 2 or SnF 2 it is seen that both amorphous, particularly for Sn (COO) 2 Sn (COO ) 2 particles It can be seen that is not completely dissolved and exists as a residue.
In addition, the band gap was calculated. The results are shown in Table 1. From the results shown in Table 1, it can be seen that the bandgap energies of all the raw material components were high, but the bandgap in the SiO 2. SnOx glass was increased. Further, after the heat treatment, only when SnCl 2 was used as a raw material component, the bandgap energy was sufficiently low to show the activity in visible light.

SnClを原料成分として用いた系のバンドギャップエネルギーを図3に示す。
得られた光触媒ガラスを用いてメチレンブルーの分解を行い、光触媒活性を確認した。その結果を図4に示す。その結果、特に原料成分としてSnClを用いた光触媒ガラスにおいて高い光触媒活性が得られた。
また、原料成分としてSnClを用いた光触媒ガラスと原料成分としてSn(COO)を用いた光触媒ガラスとについて光触媒活性を示す吸収スペクトルを測定した。その結果を図5に示す。その結果から明らかなように、SnClを用いた光触媒ガラスは光照射のない場合とある場合とでは光の吸収量が減少しており、メチレンブルーの存在量の変化がみられるのに対して、Sn(COO)を用いた光触媒ガラスにおいてはほとんどメチレンブルーの存在量に変化がなく、光触媒活性が見られないことが判る。なお、図5の上のチャートと下のチャートとでinitialの量に差があるのは、グラフを見やすくするために光照射するための系とは別にメチレンブルー溶液を調整したためである。
可視光の照射は室温でメタルハライドランプ(波長領域420〜750nm、出力電力100W、照射光強度6mWcm-2)を用いて行った。また、メチレンブルーの吸光度は室温で測定し、紫外可視分光光度計としてUV−1700、SHIMADZU社製を用い、200〜800nmの波長範囲で測定した。
メスバウアースペクトル分析、X線解析分析、光触媒活性分析についてはそれぞれ以下の様に行った。
The bandgap energy of the system using SnCl 2 as a raw material component is shown in FIG.
Methylene blue was decomposed using the obtained photocatalytic glass, and the photocatalytic activity was confirmed. The result is shown in FIG. As a result, high photocatalytic activity was obtained especially in the photocatalytic glass using SnCl 2 as a raw material component.
Further, the absorption spectra showing the photocatalytic activity of the photocatalytic glass using SnCl 2 as the raw material component and the photocatalytic glass using Sn (COO) 2 as the raw material component were measured. The result is shown in FIG. As is clear from the results, the photocatalytic glass using SnCl 2 has a reduced amount of light absorption with and without light irradiation, and a change in the abundance of methylene blue is observed. It can be seen that in the photocatalytic glass using Sn (COO) 2 , there is almost no change in the abundance of methylene blue, and no photocatalytic activity is observed. The difference in the amount of initial between the upper chart and the lower chart in FIG. 5 is due to the fact that the methylene blue solution was prepared separately from the system for irradiating light in order to make the graph easier to see.
Irradiation of visible light was performed at room temperature using a metal halide lamp (wavelength region 420 to 750 nm, output power 100 W, irradiation light intensity 6 mWcm- 2 ). The absorbance of methylene blue was measured at room temperature, and was measured in the wavelength range of 200 to 800 nm using a UV-1700, manufactured by SHIMADZU, as an ultraviolet-visible spectrophotometer.
Mössbauer spectrum analysis, X-ray analysis analysis, and photocatalytic activity analysis were performed as follows.

57Feメスバウアースペクトル分析〕
メスバウアースペクトル分析は、解析装置として、Mossbauer driving unit MDU―1200(Wissenschaftliche Elektronik社製)、Digital function generator DFG―1000(Wissenschaftliche Elektronik社製)、High Voltage PowerSupply 456(ORTEC社製)、Amplifier 485(ORTEC社製)、Single channel analyzer SCA―550(ORTEC社製)、Multi―Channel Analyzer MCA―7700(SEIKO EG&G社製)を接続したものを使用した。
測定用試料は、本発明の光触媒ガラスをよく粉砕した後、該粉砕物をセロハンテープで挟み込んだものを使用した。
線源にはRhマトリックスに分散させた線量925Bqの57Coを使用し、α−Feを基準物質とした。
なお、得られたスペクトルデータは、メスバウアー解析ソフトウェア(商品名:MossWin3.0iXP、トポロジックシステムズ社製)により、ローレンツ関数へフィッティングさせることによるカーブフィッティングを行った。
なお、分析は、ガラス化工程で得られたガラス(以下、このガラスを「アニーリング処理前」と表記することもある。)についても同様に行った。
得られたメスバウアースペクトルの結果のチャート及びそのパラメータを、図1に示す。
[ 57 Fe Mössbauer spectrum analysis]
Mössbauer spectrum analysis, as an analyzer, Mossbauer driving unit MDU-1200 (manufactured by Wissenschaftriche Electronics), Digital function generator DFG-1000 (manufactured by WissenschaflicheElect) (Manufactured by SEIKO), Single channel analyzer SCA-550 (manufactured by ORTEC), and Multi-Channel Analyzer MCA-7700 (manufactured by SEIKO EG & G) were connected.
As the measurement sample, the photocatalyst glass of the present invention was pulverized well, and then the pulverized product was sandwiched between cellophane tapes.
As the radiation source, 57 Co having a dose of 925 Bq dispersed in the Rh matrix was used, and α-Fe was used as a reference substance.
The obtained spectral data was curve-fitted by fitting it to the Lorentz function using Mössbauer analysis software (trade name: MossWin3.0iXP, manufactured by Topological Systems Co., Ltd.).
The analysis was also performed on the glass obtained in the vitrification step (hereinafter, this glass may be referred to as "before annealing treatment").
The chart of the results of the obtained Mössbauer spectrum and its parameters are shown in FIG.

〔X線回折〕
X線回折(XRD)分析は、試料水平型強力X線回折装置(型式名:RINT-TTRIII、Rigaku社製)により、下記条件で行った。
なお、分析は、ガラス化工程で得られたガラス(アニーリング処理前)についても同様に行ったが、その結果については特に図示しない。
条件:
回折角(2θ):10〜80°
インターバル:0.02°
スキャン速度:5.0°min−1
X線源:CuKα線
X線波長(λ):1.54Å
管電流(mA):300
管電圧(kV):50
得られた結果を図2に示す。
[X-ray diffraction]
The X-ray diffraction (XRD) analysis was performed by a sample horizontal strong X-ray diffractometer (model name: RINT-TTRIII, manufactured by Rigaku) under the following conditions.
The analysis was also performed on the glass obtained in the vitrification step (before the annealing treatment), but the results are not shown in particular.
conditions:
Diffraction angle (2θ): 10 to 80 °
Interval: 0.02 °
Scan speed: 5.0 ° min -1
X-ray source: CuKα ray X-ray wavelength (λ): 1.54 Å
Tube current (mA): 300
Tube voltage (kV): 50
The obtained results are shown in FIG.

〔光触媒活性試験〕
光触媒活性はメチレンブルー分解実験により評価した。
メチレンブルーの分解実験は、まず、実施例1で得られた本発明の光触媒ガラス、並びに比較例1で得られた熱処理ガラスのうち40mgを十分に粉砕し、別々の容器に入れ、20μMのメチレンブルー溶液10mLで浸漬させ、浸漬中、以下の条件で可視光照射を行った。
条件:
装置:装置名:MH−100 Illuminator(Edmund Optics社製)
光源:metal halide lamp
フィルター:UV cutoff FSAフィルター(Dolan―Jenner industries社製)
照射波長:420〜750nm
出力:100W
浸漬処理開始から30分、60分、90分、120分、150分、180分後に、それぞれの容器からメチレンブルー水溶液を採取し、紫外可視分光光度計(装置名:UV−1700、SHIMADZU社製)を用いて下記条件により吸光スペクトルを測定した。
また、浸漬処理を開始してから3時間後にも、それぞれの容器からメチレンブルー水溶液を採取し、紫外可視分光光度計(装置名:UV−1700、SHIMADZU社製)を用いて下記条件により吸光スペクトルを測定した。
[Photocatalytic activity test]
The photocatalytic activity was evaluated by a methylene blue decomposition experiment.
In the decomposition experiment of methylene blue, first, 40 mg of the photocatalytic glass of the present invention obtained in Example 1 and the heat-treated glass obtained in Comparative Example 1 were sufficiently crushed and placed in separate containers to form a 20 μM methylene blue solution. It was immersed in 10 mL, and during the immersion, visible light irradiation was performed under the following conditions.
conditions:
Device: Device name: MH-100 Illuminator (manufactured by Edmund Optics)
Light source: metal halide lamp
Filter: UV cutoff FSA filter (manufactured by Dolan-Jenner industries)
Irradiation wavelength: 420-750 nm
Output: 100W
After 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, and 180 minutes from the start of the immersion treatment, a methylene blue aqueous solution was collected from each container, and an ultraviolet visible spectrophotometer (device name: UV-1700, manufactured by SHIMADZU). The absorption spectrum was measured under the following conditions using the above.
In addition, even 3 hours after the start of the dipping treatment, a methylene blue aqueous solution is collected from each container, and an absorption spectrum is measured under the following conditions using an ultraviolet visible spectrophotometer (device name: UV-1700, manufactured by SHIMADZU). It was measured.

〔参考形態〕
以下に、本発明の参考形態として、鉄リン酸塩ガラスからなる触媒ガラスについて説明する。
(鉄リン酸ガラス)
本参考形態の鉄リン酸塩ガラスは、非晶質であり、ガラス中にFe2+イオンとFe3+イオンが混在したガラスである。また、Fe2+イオンを含む物質は、八面体のネットワークを形成している。
また、Fe2+イオンとFe3+イオンとの混合比率は、特に制限されない。
上記鉄リン酸ガラスの具体例としては、40Fe・60P5、50Fe・50P を挙げることができる。
また、上記鉄リン酸ガラスに含有されるFe2+イオンを含む物質としては、FeOを挙げることができ、とFe3+イオンを含む物質としては、Fe23を挙げることができ、両者が混在した物質としては、Fe34 を挙げることができる。
本参考形態の触媒ガラスには、上記鉄リン酸ガラスの効果を損なわない範囲で上記鉄リン酸ガラス以外の他の成分を含有させてもよい。
(製造方法)
本参考形態の鉄イン酸ガラスは、いわゆるゾル−ゲル法により製造することができる。
例えば、まず、常法に従い、40Fe・60P 等のゲルを調整し、得られたゲルを低温(50〜150℃)の温度で100〜400時間乾燥させた後、更に200〜500℃の温度で3〜20時間加熱処理を行うなどすることにより、上記鉄リン酸ガラスを得ることができる。
[Reference form]
Hereinafter, as a reference embodiment of the present invention, a catalyst glass made of iron phosphate glass will be described.
(Iron phosphate glass)
The iron phosphate glass of this reference form is amorphous, and is a glass in which Fe 2+ ions and Fe 3+ ions are mixed in the glass. In addition, the substances containing Fe 2+ ions form an octahedral network.
The mixing ratio of Fe 2+ ions and Fe 3+ ions is not particularly limited.
Specific examples of the iron phosphate glass, may be mentioned 40Fe 2 O 3 · 60P 2 O 5, 50Fe 2 O 3 · 50P 2 O 5 or the like.
Further, FeO can be mentioned as a substance containing Fe 2+ ions contained in the iron phosphate glass, and Fe 2 O 3 can be mentioned as a substance containing Fe 3+ ions, both of which are mixed. Examples of the resulting substance include Fe 3 O 4 .
The catalyst glass of the present reference embodiment may contain components other than the iron phosphate glass as long as the effects of the iron phosphate glass are not impaired.
(Production method)
The iron phosphate glass of this reference form can be produced by the so-called sol-gel method.
For example, first, a conventional method, after adjusting the 40Fe 2 O 3 · 60P 2 O 5 or the like of the gel, dried 100 to 400 hours at a temperature of the resulting gel low temperature (50 to 150 ° C.), further 200 The iron phosphate glass can be obtained by performing heat treatment at a temperature of about 500 ° C. for 3 to 20 hours.

〔参考実施例〕
試薬特級のi-CHCH(OH)CH10.4mLにP1.80gを加え、90℃で3時間還流した。次に、60℃で還流しながらi-CHCH(OH)CH、COH、HO、HCl (7.8M)の混合溶液(それぞれ2.6mL、2.6mL、2.0mL、3.5mLの混合溶液)を滴下し、2時間攪拌した。その後、20℃で水浴させながら攪拌し、Fe(NO3・9HO を6.82g加えて完全に溶解させ、CHCHCHO7.5mLを滴下し2時間攪拌した。そして60℃で2時間還流し、40Fe・60p のゲルを得た。得られたゲルを室温で4日間静置させた。その後、乾燥した。乾燥は、電気炉でまず80℃まで48時間かけて昇温させ48時間保持することにより行った。
その後、40Fe・60Pを昇温速度50Kh−1、200〜500℃で熱処理した。構造解析はメスバウアー分光分析(FeMS(線源: 57Co(Rh)、基準:α-Fe))、粉末X線回折(XRD(ターゲット:Cu−K2θ:10〜80°、電圧:50kV、電流:300mA))、により行った。
また、直流磁場下(500Oe)での磁化率の温度依存性(2〜300K)を測定し、磁気的性質の評価を行った。
図6に得られた鉄リン酸ガラスのXRDの結果を示す。300℃で熱処理した場合、ハローパターンを示し、非晶質であることがわかった。
図7に得られた鉄リン酸ガラスを300℃で熱処理をした場合のFeMSの結果を示した。得られたスペクトルからは八面体のFe2+に帰属される異性体シフト(δ)=1.11 mms−1、四極分裂(Q.S.)=2.38 mms−1のダブレットと、Fe3+に帰属されるδ=0.29 mms−1、Q.S.=0.75 mms−1のダブレットが得られ、ガラス中では2種類のFe2+とFe3+イオンが混在していることが分かった。
[Reference Example]
1.80 g of P 2 O 5 was added to 10.4 mL of reagent special grade i-CH 3 CH (OH) CH 3, and the mixture was refluxed at 90 ° C. for 3 hours. Next, a mixed solution of i-CH 3 CH (OH) CH 3 , C 2 H 5 OH, H 2 O, and HCl (7.8 M) (2.6 mL, 2.6 mL, 2 respectively) while refluxing at 60 ° C. A mixed solution of 9.0 mL and 3.5 mL) was added dropwise, and the mixture was stirred for 2 hours. Thereafter, stirring while the water bath at 20 ℃, Fe (NO 3) 3 · 9H 2 O was completely dissolved by adding 6.82g, and the mixture was stirred for 2 hours was added dropwise CH 3 CHCH 2 O7.5mL. Then refluxed for 2 hours at 60 ° C., to obtain a gel of 40Fe 2 O 3 · 60p 2 O 5. The obtained gel was allowed to stand at room temperature for 4 days. Then it was dried. Drying was carried out by first raising the temperature to 80 ° C. over 48 hours in an electric furnace and holding it for 48 hours.
Thereafter, 40Fe 2 O 3 · 60P 2 O 5 and heating rate 50Kh -1, was heat-treated at 200 to 500 ° C.. Structural analysis is Mössbauer spectroscopic analysis (FeMS (source: 57 Co (Rh), reference: α-Fe)), powder X-ray diffraction (XRD (target: Cu-K , 2θ: 10-80 °, voltage: 50 kV). , Current: 300mA)).
Moreover, the temperature dependence (2 to 300K) of the magnetic susceptibility under a DC magnetic field (500Oe) was measured, and the magnetic properties were evaluated.
FIG. 6 shows the XRD results of the obtained iron phosphate glass. When heat-treated at 300 ° C., it showed a halo pattern and was found to be amorphous.
FIG. 7 shows the results of FeMS when the iron phosphate glass obtained was heat-treated at 300 ° C. From the obtained spectrum, an isomer shift (δ) = 1.11 mms -1 belonging to the octahedral Fe 2+ , a quadrupole split (QS) = 2.38 mms -1 , and a doublet of Fe 3+. found that [delta] = 0.29 mms -1 attributable, Q.S. = 0.75 doublet of mms -1 is obtained, two types of Fe 2+ and Fe 3+ ions in the glass are mixed in It was.

本発明の光触媒ガラスは、可視光で十分な光触媒活性を示すため、各種触媒として用いることができる他、太陽光パネルや、光ファイバー等への応用が可能である。
また、電力メーカーの高炉から排出される飛灰(フライアッシュ)を原料として用いて本発明の光触媒ガラスを製造することも可能であると考えられ、また板ガラスを製造する際に必須のスズを有効に活用して廃ガラスの活用が可能であるので、各種施設から排出される焼却灰などの無機系廃棄物を、本発明の光触媒ガラスとしてリサイクルすることが可能である。また、主成分がケイ酸塩ガラスで、処理するのに厄介な火山灰など、天然の「廃棄物」を有効活用することができる。

Since the photocatalytic glass of the present invention exhibits sufficient photocatalytic activity in visible light, it can be used as various catalysts, and can also be applied to solar panels, optical fibers, and the like.
It is also considered possible to manufacture the photocatalyst glass of the present invention using fly ash discharged from the blast furnace of an electric power manufacturer as a raw material, and tin, which is indispensable for manufacturing flat glass, is effective. Since it is possible to utilize waste glass, it is possible to recycle inorganic waste such as incineration ash discharged from various facilities as the photocatalyst glass of the present invention. In addition, the main component is silicate glass, and natural "waste" such as volcanic ash, which is difficult to process, can be effectively utilized.

Claims (1)

SnCl2を原料成分としてなるSnOx.SiO2(式中xは1又は2を示す)を原料とし、4価のSnを含有してなる光触媒ガラスの製造方法であって、
テトラエチルオルトシリケートを酸成分の存在下、50〜150℃で1〜5時間加熱することにより、加水分解用溶液を得、得られた加水分解用溶液にSnCl 2 を混合してゾル−ゲル法によりSnOx.SiO 2 を得、次いで得られたSnOx.SiO 2 を250〜400℃で 1〜2時間熱処理することを特徴とする光触媒ガラスの製造方法。
Consisting of SnCl 2 as a raw material component SnOx.SiO 2 to (x in the formula is 1 or 2) as a raw material, a method for producing a photocatalyst glass comprising a tetravalent Sn,
A solution for hydrolysis was obtained by heating tetraethyl orthosilicate at 50 to 150 ° C. for 1 to 5 hours in the presence of an acid component, and SnCl 2 was mixed with the obtained solution for hydrolysis by a sol-gel method. A method for producing a photocatalytic glass, which comprises obtaining SnOx.SiO 2 and then heat-treating the obtained SnOx.SiO 2 at 250 to 400 ° C. for 1 to 2 hours.
JP2016094204A 2016-05-09 2016-05-09 Manufacturing method of photocatalytic glass Active JP6789566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016094204A JP6789566B2 (en) 2016-05-09 2016-05-09 Manufacturing method of photocatalytic glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094204A JP6789566B2 (en) 2016-05-09 2016-05-09 Manufacturing method of photocatalytic glass

Publications (2)

Publication Number Publication Date
JP2017202437A JP2017202437A (en) 2017-11-16
JP6789566B2 true JP6789566B2 (en) 2020-11-25

Family

ID=60321684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094204A Active JP6789566B2 (en) 2016-05-09 2016-05-09 Manufacturing method of photocatalytic glass

Country Status (1)

Country Link
JP (1) JP6789566B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798060B2 (en) * 1996-04-05 2006-07-19 松下エコシステムズ株式会社 Method for supporting photocatalyst particles
JPH11253544A (en) * 1997-10-31 1999-09-21 Matsushita Electric Ind Co Ltd Multi-functional member and sheet
JP2000317316A (en) * 1999-05-12 2000-11-21 Ishizuka Glass Co Ltd Composite material having photocatalytic function and production thereof
JP4375982B2 (en) * 2003-03-14 2009-12-02 セントラル硝子株式会社 Organic-inorganic hybrid glassy material and method for producing the same
JP4240310B2 (en) * 2004-09-22 2009-03-18 独立行政法人科学技術振興機構 Visible light responsive photocatalyst and synthesis method thereof
JP2008142606A (en) * 2006-12-07 2008-06-26 New Industry Research Organization Photocatalyst composition, photocatalyst material and its manufacturing method
JP5943535B2 (en) * 2008-10-10 2016-07-05 株式会社オハラ Glass ceramics and manufacturing method thereof
WO2012105606A1 (en) * 2011-02-02 2012-08-09 独立行政法人物質・材料研究機構 Process for manufacture of phosphor-dispersed glass, and phosphor-dispersed glass
US20150353417A1 (en) * 2013-12-26 2015-12-10 Shin-Etsu Quartz Products Co., Ltd. Quartz glass member for wavelength conversion and method of manufacturing the same
JP6567278B2 (en) * 2014-01-23 2019-08-28 国立研究開発法人物質・材料研究機構 Photocatalyst production method, hydrogen generation method, and photocatalyst for hydrogen generation
JP6552269B2 (en) * 2014-08-01 2019-07-31 信越石英株式会社 Quartz glass member for wavelength conversion and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017202437A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
Zaleska Doped-TiO2: a review
Nasir et al. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method
Assayehegn et al. Fabrication of tunable anatase/rutile heterojunction N/TiO2 nanophotocatalyst for enhanced visible light degradation activity
Liu et al. Synthesis and characterization of titania prepared by using a photoassisted sol− gel method
Zhan et al. Visible light responsive sulfated rare earth doped TiO2@ fumed SiO2 composites with mesoporosity: Enhanced photocatalytic activity for methyl orange degradation
Khataee et al. Kinetics and mechanism of enhanced photocatalytic activity under visible light using synthesized Pr x Cd1–x Se nanoparticles
CN102471088B (en) Photocatalytic materials and process for producing the same
Wang et al. One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
JP5447178B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
Ai et al. NO treated TiO2 as an efficient visible light photocatalyst for NO removal
KR20150141168A (en) A visible light responsive photocatalyst by hydrophilic modification using polymer material and a method for preparing the same
Monfort et al. Photooxidative properties of various BiVO4/TiO2 layered composite films and study of their photocatalytic mechanism in pollutant degradation
CN105377427A (en) Photocatalyst complex
KR101798129B1 (en) Reduction method of metal oxides and manufacturing method of reduced titania using the same
KR101109991B1 (en) Visible light active nanohybrid photocatalyst and manufacuring method thereof
Wang et al. The photocatalytic property of nitrogen-doped TiO 2 nanoball film
JP5447177B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
de los Santos et al. Study of thulium doping effect and enhancement of photocatalytic activity of rutile TiO2 nanoparticles
KR100816128B1 (en) Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method
Yu et al. RETRACTED: Characterization and mechanistic analysis of the visible light response of cerium and nitrogen co-doped TiO2 nano-photocatalyst synthesized using a one-step technique
JP6789566B2 (en) Manufacturing method of photocatalytic glass
JP6237350B2 (en) Photocatalytic glass and method for producing the same
Xin et al. Preparation and chatacterazition of the Bi-doped TiO 2 photocatalysts
JP2008006344A (en) Visible light-responsive photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6789566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250