KR100816128B1 - Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method - Google Patents

Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method Download PDF

Info

Publication number
KR100816128B1
KR100816128B1 KR1020060103241A KR20060103241A KR100816128B1 KR 100816128 B1 KR100816128 B1 KR 100816128B1 KR 1020060103241 A KR1020060103241 A KR 1020060103241A KR 20060103241 A KR20060103241 A KR 20060103241A KR 100816128 B1 KR100816128 B1 KR 100816128B1
Authority
KR
South Korea
Prior art keywords
tio
titanium
photocatalyst
metal nanoparticles
nanoparticles
Prior art date
Application number
KR1020060103241A
Other languages
Korean (ko)
Inventor
유연태
권현우
임영민
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to KR1020060103241A priority Critical patent/KR100816128B1/en
Application granted granted Critical
Publication of KR100816128B1 publication Critical patent/KR100816128B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

A titanium oxide(TiO2)-capsulated metallic nanoparticle for a photocatalyst and a method for preparing the same are provided to inhibit the recombination of electrons and holes, and therefore to improve the activity of a TiO2 photocatalyst. A titanium oxide(TiO2)-capsulated metallic nanoparticle for a photocatalyst has a core metal nanoparticle size of 1-50 nm and has a titanium oxide coating layer of 1 nm to hundreds of nm on the core metal nanoparticle. The titanium oxide(TiO2)-capsulated metallic nanoparticle is prepared by suspending a highly dispersed metal nanoparticle in a dilute solution of titanium alkoxide complex salt, which is formed by adding triethanolamine as a complexing agent to titanium alkoxide as a starting material to coat the core metal nanoparticle with titanium oxide(TiO2) by a hydrothermal synthesis process. Further, core metal nanoparticle material is one of Au, Ag, Cu, Ni and Co.

Description

광촉매용 산화티타늄 캡슐형 금속 나노입자 및 그 제조 방법 {TiO2-capsulated metallic nanoparticles for photocatalyst and its preparation method}TiO2-capsulated metallic nanoparticles for photocatalyst and its preparation method

도 1는 TiO2 캡슐형 금속 나노입자의 모델1 is a model of TiO 2 encapsulated metal nanoparticles

도 2는 TiO2 캡슐형 금속 나노입자에서 광촉매 활성 향상 메카니즘 2 is a mechanism for enhancing photocatalytic activity in TiO 2 encapsulated metal nanoparticles

도 3은 TiO2 캡슐형 금속 나노입자의 제조 공정도Figure 3 is a manufacturing process diagram of TiO 2 capsule metal nanoparticles

도 4 (a)는 [Ti4 +]=0.01mM TTIP/TEOA 혼합용액에서 합성된 TiO2 캡슐형 Au 나노입자 (수열합성온도 80℃)Figure 4 (a) is TiO 2 capsule-type Au nanoparticles synthesized in [Ti 4 + ] = 0.01mM TTIP / TEOA mixed solution (hydrothermal synthesis temperature 80 ℃)

(b)는 [Ti4 +]=0.05mM TTIP/TEOA 혼합용액에서 합성된 TiO2 캡슐형 Au 나노입자 (수열합성온도 80℃)(b) shows TiO 2 capsule Au nanoparticles synthesized in [Ti 4 + ] = 0.05mM TTIP / TEOA mixed solution (hydrothermal synthesis temperature 80 ℃)

(c)는 [Ti4 +]=0.3mM TTIP/TEOA 혼합용액에서 합성된 TiO2 캡슐형 Au 나노입자 (수열합성온도 80℃)(c) shows TiO 2 capsule Au nanoparticles synthesized in [Ti 4 + ] = 0.3mM TTIP / TEOA mixed solution (hydrothermal synthesis temperature 80 ℃)

(d)는 [Ti4 +]=0.01mM TTIP/TEOA 혼합용액에서 합성된 TiO2 캡슐형 Au 나노입 자 (수열합성온도 140℃)(d) shows TiO 2 encapsulated Au nanoparticles synthesized in [Ti 4 + ] = 0.01mM TTIP / TEOA mixed solution (hydrothermal synthesis temperature 140 ℃)

도 5는 TiO2 캡슐형 금속 나노입자의 열처리 온도에 따른 결정구조 변화5 is a change in crystal structure of the TiO 2 capsule metal nanoparticles according to the heat treatment temperature

도 6은 TiO2 캡슐형 금속 나노입자와 종래의 TiO2 나노입자의 광촉매 활성6 is a photocatalytic activity of TiO 2 encapsulated metal nanoparticles and conventional TiO 2 nanoparticles.

본 발명은 공기 중 가스상 유해물질(유해가스 및 악취)의 제거에 사용되고 있는 TiO2 광촉매의 활성을 향상시키기 위해, 10~20nm의 금속 나노입자를 코어 물질로 하고 외부에 1~수백 nm의 TiO2 피복층을 코팅한 TiO2 캡슐형 금속 나노입자와 그 제조방법에 관한 것으로, 좀 더 상세하게는 코어 나노입자가 자외선에 의해 TiO2의 전자를 포획하여 TiO2 광촉매의 활성을 향상시키는 TiO2 캡슐형 금속 나노입자를 티타늄 알콕사이드와 트리에탄올아민의 착염으로부터 합성하는 방법에 관한 것이다. In order to improve the activity of the TiO 2 photocatalyst used to remove gaseous harmful substances (hazardous gases and odors) in the air, the present invention uses 10 to 20 nm of metal nanoparticles as a core material and 1 to several hundred nm of TiO 2 to the outside. to be coated with the coating layer TiO 2 encapsulated metal nanoparticles and relates to a method of manufacturing the same, more specifically, the core nanoparticles by ultraviolet light by capturing the electrons of TiO 2 TiO 2 encapsulated to enhance the activity of the TiO 2 photocatalyst A method for synthesizing metal nanoparticles from a complex salt of titanium alkoxide and triethanolamine.

대기 중에 존재하는 오염물질의 제거 방법으로는 흡착법, 전기집진법, 화학반응법, 연소법, 고도산화법 등이 있다. 공기오염 물질은 가스 상 오염물질(유해가스, 악취)과 입자상 오염물질(분진, 화분, 세균)로 구분할 수 있다. 오염 물질의 종류 및 농도에 따라 대기오염물질의 처리법은 달라지는데, 특히 대기 중에 대량으로 존재하는 저농도 가스 상 물질은 고도산화법의 일종인 광촉매 기술이 가장 유리하며, 태양광을 에너지원으로 사용할 수 있다는 매우 큰 장점을 가지고 있다. 가스 상 오 염물질의 대부분은 광촉매로 정화가 가능하고 니코틴이나 타르류의 액상 입자도 제거가 가능하며, 세균 또는 바이러스와 같은 미생물 입자에 대해서도 항균효과를 가지고 있다. 정화작용은 광 조사로 산화티탄에서 발생되는 강력한 산화력이 주이지만, 오존과 같이 환원반응에 의해 분해되는 경우도 있다. 광촉매를 공기정화에 사용할 경우 또 다른 장점은 2차오염원이 될 화학물질을 배출하지 않으며, 독성이 없고 광촉매는 화학적으로 매우 안정하여 장시간 사용해도 이론적으로는 성능에 변화가 없다는 점을 들 수 있다. Removal of pollutants present in the air includes adsorption, electrostatic precipitating, chemical reaction, combustion, and advanced oxidation. Air pollutants can be classified into gaseous pollutants (hazardous gases, odors) and particulate pollutants (dust, pollen, bacteria). The treatment of air pollutants varies depending on the type and concentration of pollutants. Especially, low concentration gaseous substances present in large quantities in the atmosphere are most advantageous in the photocatalyst technology, which is a kind of advanced oxidation method, and it is possible to use sunlight as an energy source. It has a big advantage. Most of the gaseous pollutants can be purified by photocatalyst, remove liquid particles of nicotine or tar, and have antibacterial effect against microbial particles such as bacteria or virus. The purifying action is mainly due to the strong oxidative power generated from titanium oxide by light irradiation, but may be decomposed by a reduction reaction such as ozone. Another advantage of using photocatalysts for air purification is that they do not emit chemicals that will be secondary sources of pollution, are non-toxic and photocatalysts are chemically very stable, and therefore theoretically do not change performance over long periods of time.

그런데, 위에서 언급한 장점에도 불구하고, 광촉매는 다음과 같은 근본적인 문제를 가지고 있다. 광촉매의 경우, 여기광원의 조사에 의해 전도대로 이동한 전자(electron)와 가전자대에 남은 정공(hole)이 자유롭게 있는 시간은 수십 pico sec(1조분의 1초)에서 수백 nano sec(10억분의 1초)밖에 되지 않는 것으로 추정되고 있기 때문에, 광촉매와 오염물질과 반응할 수 있는 시간의 확보가 불충분하다는 것이다. 즉, 전자와 정공이 산화 환원반응에 참여하는 시간이 매우 짧아 광촉매 활성이 제대로 발휘하지 못하는 것이다. 따라서 광촉매 활성을 크게 향상시키기 위해서는 전도대로 이동한 전자(electron)과 가전자대에 남은 정공(hole)의 재결합(recombination)을 가능한 한 억제할 필요가 있다. However, despite the advantages mentioned above, photocatalysts have the following fundamental problems. In the case of a photocatalyst, the time that the electrons moved to the conduction band and the holes remaining in the valence band by the irradiation of the excitation light source is free from tens of pico seconds (one trillion seconds) to several hundred nano seconds (one billion minutes). It is estimated that it is only 1 second), so it is insufficient to secure time to react with photocatalyst and contaminants. That is, the time for electrons and holes to participate in the redox reaction is so short that the photocatalytic activity is not properly exhibited. Therefore, in order to greatly improve the photocatalytic activity, it is necessary to suppress recombination of electrons moved to the conduction band and holes remaining in the valence band as much as possible.

본 발명은 기존 TiO2의 광촉매 활성을 더욱 향상시키기 위하여 창안된 것으로서, 주 목적은 내부에 구상형 금속 나노입자가 위치하고 금속 나노입자의 표면에 TiO2 피복층을 형성시켜, 자외선에 의해 TiO2 광촉매 층에서 발생되는 전자를 코어 금속 나노입자가 포획하여 정공과 전자의 재결합을 억제하고 그 결과로 광촉매 활성이 향상된 TiO2 캡슐형 금속 나노입자 광촉매와 금속 나노입자 상에 균일한 TiO2의 피복층을 형성시키기 위하여 티타늄 알콕사이드와 착염 형성제인 트리에탄올아민을 사용하는 TiO2 캡슐형 금속 나노입자의 제조 방법을 제공하는데 있다.The present invention was devised to further improve the photocatalytic activity of the existing TiO 2 , the main object is to place a spherical metal nanoparticles therein to form a TiO 2 coating layer on the surface of the metal nanoparticles, the TiO 2 photocatalyst layer by ultraviolet light The core metal nanoparticles trap the electrons generated in the microparticles, thereby inhibiting the recombination of holes and electrons, thereby forming a uniform coating layer of TiO 2 on the TiO 2 encapsulated metal nanoparticle photocatalyst and the metal nanoparticles with enhanced photocatalytic activity. In order to provide a method for producing TiO 2 encapsulated metal nanoparticles using titanium alkoxide and triethanolamine as a complex salt forming agent.

상기한 기술적 과제를 달성하기 위한 본 발명을 첨부한 도면(도 1, 2 및 3)에 의거하여 상세히 설명하면 다음과 같다.When described in detail based on the accompanying drawings (Figs. 1, 2 and 3) the present invention for achieving the above technical problem is as follows.

도 1에 나타낸 바와 같이, TiO2 캡슐형 금속 나노입자의 구조는 TiO2의 피복층의 형태에 따라 두 가지 형태로 대표될 수 있으며, 내부에는 1~50nm 크기의 금속 나노입자가 위치할 수 있고, 외부에는 1~수백 nm의 TiO2 광촉매 입자가 흡착되어 있거나 더 나가서는 1~수백 nm의 TiO2 shell이 형성되어 있는 구조이다. 이러한 구조의 Au/TiO2 복합형 나노입자 광촉매는 두 가지 효과에 의해 광촉매 활성을 향상시킬 수 있다. As shown in FIG. 1, the structure of the TiO 2 encapsulated metal nanoparticles may be represented by two types according to the form of the TiO 2 coating layer, and metal nanoparticles having a size of 1 to 50 nm may be located therein. 1 to several hundred nm of TiO 2 photocatalyst particles are adsorbed on the outside, or 1 to several hundred nm of TiO 2 shell is formed. The Au / TiO 2 composite nanoparticle photocatalyst of this structure can improve photocatalytic activity by two effects.

첫 번째 효과는 금속 나노입자의 표면에 피복된 TiO2의 고분산화 효과이다. 일반적으로 TiO2 광촉매의 활성은 TiO2 결정입자의 크기에 좌우되는데, 광촉매 활성을 나타내는 TiO2의 결정입자의 크기는 20nm 이하라고 할지라도 실제는 TiO2 입자의 상호 간 응집현상 때문에 20nm의 TiO2 결정입 크기에 해당하는 만큼의 광촉매 활성을 얻기 어렵다. 고활성 TiO2 광촉매의 제조를 위해서는 전자의 여기원인 광원의 흡광 및 반응 물질의 흡착이 필수적인데, 이러한 형태의 광촉매는 결정입 크기가 작고 구형의 형태를 갖고 있으며 고분산성이 유지되어야 유리하다고 할 수 있다. 이러한 측면에서, TiO2 캡슐형 금속 나노입자는 도 1에 나타낸 것과 같이 TiO2의 나노입자가 금속 나노입자 위에서 heterogeneous한 핵생성이 이루어지기 때문에 생성 당시부터 TiO2의 고분산화가 가능하고, 내부 나노입자의 형태가 구형이므로 외부의 TiO2도 구형의 입자상 거동을 나타낼 수 밖에 없기 때문에 반응물질의 흡착뿐 만 아니라 여기광원의 효율적 흡수가 가능해져 고활성을 나타낼 수 있다. The first effect is the high dispersion of TiO 2 on the surface of the metal nanoparticles. Generally, activity of the TiO 2 photocatalyst is there is dependent on the size of the TiO 2 crystal grains, the size of the crystal grains of the TiO 2 showing the photocatalytic activity is even referred to 20nm because actually TiO 2 interpersonal agglomeration of the particles of 20nm TiO 2 It is difficult to obtain photocatalytic activity corresponding to the grain size. For the preparation of highly active TiO 2 photocatalysts, absorption of the light source, which is the source of electrons, and adsorption of reactants are essential. This type of photocatalyst has advantages in that it has a small grain size, a spherical shape, and high dispersibility. have. In this respect, TiO 2 encapsulated metal nanoparticles is also because the nanoparticles of TiO 2 as shown in Fig. 1 being a heterogeneous nucleation is made on metal nanoparticles generated by the mounds oxide of TiO 2 available from the time, and the internal nano Since the particles are spherical in shape, the external TiO 2 also has to exhibit spherical particle behavior, so that not only the adsorption of the reactants but also the efficient absorption of the excitation light source can be exhibited, resulting in high activity.

두 번째 효과는 Surface plasmon 현상을 이용한 전자와 정공의 재결합 억제 효과이다. TiO2 광촉매의 경우 위에서도 언급했듯이 여기광에 의해 전도대로 이동한 전자와 가전자대에 남은 정공이 자유롭게 분리되어 있는 시간은 매우 짧다. 따라서, TiO2 광촉매의 활성을 향상시키기 위하여, 전자와 정공의 재결합을 억제할 필요가 있다. 종래의 방법에서는 이종 원소를 doping하여 TiO2 band gab 사이에 전자를 포획할 수 있는 trap site를 제공하여 전자와 정공의 재결합 속도를 늦추는 방법이 사용되고 있었다. 본 발명에서는 전자와 정공의 재결합을 억제하기 위하여 금속 나노입자의 표면에 전자가 축적되는 surface plasmon 효과를 이용한다. 도 2에 surface plasmon 효과에 의한 TiO2 광촉매의 활성 향상 메카니즘이 도시되어 있다. 아나타제형 TiO2는 3.2eV 이하의 빛을 받게 되면 가전자대의 전자가 전도대로 이동하게 되는데, 이때 Au와 같은 나노입자가 옆에 있으면 전도대의 전자가 에너지 준위가 낮은 Au 나노입자의 표면에 이동하는 현상이 발생된다. Au 표면에 이동된 전자가 다시 에너지 장벽이 높은 TiO2로 이동하는 것은 상대적으로 어렵기 때문에 UV가 조사되는 동안 전자는 Au 표면에 축적되는 현상(surface plasmon 현상)이 발생하기 때문에, 전자와 정공의 재결합 속도가 저하하게 되고, 결과적으로 광촉매 활성의 향상되는 것이다. The second effect is the inhibition of recombination of electrons and holes using surface plasmon phenomenon. In the case of the TiO 2 photocatalyst, as mentioned above, the time when the electrons moved to the conduction band by the excitation light and the holes remaining in the valence band are freely separated. Therefore, in order to improve the activity of the TiO 2 photocatalyst, it is necessary to suppress recombination of electrons and holes. In the conventional method, a method of slowing the recombination rate between electrons and holes by providing a trap site for trapping electrons between TiO 2 band gabs by doping heterogeneous elements is used. In the present invention, in order to suppress recombination of electrons and holes, the surface plasmon effect in which electrons accumulate on the surface of metal nanoparticles is used. 2 shows a mechanism for improving the activity of the TiO 2 photocatalyst by the surface plasmon effect. When the anatase type TiO 2 receives light below 3.2 eV, electrons in the valence band move to the conduction band. When the nanoparticles such as Au are adjacent, electrons in the conduction band move to the surface of Au nanoparticles with low energy level. Phenomenon occurs. Since it is relatively difficult for electrons moved to the surface of Au to move to TiO 2 having a high energy barrier, electrons accumulate on the surface of Au during the irradiation of UV (surface plasmon). The recombination rate decreases, and consequently, the photocatalytic activity is improved.

TiO2 캡슐형 금속 나노입자의 제조는 다음과 같이 수행하였으며, 제조공정을 도 3에 나타내었다. Preparation of TiO 2 capsule metal nanoparticles was carried out as follows, the manufacturing process is shown in FIG.

일반적으로 아나타제형 TiO2의 합성은 티타늄 알콕사이드의 가수분해반응에 의해 얻어질 수 있다. 이러한 티타늄 알콕사이드의 가수분해 반응을 이용하면 금속 나노입자의 표면에 TiO2 피복층을 형성시킬 수 있다. 그런데, 금속 나노입자의 표면에 균일한 TiO2 피복층을 얻기 위해서는 티타늄 알콕사이드의 매우 느린 가수분해 반응이 필요하다. 왜냐하면 빠른 가수분해 반응은 나노입자 표면에 TiO2 피복층을 형성하기 보다는 입경이 조대한 입자상 TiO2의 형성을 초래하기 때문이다. 따사서 티타늄 알콕사이드의 가수분해 반응을 억제하기 위하여 본 발명에서는 트리에탄올아민을 착염 형성제로 사용하였다. 티타늄 알콕사이드는 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 부톡사이드, 티타늄 이소프로폭사이드 등 모든 티타늄 알콕사이드가 사용될 수 있다. 이들 알콕사이드 중 하나를 선정하고, 트리에탄올아민의 배합비를 50~90wt% 범위로 티타늄 알콕사이드와 트리에탄올아민을 혼합하여 티타늄 알콕사이드 착염을 제조하였다. 티타늄 알콕사이드 착염은 상온에서 매우 안정한 특성을 나타내었고, 물을 첨가하여도 가수분해 반응은 진행하지 않았다.In general, the synthesis of anatase type TiO 2 can be obtained by hydrolysis of titanium alkoxide. By using the hydrolysis reaction of the titanium alkoxide, it is possible to form a TiO 2 coating layer on the surface of the metal nanoparticles. However, in order to obtain a uniform TiO 2 coating layer on the surface of the metal nanoparticles, a very slow hydrolysis reaction of titanium alkoxide is required. Because rapid hydrolysis reaction is due to result in the formation of TiO 2 particulate coarse grain size, rather than forming the TiO 2 coating layer on the nanoparticle surface. Therefore, in order to suppress the hydrolysis reaction of titanium alkoxide, triethanolamine was used as a complex salt former in the present invention. As the titanium alkoxide, all titanium alkoxides such as titanium methoxide, titanium ethoxide, titanium butoxide and titanium isopropoxide may be used. One of these alkoxides was selected, and a titanium alkoxide complex salt was prepared by mixing titanium alkoxide and triethanolamine in a range of 50 to 90 wt% of a triethanolamine. The titanium alkoxide complex salt showed very stable properties at room temperature, and hydrolysis reaction did not proceed even with addition of water.

금속 나노입자의 표면에 TiO2 피복층을 형성시키기 위하여, 금속 나노입자 콜로이드와 티타늄 알콕사이드 착염 희석용액을 제조한다. 이때 금속 나노입자는 Au, Ag, Cu, Ni, Co 등의 금속 중에서 하나를 선정하였고, 금속 나노입자 콜로이드의 농도는 0.1~100mM로 조절하였다. 타티늄 알콕사이드 착염 희석용액은 티타늄 이온의 농도가 0.1~1M의 농도가 되도록 초순수로 희석하여 제조하였다. 이렇게 제조된 금속 나노입자 콜로이드 용액은 티타늄 알콕사이드 착염 희석용액과 혼합하고 60~200℃ 온도 범위에서 24시간 수열합성 처리하여 TiO2 캡슐형 금속 나노입자를 제조하였다. 합성된 TiO2 캡슐형 금속 나노입자의 광촉매 활성 평가는 냄새 측정기를 이용하여 메탄올의 분해 반응에 의해 수행되었다. In order to form a TiO 2 coating layer on the surface of the metal nanoparticles, a metal nanoparticle colloid and a titanium alkoxide complex salt dilution solution are prepared. At this time, the metal nanoparticles were selected from the metals such as Au, Ag, Cu, Ni, Co, and the concentration of the metal nanoparticle colloid was adjusted to 0.1 ~ 100mM. Titanium alkoxide complex salt dilution solution was prepared by diluting with ultrapure water so that the concentration of titanium ions is 0.1 ~ 1M. The metal nanoparticle colloidal solution thus prepared was mixed with a titanium alkoxide complex salt dilution solution and hydrothermally treated for 24 hours at a temperature range of 60 to 200 ° C. to prepare TiO 2 capsular metal nanoparticles. Evaluation of photocatalytic activity of the synthesized TiO 2 encapsulated metal nanoparticles was performed by decomposition reaction of methanol using an odor meter.

(2) [실시예]    (2) [Example]

다음은 실시예를 통하여 본 발명을 설명한다.The following describes the present invention through examples.

500mL의 초순수에 0.1g의 HAuCl4를 용해하고 끓는점까지 가열한 후 환원제로서 1g의 Tri-sodium citrate를 용해한 100mL의 초순수를 첨가하여 입경이 12~15nm인 Au 나노입자 콜로이드를 합성하였다. 이 저농도 Au 나노입자 콜로이드는 증발 과정을 거 쳐 Au 농도가 0.1M인 Au 나노입자 콜로이드로 제조한다. After dissolving 0.1 g of HAuCl 4 in 500 mL of ultrapure water and heating it to a boiling point, 100 mL of ultrapure water dissolved in 1 g of Tri-sodium citrate was added as a reducing agent to synthesize Au nanoparticle colloid having a particle diameter of 12 to 15 nm. The low concentration Au nanoparticle colloid is evaporated to make Au nanoparticle colloid with 0.1M Au concentration.

티타늄 알콕사이드로는 티타늄 이소프로폭사이드가 사용되었고, 티타늄 이소프로폭사이드와 트리에탄올아민이 1:2의 비율로 혼합한 후, 이 혼합용액에 0.5M이 되도록 초순수를 혼합하여 이것을 티타늄 이소프로폭사이드 착염 희석용액으로 사용하였다. Titanium isopropoxide was used as the titanium alkoxide, and titanium isopropoxide and triethanolamine were mixed at a ratio of 1: 2, and then ultrapure water was mixed with the mixed solution so that 0.5 M was obtained. It was used as a complex salt dilution solution.

Au 나노 입자 상에 TiO2를 피복하기 위하여, 티타늄 이소프로폭사이드 착염 희석용액의 농도를 0.01mM~1mM 범위가 되도록 초순수를 첨가하여 조절하고, 여러 가지 농도로 만들어진 희석용액 100ml와 Au 나노입자 콜로이드 3.3ml를 혼합하여 오토클레이브에 넣고 24시간 동안 수열합성 처리를 실시하였다. In order to coat TiO 2 on Au nanoparticles, the concentration of the dilute solution of titanium isopropoxide complex salt was adjusted by adding ultrapure water so as to be in the range of 0.01mM to 1mM, and 100ml of the dilution solution made of various concentrations and the colloidal Au nanoparticles 3.3 ml of the mixture was mixed in an autoclave and subjected to hydrothermal treatment for 24 hours.

도 4는 본 발명에서 TiO2 캡슐형 Au 나노입자의 대표적인 형상들을 나타내고 있다. 합성 시 투입되는 티타늄 이온의 첨가량에 따라 형상이 바뀌고 있는데, 이 네 가지 형태가 본 발명에서 얻어지는 대표적인 TiO2 캡슐형 금속 나노입자의 형태이다. 도 3의 (a)는 티타늄 이소프로폭사이드 착염 희석용액의 농도를 0.01mM로 하고 수열합성 반응온도가 80℃인 조건에서 합성된 TiO2 캡슐형 금속 나노입자를 나타내고 있다. 12~15nm의 Au 나노입자 위에 약 10nm의 TiO2 피복층이 형성되어 있음을 확인할 수 있다. 도 3의 (b)와 (c)는 각각 티타늄 이소프로폭사이드 착염 희석용액의 농도를 0.05mM과 0.3mM로 증가시켜 얻은 TiO2 캡슐형 금속 나노입자이다. 이들 경우에는 TiO2 캡슐형 금속 나노입자 일부 응집하는 현상을 보이지만 Au 나노입자 간에 일 정한 간격을 유지하고 있다. 도 3의 (d)는 티타늄 이소프로폭사이드 착염 희석용액의 농도를 0.01mM로 하고 수열합성 온도를 140℃로 증가시켜 얻은 TiO2 캡슐형 금속 나노입자를 보이고 있다. 4 shows representative shapes of TiO 2 encapsulated Au nanoparticles in the present invention. The shape is changed depending on the amount of titanium ions added during synthesis. These four forms are representative of the TiO 2 capsular metal nanoparticles obtained in the present invention. Figure 3 (a) shows the TiO 2 capsule-type metal nanoparticles synthesized in a condition that the concentration of the titanium isopropoxide complex salt dilution solution is 0.01mM and hydrothermal synthesis reaction temperature is 80 ℃. It can be seen that the TiO 2 coating layer of about 10 nm is formed on the Au nanoparticles of 12 to 15 nm. (B) and (c) of FIG. 3 are TiO 2 capsular metal nanoparticles obtained by increasing the concentration of the titanium isopropoxide complex salt diluting solution to 0.05 mM and 0.3 mM, respectively. In these cases, some TiO 2 encapsulated metal nanoparticles are agglomerated but maintain a constant distance between Au nanoparticles. Figure 3 (d) shows the TiO 2 capsular metal nanoparticles obtained by increasing the concentration of the titanium isopropoxide complex salt dilution solution to 0.01mM and the hydrothermal synthesis temperature to 140 ℃.

도 5는 도 4의 (b) 시료를 석영판 위에 도포하여 얻어지는 박막을 100℃, 200℃, 400℃, 600℃, 800℃, 1,000℃에서 각각 3시간 동안 열처리 한 후, TiO2 피복층과 Au의 나노입자의 결정구조 변화를 측정한 X선 회절분석 결과이다. 2θ가 25.2℃와 48° 부근에 아나타제의 (101)면과 (004)면의 회절피크 관찰되고, 38°와 44°에서 Au의 (111)면과 (200)면의 회절피크가 나타나고 있다. 아나타제의 회절피크는 온도변화에 따라 크게 변화하지 않다가 1,000℃에서 회절강도가 크게 향상되었다. Au 나노입자의 회절피크는 순수한 Au 나노입자의 결과인 (a)와 비교하여 800℃까지의 회절피크 강도변화가 매우 적음을 알 수 있다. 이 결과로부터 본 발명에서 얻어지는 TiO2 피복층의 결정구조는 아나타제이고 열에 매우 안정한 물질임을 확인할 수 있다. FIG. 5 shows a thin film obtained by coating the sample of FIG. 4 (b) on a quartz plate and heat-treated at 100 ° C., 200 ° C., 400 ° C., 600 ° C., 800 ° C., and 1,000 ° C. for 3 hours, respectively. This is the result of X-ray diffraction analysis of the crystal structure change of nanoparticles. The diffraction peaks of the (101) plane and (004) plane of anatase were observed at 2θ at around 25.2 ° C and 48 °, and the diffraction peaks of the (111) plane and (200) plane of Au were shown at 38 ° and 44 °. The diffraction peak of anatase did not change significantly with temperature, but the diffraction intensity was greatly improved at 1,000 ℃. The diffraction peak of the Au nanoparticles can be seen that the change in the diffraction peak intensity up to 800 ℃ is very small compared to (a) that is the result of pure Au nanoparticles. From this result, it can be confirmed that the crystal structure of the TiO 2 coating layer obtained in the present invention is anatase and is a very stable material.

도 6에는 본 발명에서 합성한 TiO2 캡슐형 금속 나노입자 졸와 종래의 시판품인 TiO2 나노입자 졸(Ishihara Co.)의 광촉매 활성을 비교한 결과이다. 광촉매 활성 측정은 각각의 TiO2 졸을 유리판에 코팅한 후 400℃에서 3시간 동안 열처리하여 시편으로 사용하였고, 시험가스로는 methanol을 선정하여 분해과정을 냄새측정기로 하였다. 광촉매의 여기광원으로는 365nm의 BLB(Black Light Blue) 램프를 사용하였다. 광촉매 활성 시험방법은 광촉매 반응기 내부에 소량의 methanol 용액을 떨어뜨 리고 냄새 측정기로 반응기내 methanol 농도가 균일해 지는 것을 확인한 후 자외선 램프를 점등하여 methanol 가스의 냄새강도 변화값을 냄새측정기로 확인하였다. 자외선 램프를 점등하여 240분 후 methanol 가스의 냄새 제거율은 종래의 TiO2 나노졸의 경우에는 9.5%를 나타내었고 TiO2 캡슐형 나노졸의 경우에는 17.5%를 나타내어 TiO2 캡슐형 나노졸의 광촉매 활성이 두 배정도 향상되어 있음을 알 수 있다. 또한, 초기반응에서는 1.5배 정도 광촉매 활성이 향상되었다. 6 is a result of comparing the photocatalytic activity of the TiO 2 encapsulated metal nanoparticle sol synthesized in the present invention and a conventional commercial TiO 2 nanoparticle sol (Ishihara Co.). The photocatalytic activity was measured by coating each TiO2 sol on a glass plate and then heat-treating at 400 ° C. for 3 hours, and using methanol as a test gas. 365 nm BLB (Black Light Blue) lamp was used as an excitation light source of a photocatalyst. In the photocatalytic activity test method, a small amount of methanol solution was dropped into the photocatalyst reactor, the methanol concentration in the reactor was uniformed by an odor meter, and the UV lamp was turned on to confirm the odor intensity change of the methanol gas. After 240 minutes of turning on the UV lamp, the deodorization rate of methanol gas was 9.5% for the conventional TiO 2 nanosol and 17.5% for the TiO 2 encapsulated nanosol, indicating the photocatalytic activity of the TiO 2 encapsulated nanosol. You can see that this is about twice as high. In addition, the photocatalytic activity was improved about 1.5 times in the initial reaction.

본 발명은 종래의 TiO2 광촉매 보다 활성을 향상시키기 위한 새로운 형태의 TiO2 캡슐형 금속 나노입자의 발명 및 그 제조 기술에 관한 것으로, 1~50 nm의 직경을 갖는 금속 나노입자의 표면에 1~수백 nm의 TiO2 피복층을 가지고 있는 복합 나노입자를 합성하였고, 본 발명에서 개발된 TiO2 캡슐형 금속 나노입자는 종래의 TiO2 광촉매 보다 활성이 1.5에서 최대 2배까지 증가되었다. 본 발명으로 종래의 공기 중 유해물질 제거에 사용되었던 고성능 수입 TiO2 광촉매를 대체할 수 있을 것이고, 신규 광촉매의 환경정화 효과의 증가로 실내 및 실외의 주거환경을 한층 격상시킬 수 있을 것이다. 또한, 본 발명에서 개발한 신규 광촉매는 공기정화 뿐만 아니라 폐수처리 분야에도 활용될 수 있으며, 광촉매에 의한 환경정화 분야의 확대가 가능하다. 본 발명품을 이용하여 환경정화, 항균 및 자기정화 기능을 갖는 제품을 제조 할 경우 TiO2 캡슐형 금속 나노입자의 활성이 종래의 제품과 비교하여 1.5~2배 향상되었기 때문에 광촉매 사용량의 감량이 가능하고 결과적으로 원가절감 효과를 기대할 수 있다.The present invention relates to the invention of the new type of TiO 2 encapsulated metal nanoparticles and its manufacturing technology for improving the activity than the conventional TiO 2 photocatalyst, 1 ~ 1 on the surface of the metal nanoparticles having a diameter of 1 ~ 50 nm Composite nanoparticles having a TiO 2 coating layer of several hundred nm were synthesized, and the TiO 2 encapsulated metal nanoparticles developed in the present invention had increased activity from 1.5 to up to 2 times more than the conventional TiO 2 photocatalyst. The present invention will be able to replace the high performance imported TiO 2 photocatalyst, which has been used to remove harmful substances in the air, and can further upgrade indoor and outdoor residential environments by increasing the environmental purification effect of the new photocatalyst. In addition, the novel photocatalyst developed in the present invention can be utilized in the field of wastewater treatment as well as air purification, it is possible to expand the field of environmental purification by the photocatalyst. When the product having the environmental purification, antibacterial and self-purifying functions is manufactured using the present invention, the activity of the TiO 2 capsule-type metal nanoparticles is improved by 1.5 to 2 times compared with the conventional products, thus reducing the amount of photocatalyst used. As a result, cost savings can be expected.

Claims (4)

코어 금속 나노입자의 크기가 1~50nm이고, 코어 금속 나노입자의 표면 위에 1~수백 nm의 TiO2 피복층을 가지고 있는 TiO2 캡슐형 금속 나노입자. A core metal and a 1 ~ 50nm size of the nanoparticles, the metal nanoparticle core from 1 to hundreds of TiO 2 encapsulated metal nanoparticles TiO 2 have a coating layer on the surface of the nm. 티타늄 알콕사이드를 출발물질로 하고 트리에탄올아민을 착염 형성제로 첨가한 티타늄 알콕사이드 착염 희박용액에 고분산 금속 나노입자를 현탁하여 수열합성법으로 코어 금속 나노입자 위에 TiO2를 피복하는 것을 특징으로 하는 TiO2 캡슐형 금속 나노입자의 제조 방법.TiO 2 capsule type characterized by suspending highly dispersed metal nanoparticles in a titanium alkoxide complex salt lean solution containing titanium alkoxide as a starting material and triethanolamine as a complex salt former, and coating TiO 2 on the core metal nanoparticles by hydrothermal synthesis. Method for producing metal nanoparticles. 제1항에 있어서, 코어 금속 나노입자 물질로는 Au, Ag, Cu, Ni, Co 중 하나를 사용하는 것을 특징으로 하느 TiO2 캡슐형 금속 나노입자.The TiO 2 encapsulated metal nanoparticle of claim 1, wherein one of Au, Ag, Cu, Ni, and Co is used as the core metal nanoparticle material. 제2항에 있어서, 상기 티타늄 알콕사이드는 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 부톡사이드, 티타늄 이소부톡사이드, 티타늄 이소프로폭사이드 중 하나를 사용하고, 티타늄 알콕사이드 착염 희박 용액의 티타늄 농도는 0.01mM~100mM로 하며, 수열합성 반응은 40℃~250℃의 온도범위에서 행하는 것을 특징으로 하는 TiO2 캡슐형 금속 나노입자의 제조 방법.The titanium alkoxide according to claim 2, wherein one of titanium methoxide, titanium ethoxide, titanium butoxide, titanium isobutoxide, and titanium isopropoxide is used, and the titanium concentration of the titanium alkoxide complex salt lean solution is 0.01mM ~. A method for producing TiO 2 capsule metal nanoparticles, wherein the hydrothermal synthesis reaction is performed at a temperature range of 40 ° C. to 250 ° C ..
KR1020060103241A 2006-10-24 2006-10-24 Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method KR100816128B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060103241A KR100816128B1 (en) 2006-10-24 2006-10-24 Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060103241A KR100816128B1 (en) 2006-10-24 2006-10-24 Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method

Publications (1)

Publication Number Publication Date
KR100816128B1 true KR100816128B1 (en) 2008-03-21

Family

ID=39411478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060103241A KR100816128B1 (en) 2006-10-24 2006-10-24 Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method

Country Status (1)

Country Link
KR (1) KR100816128B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048186A1 (en) * 2007-10-08 2009-04-16 Industrial Cooperation Foundation Chonbuk National University Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
US20120145532A1 (en) * 2009-07-24 2012-06-14 Stc.Unm Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles
KR101576043B1 (en) 2014-09-22 2015-12-10 한국과학기술원 Photocatalyst with thin amorphous TiO2 shell on Quantum dots and Method of preparing the same
CN107029798A (en) * 2017-04-12 2017-08-11 山西大学 A kind of preparation method and application of hollow magnetic nanoparticle
KR20180076447A (en) * 2016-12-28 2018-07-06 한림대학교 산학협력단 Gold multipod nanoparticle core - titania shell nanoparticles and synthetic method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202723A1 (en) 2002-10-28 2004-10-14 Yu Chai-Mei Jimmy Photocatalytic nano-crystalline TiO2 thin films, method for preparing the same and use thereof
US6999222B2 (en) 2003-08-13 2006-02-14 The Regents Of The University Of California Plasmon assisted enhancement of organic optoelectronic devices
KR20060024637A (en) * 2004-09-14 2006-03-17 (주)선한엠엔티 A neutral tio2 colloid solution for preparing the mesoporous tio2 thin film and a preparation method thereof
KR20060076861A (en) * 2004-12-29 2006-07-05 학교법인고려중앙학원 Manufacturing method of nano-floating gate memory devices using nanowires

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202723A1 (en) 2002-10-28 2004-10-14 Yu Chai-Mei Jimmy Photocatalytic nano-crystalline TiO2 thin films, method for preparing the same and use thereof
US6999222B2 (en) 2003-08-13 2006-02-14 The Regents Of The University Of California Plasmon assisted enhancement of organic optoelectronic devices
KR20060024637A (en) * 2004-09-14 2006-03-17 (주)선한엠엔티 A neutral tio2 colloid solution for preparing the mesoporous tio2 thin film and a preparation method thereof
KR20060076861A (en) * 2004-12-29 2006-07-05 학교법인고려중앙학원 Manufacturing method of nano-floating gate memory devices using nanowires

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048186A1 (en) * 2007-10-08 2009-04-16 Industrial Cooperation Foundation Chonbuk National University Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
US20120145532A1 (en) * 2009-07-24 2012-06-14 Stc.Unm Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles
KR101576043B1 (en) 2014-09-22 2015-12-10 한국과학기술원 Photocatalyst with thin amorphous TiO2 shell on Quantum dots and Method of preparing the same
KR20180076447A (en) * 2016-12-28 2018-07-06 한림대학교 산학협력단 Gold multipod nanoparticle core - titania shell nanoparticles and synthetic method thereof
KR101918927B1 (en) 2016-12-28 2018-11-15 한림대학교 산학협력단 Gold multipod nanoparticle core - titania shell nanoparticles and synthetic method thereof
CN107029798A (en) * 2017-04-12 2017-08-11 山西大学 A kind of preparation method and application of hollow magnetic nanoparticle

Similar Documents

Publication Publication Date Title
Saravanakumar et al. Fabrication of sphere like plasmonic Ag/SnO2 photocatalyst for the degradation of phenol
Zhu et al. The degradation of formaldehyde using a Pt@ TiO2 nanoparticles in presence of visible light irradiation at room temperature
Zhao et al. Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants
WO2009048186A1 (en) Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
Li et al. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites
JP5447178B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
KR20090035812A (en) Tio2-capsulated metallic nanoparticles photocatalyst enable to be excited by uv or visible lights and its preparation method
Liu et al. Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photocatalysts under visible light illumination
WO2011145385A1 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
Kirankumar et al. Photocatalytic performance of cerium doped copper aluminate nanoparticles under visible light irradiation
KR100816128B1 (en) Tio2-capsulated metallic nanoparticles for photocatalyst and its preparation method
Le et al. Predicting the photocatalytic performance of metal/metal oxide coupled TiO2 particles using response surface methodology (RSM)
KR20170005275A (en) Method for preparing titanium dioxide photocatalyst dopped silver and photocatalyst prepared thereby
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Jahdi et al. Mechanistic pathways for the degradation of SMX drug and floatation of degraded products using F–Pt co-doped TiO 2 photocatalysts
Xue et al. S-doped Sb 2 O 3 nanocrystal: An efficient visible-light catalyst for organic degradation
Zeng et al. Photocatalytic degradation of flumequine by N-doped TiO 2 catalysts under simulated sunlight
Saroj et al. Photodegradation of Direct Blue‐199 in carpet industry wastewater using iron‐doped TiO2 nanoparticles and regenerated photocatalyst
Akbarzadeh et al. Highly efficient visible-driven reduction of Cr (VI) by a novel black TiO 2 photocatalyst
Mane et al. Rationally engineered BiVO4 micro-leaves as a bifunctional photocatalyst for highly durable solar water treatment and water splitting
Siddique et al. Biosynthesis of highly porous Ag/Bi/SnO2 nanohybrid material using seeds extract of Caesalpinia bonduc and their photocatalytic activity
Wang et al. The preparation of S-SnO 2/gC 3 N 4 heterojunction and its photocatalytic degradation of phenol and trichlorophenol
Messaoud et al. Recrystallization and coalescence kinetics of TiO2 and ZnO nano-catalysts towards enhanced photocatalytic activity and colloidal stability within slurry reactors
Zheng et al. Synthesis of Fe 3 O 4@ mTiO 2 nanocomposites for the photocatalytic degradation of monocrotophos under UV illumination
Santhi et al. Synergic effect of Sn-doped TiO 2 nanostructures for enhanced visible light photocatalysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130315

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140314

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee