JP7392516B2 - photocatalyst - Google Patents

photocatalyst Download PDF

Info

Publication number
JP7392516B2
JP7392516B2 JP2020032998A JP2020032998A JP7392516B2 JP 7392516 B2 JP7392516 B2 JP 7392516B2 JP 2020032998 A JP2020032998 A JP 2020032998A JP 2020032998 A JP2020032998 A JP 2020032998A JP 7392516 B2 JP7392516 B2 JP 7392516B2
Authority
JP
Japan
Prior art keywords
photocatalyst
hydrogen
molar amount
ratio
camg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020032998A
Other languages
Japanese (ja)
Other versions
JP2021133330A (en
Inventor
秀明 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2020032998A priority Critical patent/JP7392516B2/en
Publication of JP2021133330A publication Critical patent/JP2021133330A/en
Application granted granted Critical
Publication of JP7392516B2 publication Critical patent/JP7392516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、光触媒に関する。 The present invention relates to a photocatalyst.

近年、光エネルギーを用いて水を分解し、水素を得るために用いられる光触媒の研究が進められている。光触媒は、より多くの水素を得るために、水の分解活性が高いことが好ましい。 In recent years, research has been progressing on photocatalysts that are used to decompose water using light energy and obtain hydrogen. The photocatalyst preferably has high water decomposition activity in order to obtain more hydrogen.

特許文献1には、CaTiO3で表されるペロブスカイト型酸化物のCaの一部をSrで置換し、Ca1-xSrxTiO3とした光触媒が記載されている。 Patent Document 1 describes a photocatalyst in which a part of Ca in a perovskite-type oxide represented by CaTiO 3 is replaced with Sr to form Ca 1-x Sr x TiO 3 .

特開平4-56080号公報Japanese Patent Application Publication No. 4-56080

しかしながら、特許文献1に記載の光触媒は、CaとSrが相互に固溶した状態となり、十分な触媒活性が得られない。 However, in the photocatalyst described in Patent Document 1, Ca and Sr are in a solid solution with each other, and sufficient catalytic activity cannot be obtained.

本発明は、上記課題を解決するものであり、活性が高い光触媒を提供することを目的とする。 The present invention solves the above problems, and aims to provide a highly active photocatalyst.

本発明の光触媒は、(CaMg)TiO3を含む酸化物を備え、
前記(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)は、0より大きく、0.7以下であることを特徴とする。
The photocatalyst of the present invention includes an oxide containing (CaMg) TiO3 ,
The ratio Mg/(Ca+Mg) of the molar amount of Mg to the total molar amount of Ca and Mg contained in the (CaMg)TiO 3 is greater than 0 and less than or equal to 0.7.

本発明の光触媒は活性が高い。したがって、本発明の光触媒を用いて水の分解を行ったときに、より多くの水素を発生させることができる。 The photocatalyst of the present invention has high activity. Therefore, when water is decomposed using the photocatalyst of the present invention, more hydrogen can be generated.

本発明の一実施形態における光触媒の結晶構造を模式的に示す図である。1 is a diagram schematically showing a crystal structure of a photocatalyst in an embodiment of the present invention. 光触媒の活性を評価するために用いた装置の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the configuration of an apparatus used to evaluate the activity of a photocatalyst. (CaMg)TiO3を含む酸化物を備えた光触媒において、(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)と、混合ガス中の水素の含有割合との関係を示す図である。In a photocatalyst equipped with an oxide containing (CaMg)TiO 3 , the ratio of the molar amount of Mg to the total molar amount of Ca and Mg contained in (CaMg)TiO 3 is Mg/(Ca+Mg), and the amount of hydrogen in the mixed gas is It is a figure showing the relationship with content rate.

以下に本発明の実施形態を示して、本発明の特徴を具体的に説明する。 Embodiments of the present invention will be shown below, and features of the present invention will be specifically explained.

本発明の光触媒は、(CaMg)TiO3を含む酸化物を備え、(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)は、0より大きく、0.7以下である。酸化物には、CaTiO3の結晶相とMgTiO3の結晶相が混在しており、CaTiO3とMgTiO3の固溶体は存在しない。 The photocatalyst of the present invention includes an oxide containing (CaMg)TiO 3 , and the ratio of the molar amount of Mg to the total molar amount of Ca and Mg contained in (CaMg)TiO 3 is greater than 0. , 0.7 or less. In the oxide, a crystal phase of CaTiO 3 and a crystal phase of MgTiO 3 are mixed, and a solid solution of CaTiO 3 and MgTiO 3 does not exist.

図1は、本発明の一実施形態における光触媒の結晶構造を模式的に示す図である。図1において、「A」で表される結晶相は、CaTiO3の結晶相であり、「B」で表される結晶相は、MgTiO3の結晶相であり、「C」で表される結晶相は、MgTi23の結晶相である。図1に示すように、一実施形態における光触媒には、CaTiO3の結晶相とMgTiO3の結晶相が混在しており、さらに少量のMgTi23の結晶相が存在する。ただし、MgTi23の結晶相は存在しない場合もある。 FIG. 1 is a diagram schematically showing the crystal structure of a photocatalyst in an embodiment of the present invention. In FIG. 1, the crystal phase represented by "A" is the crystal phase of CaTiO3 , the crystal phase represented by "B" is the crystal phase of MgTiO3 , and the crystal phase represented by "C" is the crystal phase of CaTiO3. The phase is a crystalline phase of MgTi 2 O 3 . As shown in FIG. 1, in the photocatalyst in one embodiment, a crystal phase of CaTiO 3 and a crystal phase of MgTiO 3 coexist, and a small amount of a crystal phase of MgTi 2 O 3 is also present. However, the MgTi 2 O 3 crystal phase may not exist.

(実施例)
TiO2、CaCO3、および、MgCO3の原料粉を所望の組成比で調合し、ボールミルで5時間撹拌乾燥し、1100℃で仮焼してセラミック粉体を得た。得られたセラミック粉体を硝酸Ni水溶液に浸漬し、撹拌しながら150℃のホットプレートで蒸発乾燥させた。その後、大気中500℃で熱処理することによって硝酸を揮発させた後、水素中800℃で還元して、Niを1重量%担持させた(CaMg)TiO3粉からなる光触媒を作製した。Niは、助触媒として機能する。ただし、助触媒がNiに限定されることはなく、PtやPdなどを用いることもできる。
(Example)
Raw material powders of TiO 2 , CaCO 3 , and MgCO 3 were prepared in a desired composition ratio, stirred and dried in a ball mill for 5 hours, and calcined at 1100° C. to obtain ceramic powder. The obtained ceramic powder was immersed in a Ni nitrate aqueous solution and evaporated to dryness on a hot plate at 150° C. while stirring. Thereafter, nitric acid was volatilized by heat treatment at 500° C. in the air, and then reduced at 800° C. in hydrogen to produce a photocatalyst made of (CaMg)TiO 3 powder carrying 1% by weight of Ni. Ni functions as a promoter. However, the co-catalyst is not limited to Ni, and Pt, Pd, etc. can also be used.

作製した光触媒の活性を、以下の方法により評価した。 The activity of the produced photocatalyst was evaluated by the following method.

図2は、光触媒の活性を評価するために用いた装置の構成を模式的に示す図である。シャーレ21に、作製した光触媒の粉体0.3gと純水1gを混合して得られるスラリーを入れた。そして、そのシャーレ21を密封容器22内に入れた後、石英ガラスからなる蓋23をして密封した。なお、石英ガラスからなる蓋23は、紫外線を透過させる。 FIG. 2 is a diagram schematically showing the configuration of an apparatus used to evaluate the activity of a photocatalyst. A slurry obtained by mixing 0.3 g of the prepared photocatalyst powder and 1 g of pure water was placed in a petri dish 21. Then, after putting the Petri dish 21 into a sealed container 22, the container was sealed with a lid 23 made of quartz glass. Note that the lid 23 made of quartz glass transmits ultraviolet rays.

続いて、1リットルのアルゴンガスを満たしたパック24から、送風ポンプ25を用いて、アルゴンガスを送出させて、1cc/分の量のアルゴンガスを循環させた。すなわち、パック24内のアルゴンガスを、密封容器22内を通過して、再びパック24内へと戻るように循環させた。なお、アルゴンガスは、水の分解により発生した水素が酸素等と反応することを抑制するために、密封容器22内に導入させた。 Subsequently, the air pump 25 was used to send out argon gas from the pack 24 filled with 1 liter of argon gas, thereby circulating the argon gas at a rate of 1 cc/min. That is, the argon gas in the pack 24 was circulated through the sealed container 22 and back into the pack 24. Note that argon gas was introduced into the sealed container 22 in order to suppress hydrogen generated by water decomposition from reacting with oxygen and the like.

続いて、石英ガラスからなる蓋23を介して、シャーレ21内のスラリーに紫外線を照射した。スラリーに紫外線を照射することによって水の分解が生じ、水素が発生する。この状態を1時間継続し、1時間後の混合ガス中の水素の含有割合をガスクロマトグラフィーにより求めた。混合ガス中の水素の含有割合は、アルゴンと水素の混合ガス中の水素の含有割合を意味する。 Subsequently, the slurry in the petri dish 21 was irradiated with ultraviolet rays through the lid 23 made of quartz glass. By irradiating the slurry with ultraviolet light, water decomposition occurs and hydrogen is generated. This state was continued for 1 hour, and the hydrogen content in the mixed gas after 1 hour was determined by gas chromatography. The content ratio of hydrogen in the mixed gas means the content ratio of hydrogen in the mixed gas of argon and hydrogen.

なお、紫外線の照射源として、200Wの水銀キセノンランプを用いた。この水銀キセノンランプは、4cm□の範囲に均一に紫外線を照射することができるので、平面視で直径が3cmの円形のシャーレ21の全体に紫外線を照射することが可能である。 Note that a 200 W mercury xenon lamp was used as the ultraviolet irradiation source. This mercury-xenon lamp can uniformly irradiate ultraviolet rays over an area of 4 cm square, so it is possible to irradiate the entire circular petri dish 21 with a diameter of 3 cm in plan view.

ここでは、光触媒の(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)を変更したときの水素の発生量を調べた。(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)と、混合ガス中の水素の含有割合との関係を表1に示す。また、(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)を横軸に、混合ガス中の水素の含有割合を縦軸にとったグラフを図3に示す。 Here, the amount of hydrogen generated when changing the ratio Mg/(Ca+Mg) of the molar amount of Mg to the total molar amount of Ca and Mg contained in (CaMg)TiO 3 of the photocatalyst was investigated. Table 1 shows the relationship between the ratio Mg/(Ca+Mg) of the molar amount of Mg to the total molar amount of Ca and Mg contained in (CaMg)TiO 3 and the content rate of hydrogen in the mixed gas. In addition, a graph is shown in which the horizontal axis is the ratio of the molar amount of Mg to the total molar amount of Ca and Mg contained in (CaMg)TiO 3 (Mg/(Ca+Mg)), and the vertical axis is the content ratio of hydrogen in the mixed gas. Shown in Figure 3.

Figure 0007392516000001
Figure 0007392516000001

図3に示すように、CaとMgの合計モル量に対するMgのモル量が0より大きく、かつ、0.7以下の範囲では、混合ガス中の水素の割合が0.005%より多くなった。一方、CaTiO3で表されるペロブスカイト型酸化物のCaの一部をSrで置換し、Ca1-xSrxTiO3とした特許文献1に記載の光触媒を用いた場合、混合ガス中の水素の割合は0.005%未満となる。 As shown in Figure 3, when the molar amount of Mg relative to the total molar amount of Ca and Mg is greater than 0 and 0.7 or less, the proportion of hydrogen in the mixed gas is greater than 0.005%. . On the other hand, when using the photocatalyst described in Patent Document 1 in which a part of Ca in a perovskite oxide represented by CaTiO 3 is replaced with Sr to make Ca 1-x Sr x TiO 3 , hydrogen in the mixed gas The ratio is less than 0.005%.

すなわち、(CaMg)TiO3を含む酸化物を備え、(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)が0より大きく、0.7以下である本発明の光触媒は、触媒活性が高く、水の分解により発生する水素の量が多い。 That is, an oxide containing (CaMg)TiO 3 is provided, and the ratio Mg/(Ca+Mg) of the molar amount of Mg to the total molar amount of Ca and Mg contained in (CaMg)TiO 3 is greater than 0 and 0.7 or less. The photocatalyst of the present invention has high catalytic activity and generates a large amount of hydrogen by decomposing water.

ここで、光触媒を用いた水の分解反応について簡単に説明する。光触媒にバンドギャップ以上のエネルギーの光が照射されると、価電子帯の電子が伝導帯へと励起される。励起された電子は、水を還元して水素を生成し、価電子帯に形成されたホールは、水を酸化して酸素を生成する。ただし、形成された電子とホールが引き合って再結合すると、水の分解は行われない。 Here, the water decomposition reaction using a photocatalyst will be briefly explained. When a photocatalyst is irradiated with light with an energy higher than the band gap, electrons in the valence band are excited to the conduction band. The excited electrons reduce water to generate hydrogen, and the holes formed in the valence band oxidize water to generate oxygen. However, if the formed electrons and holes attract each other and recombine, water will not be split.

ここで、MgTiO3とCaTiO3は、バンド構造が若干異なるため、界面でバンドが歪んでいると推定される。このバンドの歪みにより、形成された電子とホールが再結合されにくく、水の分解により水素が生成されやすくなると考えられる。 Here, since MgTiO 3 and CaTiO 3 have slightly different band structures, it is presumed that the band is distorted at the interface. It is thought that this band distortion makes it difficult for the formed electrons and holes to recombine, making it easier for hydrogen to be produced by water decomposition.

なお、MgTiO3単相およびCaTiO3単相では触媒活性が低い。すなわち、本発明の光触媒のように、(CaMg)TiO3を含む酸化物を備え、CaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)が0より大きく、0.7以下であるという条件が触媒活性を向上させるために重要である。 Note that the catalytic activity is low in MgTiO 3 single phase and CaTiO 3 single phase. That is, the photocatalyst of the present invention includes an oxide containing (CaMg) TiO3 , and the ratio of the molar amount of Mg to the total molar amount of Ca and Mg, Mg/(Ca+Mg), is greater than 0 and less than or equal to 0.7. This condition is important for improving catalytic activity.

また、上記モル量の比Mg/(Ca+Mg)が0.3以上0.7以下である場合には、混合ガス中の水素の含有割合が0.009%以上とさらに高くなった。したがって、本発明における光触媒は、上記モル量の比Mg/(Ca+Mg)が0.3以上0.7以下であることが好ましい。 Further, when the molar ratio Mg/(Ca+Mg) was 0.3 or more and 0.7 or less, the hydrogen content in the mixed gas became even higher, 0.009% or more. Therefore, in the photocatalyst in the present invention, the molar ratio Mg/(Ca+Mg) is preferably 0.3 or more and 0.7 or less.

また、図3に示すように、(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比を0から増加していくと、混合ガス中の水素の含有割合が増加するが、Mgのモル量の割合が0.37の前後において、水素の含有割合の増加量が大きく変化している。すなわち、CaとMgの合計モル量に対するMgのモル量の割合が0.37以上になると、混合ガス中の水素の含有割合が急激に増加する。したがって、本発明における光触媒は、上記モル量の比Mg/(Ca+Mg)が0.37以上0.7以下であることがより好ましい。 In addition, as shown in Figure 3, as the ratio of the molar amount of Mg to the total molar amount of Ca and Mg contained in (CaMg)TiO 3 is increased from 0, the content ratio of hydrogen in the mixed gas increases. However, when the molar ratio of Mg is around 0.37, the amount of increase in the hydrogen content ratio changes significantly. That is, when the ratio of the molar amount of Mg to the total molar amount of Ca and Mg becomes 0.37 or more, the content ratio of hydrogen in the mixed gas increases rapidly. Therefore, in the photocatalyst of the present invention, the molar ratio Mg/(Ca+Mg) is more preferably 0.37 or more and 0.7 or less.

また、図3に示すように、CaとMgの合計モル量に対するMgのモル量が0.43以上0.63以下の場合には、混合ガス中の水素の含有割合が0.016%以上とさらに高くなった。したがって、本発明における光触媒は、上記モル量の比Mg/(Ca+Mg)が0.43以上0.63以下であることがより好ましい。 Further, as shown in FIG. 3, when the molar amount of Mg with respect to the total molar amount of Ca and Mg is 0.43 or more and 0.63 or less, the hydrogen content in the mixed gas is 0.016% or more. It got even higher. Therefore, in the photocatalyst of the present invention, the molar ratio Mg/(Ca+Mg) is more preferably 0.43 or more and 0.63 or less.

本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiments, and various applications and modifications can be made within the scope of the present invention.

21 シャーレ
22 密封容器
23 蓋
24 パック
25 送風ポンプ
21 Petri dish 22 Sealed container 23 Lid 24 Pack 25 Air pump

Claims (4)

(CaMg)TiO3を含む酸化物を備え、
前記(CaMg)TiO3に含まれるCaとMgの合計モル量に対するMgのモル量の比Mg/(Ca+Mg)は、0より大きく、0.7以下であり、
前記酸化物には、CaTiO 3 の結晶相とMgTiO 3 の結晶相が混在していることを特徴とする光触媒。
Comprising an oxide containing (CaMg) TiO3 ,
The ratio Mg/(Ca+Mg) of the molar amount of Mg to the total molar amount of Ca and Mg contained in the (CaMg)TiO 3 is greater than 0 and 0.7 or less,
A photocatalyst characterized in that the oxide contains a mixture of a CaTiO 3 crystal phase and an MgTiO 3 crystal phase.
前記モル量の比Mg/(Ca+Mg)は、0.3以上0.7以下であることを特徴とする請求項1に記載の光触媒。 The photocatalyst according to claim 1, wherein the molar ratio Mg/(Ca+Mg) is 0.3 or more and 0.7 or less. 前記モル量の比Mg/(Ca+Mg)は、0.37以上0.7以下であることを特徴とする請求項1または2に記載の光触媒。 The photocatalyst according to claim 1 or 2, wherein the molar ratio Mg/(Ca+Mg) is 0.37 or more and 0.7 or less. 前記モル量の比Mg/(Ca+Mg)は、0.43以上0.63以下であることを特徴とする請求項1~3のいずれか一項に記載の光触媒。 The photocatalyst according to any one of claims 1 to 3, wherein the molar ratio Mg/(Ca+Mg) is 0.43 or more and 0.63 or less.
JP2020032998A 2020-02-28 2020-02-28 photocatalyst Active JP7392516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020032998A JP7392516B2 (en) 2020-02-28 2020-02-28 photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032998A JP7392516B2 (en) 2020-02-28 2020-02-28 photocatalyst

Publications (2)

Publication Number Publication Date
JP2021133330A JP2021133330A (en) 2021-09-13
JP7392516B2 true JP7392516B2 (en) 2023-12-06

Family

ID=77660207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032998A Active JP7392516B2 (en) 2020-02-28 2020-02-28 photocatalyst

Country Status (1)

Country Link
JP (1) JP7392516B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006292A (en) 2009-06-26 2011-01-13 Sakai Chem Ind Co Ltd Titanium dioxide particles and method for producing the same
WO2011016527A1 (en) 2009-08-07 2011-02-10 株式会社モチガセ Hydroxyl radical generator, antiviral material using hydroxyl radical generator, and method for generating hydroxyl radicals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006292A (en) 2009-06-26 2011-01-13 Sakai Chem Ind Co Ltd Titanium dioxide particles and method for producing the same
WO2011016527A1 (en) 2009-08-07 2011-02-10 株式会社モチガセ Hydroxyl radical generator, antiviral material using hydroxyl radical generator, and method for generating hydroxyl radicals

Also Published As

Publication number Publication date
JP2021133330A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
CN108380235B (en) Preparation method and application of graphite-phase carbon nitride-based heterogeneous Fenton-like catalyst
Krukowska et al. Rare earth ions doped K2Ta2O6 photocatalysts with enhanced UV–vis light activity
JP4982736B2 (en) A water splitting catalyst by light and a method for producing the same.
KR20090079337A (en) Visible light photocatalyst with heterojunction of titania and iron titanates, and preparation method thereof
JP6077505B2 (en) Water-splitting photocatalyst and method for producing the same, water-splitting photoelectrode
JP4528944B2 (en) Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
JP7392516B2 (en) photocatalyst
JP6388417B2 (en) Ammonia synthesis catalyst and method for producing ammonia
JP5537356B2 (en) Photocatalyst, coating agent, interior material, and method for producing photocatalyst
WO2019107098A1 (en) Method for oxidizing ammonia
JPH0788370A (en) Photocatalyst and production of photocatalyst
JP7447738B2 (en) photocatalyst
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JP3096728B2 (en) Method and apparatus for decomposing water by sunlight
JP2013086010A (en) Photocatalyst and production process therefor
JP7435369B2 (en) photocatalyst
JP7347097B2 (en) photocatalyst
JP4051247B2 (en) Photocatalyst using composite oxide containing metal ions in d10 and d0 electronic states
JP2022081905A (en) photocatalyst
JP5517375B1 (en) A method for producing a calcium carbonate-containing photocatalytic composite composition, and a calcium carbonate-containing photocatalytic composite composition.
JP2023114532A (en) photocatalyst
JP3138738B1 (en) Photocatalyst and method for producing the same
JP2023114537A (en) photocatalyst
JP2021126599A (en) Voc removal catalyst and method for producing the same
JP2003251197A (en) Visible light responding photocatalyst comprising rare- earth element, hydrogen manufacturing method using the same and decomposition method for harmful chemical substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7392516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150