JP2739128B2 - Decomposition method of organic chemicals by titanium ceramic membrane - Google Patents

Decomposition method of organic chemicals by titanium ceramic membrane

Info

Publication number
JP2739128B2
JP2739128B2 JP63506624A JP50662488A JP2739128B2 JP 2739128 B2 JP2739128 B2 JP 2739128B2 JP 63506624 A JP63506624 A JP 63506624A JP 50662488 A JP50662488 A JP 50662488A JP 2739128 B2 JP2739128 B2 JP 2739128B2
Authority
JP
Japan
Prior art keywords
titanium
organic
membranes
gel
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63506624A
Other languages
Japanese (ja)
Other versions
JPH02500258A (en
Inventor
マーク エイ アンダーソン
シモネッタ テュネシー
クーニン ズー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UISUKONSHIN ARAMUNI RISAACHI FUAUNDEESHON
Original Assignee
UISUKONSHIN ARAMUNI RISAACHI FUAUNDEESHON
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UISUKONSHIN ARAMUNI RISAACHI FUAUNDEESHON filed Critical UISUKONSHIN ARAMUNI RISAACHI FUAUNDEESHON
Publication of JPH02500258A publication Critical patent/JPH02500258A/en
Application granted granted Critical
Publication of JP2739128B2 publication Critical patent/JP2739128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • A62D3/176Ultraviolet radiations, i.e. radiation having a wavelength of about 3nm to 400nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J16/00Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J16/005Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔発明の分野〕 本発明はセラミック膜の使用に関するものであり、さ
らに詳細には、耐久性の有機化合物を分解するために、
粒子および高分子チタンセラミック膜と被覆剤の双方の
信頼できかつ良好な結果を生む使用に関する。
Description: FIELD OF THE INVENTION The present invention relates to the use of ceramic membranes, and more particularly, to decompose durable organic compounds.
It relates to the use of both particulate and polymeric titanium ceramic membranes and coatings to produce reliable and good results.

〔従来の技術〕 セラミック膜は、種々の製法および目的のために、産
業および科学において現在使用されており、その中で最
もよく使われるのは分離である。有機膜が分離工程で最
も頻繁に用いられるのに対し、有機膜に対してセラミッ
ク膜の有するいくつかの利点のため、セラミック膜はま
すます一般化されるようになってきた。有機溶媒、塩
素、極度のpHに耐性であるので、セラミック膜は化学的
安定性に優れている。セラミック膜はまた高温で安定で
あるので、製造装置および製剤装置を効率的に殺菌でき
るが、こうしたことは有機膜でしばしば可能でない。セ
ラミック膜は無機物であるので、有機膜でしばしば問題
となる微生物もしくは生物による分解に対し、通常、き
わめて安定である。セラミック膜は、また、高圧下にお
いてさえも、構造的に非常に安定である。セラミック膜
の温度および化学薬品に対する安定性および構造上の安
定性により、耐久性に劣るその他の膜組成物よりも効率
的な洗浄が可能である。
BACKGROUND OF THE INVENTION Ceramic membranes are currently used in industry and science for a variety of manufacturing methods and purposes, of which separation is the most commonly used. While organic membranes are most frequently used in separation processes, ceramic membranes have become increasingly popular due to some of the advantages that ceramic membranes have over organic membranes. Ceramic membranes have excellent chemical stability because they are resistant to organic solvents, chlorine and extreme pH. Although ceramic membranes are also stable at high temperatures, they can efficiently sterilize manufacturing and formulation equipment, but this is often not possible with organic membranes. Since ceramic membranes are inorganic, they are usually very stable against microbial or biological degradation, which is often a problem with organic membranes. Ceramic membranes are also very structurally stable, even under high pressure. The stability and structural stability of ceramic membranes to temperature and chemicals allows for more efficient cleaning than other less durable membrane compositions.

セラミック膜により達成可能な操作メカニズムおよび
分離型に関しては、アサエダら(Asaeda et al.)が総
合的にジャーナル・オブ・ケミカル・エンジニアリング
・オブ・ジャパン(Jour.of Chem.Eng.of Japan),19:
1,72−77(1986)に述べている。現在、ノートン社(No
rton Company)(マサチューセッツ州、ウォーセスター
(Worcester)が“セラフロ(Ceraflo)”の商品名で販
売しているセラミックフィルター類一系統が、少なくと
も市場に出ている。
Asaeda et al. Have comprehensively described the operating mechanisms and separation types achievable with ceramic membranes, Jour. Of Chem. Eng. Of Japan, 19 :
1, 72-77 (1986). Currently, Norton (No
rton Company (Worcester, Mass.) sells at least one line of ceramic filters sold under the trade name "Ceraflo".

こうした多くの特徴により、有機膜よりも無機膜が好
まれそうに見えるが、孔径および孔径分布を望ましい範
囲に限定し、かつひび割れのない膜を製造することが困
難であるため、これらの膜を広く商業的に応用し使用す
ることは遅々として進まなかった。シリカ担体上に粒子
を付着させて製造した超安定化ジルコニア膜のような従
来技術の無機膜のある型は、安定ではあるが、比較的孔
径が大きいため、非常に高分子量(の物)を分離するた
めにしか適さない。
Due to many of these features, inorganic membranes seem to be preferred over organic membranes, but it is difficult to produce pore-free and pore-size-distributed membranes in desirable ranges, and it is difficult to produce crack-free membranes. Wide commercial application and use has been slow. Certain types of prior art inorganic membranes, such as ultra-stabilized zirconia membranes made by depositing particles on a silica carrier, are stable, but have a relatively large pore size, resulting in very high molecular weights. Only suitable for separation.

アルミニウムを用いた金属酸化物膜を創造する方向
で、さまざまな試みが行われた。例えば、ゾル−ゲル技
術を用いて、(担体で)支持されたアルミナセラミック
膜あるいは支持されていないアルミナセラミック膜を再
現性良く製造可能であると証明されている。レナールズ
ら(Lenaars et al.)、ジャーナル・オブ・メンブレン
サイエンス(Jour.of Mebrame Science),24,261−270
(1985)。製法のさまざまなパラメーターをコントロー
ルすることにより、比較的ち密な孔と信頼性の高い孔径
分布を有するアルミナセラミック膜を創造するための確
実な製造方が開発できる可能性が明示された。
Various attempts have been made to create a metal oxide film using aluminum. For example, it has been demonstrated that supported or unsupported alumina ceramic membranes can be produced with good reproducibility using sol-gel technology. Lenaars et al., Jour. Of Mebrame Science, 24, 261-270.
(1985). By controlling various parameters of the manufacturing method, it has been clarified that a reliable manufacturing method for creating an alumina ceramic film having relatively dense pores and a reliable pore size distribution can be developed.

今まで、チタンセラミック膜製造技術に関する知識は
限られていた。チタンを用いるほとんどのゾル−ゲル知
識は、光学特性および耐腐食性のある非常に薄い粒子フ
ィルムを製造することを目的としたものであった。しか
し、これらのフィルムもしくは同様のフィルムを再現性
良く連続製造するために必要な種々のパラメーターにつ
いて、容易に再現可能なように厳密に記載されたことは
これまでなかった。
Until now, knowledge of titanium ceramic membrane manufacturing technology was limited. Most sol-gel knowledge using titanium was aimed at producing very thin particle films with optical properties and corrosion resistance. However, various parameters necessary for continuously producing these films or similar films with good reproducibility have not been strictly described so as to be easily reproducible.

多くの有毒有機化学薬品が浮遊水酸化物(hydrous ox
ide)粒子上で分解可能であることが、最近認識されて
きている。従来の研究は、アセテートのように容易に分
解する化合物とこのような化合物を分解するため懸濁粒
子の使用に焦点を合わせたものであった。例えば、二酸
化チタン粒子懸濁液を複雑な有機分子の分解に使用する
ことに関する知識が従来技術にある。しかし、これらの
工程に懸濁粒子を使用することには大きな限界であり、
その理由は、固体のほうが明らかに使用に便利であるか
らである。しかし、完全な固体では、妥当な時間内に効
率的な触媒作用を進する上で充分な表面積が得られな
い。
Many toxic organic chemicals are suspended hydroxides (hydrous ox)
ide) It has recently been recognized that it is degradable on particles. Previous work has focused on compounds that break down readily, such as acetate, and the use of suspended particles to break down such compounds. For example, there is knowledge in the prior art regarding the use of titanium dioxide particle suspensions for the decomposition of complex organic molecules. However, the use of suspended particles in these processes is a major limitation,
The reason is that solids are clearly more convenient to use. However, perfect solids do not provide sufficient surface area to promote efficient catalysis in a reasonable amount of time.

〔発明の要約〕(Summary of the Invention)

本発明は、溶液中の複雑な有機分子を分解する方法で
あって、該分子を含む溶液中に多孔性チタンセラミック
膜を入れる工程及び該チタンセラミック膜を紫外線で照
射する工程を含む方法を提供する。複雑な有機物質を分
解するための簡便かつ効率的方法を提示するのが、本発
明の目的である。本発明のその他の目的、利点、特徴に
ついては、以下の明細書で明らかになろう。
The present invention provides a method for decomposing complex organic molecules in a solution, comprising the steps of placing a porous titanium ceramic film in a solution containing the molecules and irradiating the titanium ceramic film with ultraviolet light. I do. It is an object of the present invention to provide a simple and efficient method for decomposing complex organic substances. Other objects, advantages and features of the present invention will become apparent in the following written specification.

〔発明の詳細な記載〕(Detailed description of the invention)

本発明は、有機分子分解のためチタン酸化物膜の使用
を目的とする。チタン膜製造法には、二つの変法があ
る。第一の変法は、コロイド状ゾルのゲル化を包含す
る。第一の変法は、通常、粒子状ではあるが、工程上の
要素を慎重に制御し、ゲル化後に連続した均一の膜を生
成しうるならば、一定の塊としても成型しうるようなあ
る型のゲルを用いることである。本法の第二の変法は、
有機金属チタン化合物の加水分解を包含し、可溶性中間
体を生成した後に無機チタン高分子に縮合することであ
る。触媒作用では基質に利用できる表面積が最大である
ことが望ましいので、多孔性あるいは粒子状チタン膜が
本発明の製法にとって望ましい。
The present invention is directed to the use of titanium oxide films for organic molecule decomposition. There are two variants of the titanium film manufacturing method. The first variant involves gelling of the colloidal sol. The first variant is usually particulate, but with careful control of the process elements, if it can produce a continuous, uniform film after gelling, it can be cast as a mass. The use of some type of gel. A second variant of this law is:
Including hydrolysis of an organometallic titanium compound, and forming a soluble intermediate, followed by condensation with an inorganic titanium polymer. Porous or particulate titanium membranes are desirable for the process of the present invention, as it is desirable for the catalytic activity to maximize the surface area available for the substrate.

したがって、この製法には、粒子状ゲルの製造を包含
し、このゲル化を次に焼成しセラミックの物とする。こ
の製法では、慎重に制御すべき4つの目立った変数があ
る。第一は、ゲルを適切に形成するためコロイド状ゾル
中のチタンに対する水の比である。この比は、水のチタ
ン原子に対する比が300:1(モル:モル)より小さいの
が好ましく、第二の基準は、アルコール溶媒を適切に選
択することである。このアルコール溶媒は、出発原料と
して用いたチタンアルコシキドのアルキル基と異なるア
ルキルアルコールが好ましい。第三に考慮すべきこと
は、コロイド混合物のpHを厳密にコントロールすること
である。このpHコントロールにより、チタン分子に関
し、自由プロトンの利用可能性を制限する。第四に考慮
すべきことは、生成ゲルを焼成時暴露する際の焼結温度
の上限である。500℃を越える焼成温度は、生成セラミ
ックに許容できない量のひび割れを起こす。
Thus, the process involves the production of a particulate gel, which is then fired to a ceramic. In this process, there are four prominent variables that must be carefully controlled. The first is the ratio of water to titanium in the colloidal sol to properly form the gel. This ratio is preferably such that the ratio of water to titanium atoms is less than 300: 1 (mole: mole), and the second criterion is to properly select the alcohol solvent. The alcohol solvent is preferably an alkyl alcohol different from the alkyl group of titanium alkoxide used as a starting material. A third consideration is the tight control of the pH of the colloid mixture. This pH control limits the availability of free protons for titanium molecules. A fourth consideration is the upper limit of the sintering temperature when exposing the resulting gel during firing. Firing temperatures above 500 ° C. will cause an unacceptable amount of cracking in the resulting ceramic.

粒子チタン膜の製造は、チタンアルコキシドから始め
る。チタンアルコキシドは、最初、室温で加水分解され
る。典型的反応は、 TiR4+4H2O→Ti(OH)+4R このR基は、どんなアルキルであっても良いが、チタン
テトライソプロポキシドTi(iso−OC3H7が便利な出
発原料であることが判明した。
The production of a particulate titanium film starts with a titanium alkoxide. Titanium alkoxides are first hydrolyzed at room temperature. A typical reaction is TiR 4 + 4H 2 O → Ti (OH) 4 + 4R This R group can be any alkyl, but titanium tetraisopropoxide Ti (iso-OC 3 H 7 ) 4 is a convenient starting point. It turned out to be raw material.

チタンアルコキシドを、最初に、有機アルコールに溶
解する。チタンアルコキシドのアルキルと異なるアルキ
ルのアルキルアルコール溶媒を使用することによって、
加水分解が最も良い状態となる。例えば、チタンテトラ
イソプロポシキドの場合のエタノールである。次に、全
量で、存在するチタンの200〜300倍(モル対モル)の水
を添加する。生成した水酸化チタンTi(OH)は溶液か
ら沈殿する。
The titanium alkoxide is first dissolved in the organic alcohol. By using an alkyl alcohol solvent of an alkyl different from the alkyl of the titanium alkoxide,
Hydrolysis is best. For example, ethanol in the case of titanium tetraisopropoxide. Next, a total of 200 to 300 times (mole to mole) water of titanium present is added. The produced titanium hydroxide Ti (OH) 4 precipitates from the solution.

この水酸化チタン沈殿を次に、再び室温で、HNO3によ
りペプタイズする。この段階で、この沈殿物を高度に分
散した、安定なコロイド溶液すなわちゾルに変換する。
この懸濁液をかくはんしながら、約12時間、中程度に加
温し(85〜95℃)分散を維持し、コロイド形成を促す。
室温に冷却すると、コロイドゲルが生成する。このゲル
を、ガラスもしくは光学ファイバーのような担体に固定
化しても良いし、あるいは型に入れても良い。あるい
は、自立性の構造とするためシート中へ層状にしても良
い。次に、このゲルを500℃を越えない焼成温度で焼結
し、硬く乾燥したセラミックを作る。より高い焼成温度
では、膜のひび割れが生じる。この結果は、高度に多孔
性の連続した焼結粒子網が堅い膜を形成することにな
る。
The titanium hydroxide precipitate is then peptized again with HNO 3 at room temperature. At this stage, the precipitate is converted into a highly dispersed, stable colloidal solution or sol.
The suspension is moderately warmed (85-95 ° C) for about 12 hours while stirring to maintain dispersion and promote colloid formation.
Upon cooling to room temperature, a colloidal gel forms. The gel may be immobilized on a carrier such as glass or optical fiber, or may be cast. Alternatively, the sheet may be layered in order to have a self-supporting structure. The gel is then sintered at a firing temperature not exceeding 500 ° C. to produce a hard, dry ceramic. At higher firing temperatures, cracking of the film occurs. The result is that a highly porous continuous sintered particle network forms a firm film.

生成したチタンセラミック膜は、有機分子の光触媒分
解にとって、極めて好ましい基質として機能する。膜表
面は、高度に多孔性で、これにより、容易に有機分子を
吸収する。このチタン膜は、触媒活性に容易に利用しう
る。この触媒作用は、UV光線と広範囲UV照射で活性化さ
れ、太陽光線さえも使用可能である。もっとも、高強度
の人工UV光線は、分解速度を増感する傾向がある。な
お、本発明の方法で分解できる複雑な有機化合物は広範
囲におよぶが、特に本発明の方法は、ポリ塩素化ビフェ
ニルの分解に用いるのが有効である。
The resulting titanium ceramic membrane functions as a highly preferred substrate for photocatalytic degradation of organic molecules. The membrane surface is highly porous, thereby easily absorbing organic molecules. This titanium film can be easily used for catalytic activity. This catalysis is activated by UV light and broad UV irradiation, and even sunlight can be used. However, high intensity artificial UV light tends to sensitize the decomposition rate. Although the complex organic compound which can be decomposed by the method of the present invention covers a wide range, the method of the present invention is particularly effective for use in decomposing polychlorinated biphenyl.

実施例1 a)粒子膜の製造 チタンテトライソプロポキシドは、アルドリッチケミ
カルカンパニー(Aldrich Chemical Company)から入手
した。反応に用いた水は、ミリポアコーポレーション
(Millipore Corporation)からのミリキュー(Milli−
Q)水精製装置を用いて脱イオン化した。
Example 1 a) Preparation of a particle membrane Titanium tetraisopropoxide was obtained from Aldrich Chemical Company. The water used for the reaction was obtained from Millipore Corporation (Millipore Corporation).
Q) Deionized using a water purification device.

一連の加水分解および粒子ゲル形成実験を、種々のpH
値と水濃度とチタンイオン濃度間の比率を用いて行っ
た。結果を以下の表1に要約した。
A series of hydrolysis and particle gel formation experiments were performed at various pH
It was performed using the values and ratios between water concentration and titanium ion concentration. The results are summarized in Table 1 below.

上記データより、チタン分子に対する(酸からの)自
由水素イオンのモル比が0.1mから1.0の間にある場合、
安定チタンゾルが一番良く生成される。表上、B群のゾ
ル溶液のような比較的希釈されたゾル溶液でのみ、この
範囲を拡大し得る。この理由は完全にはわからないが、
より希釈された溶液中では粒子間距離が増加し、濃いゾ
ル中よりも凝集が困難になることに関連しているようで
ある。安定ゾルのみを、蒸発により一体構造の透明ゲル
に変換することが可能で、その後プロトリシスにより、
一体構造のチタン酸化物膜に変換することが出来た。
From the above data, if the molar ratio of free hydrogen ions (from acid) to titanium molecules is between 0.1 m and 1.0,
A stable titanium sol is best produced. On the table, this range can be extended only with relatively diluted sol solutions, such as those of Group B. I'm not entirely sure why,
It appears to be related to the increased interparticle distance in more dilute solutions, making aggregation more difficult than in dense sols. Only the stable sol can be converted into a monolithic transparent gel by evaporation, and then by protolysis,
It could be converted to a titanium oxide film with an integral structure.

酸濃度がゲル体積に影響を及ぼすことが判明した。チ
タン1モルに対し、自由プロトン約0.4モルの酸濃度で
あるとき、ゲル体積が最小となる。電解質濃度に依存
し、このゾルは当初重量の約4.5%を失い、ゲル化点に
到達する。最終固体ゲルを形成するために、ゾルは、さ
らに、当初重量の97.6%を失わなければならない。焼成
操作で最終ゲルを加熱し、内部ゲル構造を破壊すること
なく、さらに、約13.5%重量を減じる。
It was found that the acid concentration affected the gel volume. At an acid concentration of about 0.4 moles of free protons per mole of titanium, the gel volume is minimized. Depending on the electrolyte concentration, the sol initially loses about 4.5% of its weight and reaches the gel point. To form the final solid gel, the sol must further lose 97.6% of its original weight. The final gel is heated in a firing operation to further reduce weight by about 13.5% without destroying the internal gel structure.

b)TiO2担体膜上におけるPCB分解 末端溶解による溶液中でのTiO2粒子存在を減少させる
ため、ガラス担持膜を事前に蒸留水中でかくはんした。
この3,4ジクロロ・ビフェニル(3,4−DCB)(ヘキサン
溶液からの0.05mg)を、溶媒を留去し、この膜に添加し
た。この膜を、次に、50mlのミリーキュー(Milli−
Q)蒸留水に浸漬し、円筒形パイレックス容器に入れ
た。TiO2粒子に吸着された3,4−DCBの分解に及ぼす温度
効果は、S.ツネシ(Runesi)、M.アンダーソン(Anders
on)、TiO2水懸濁液における3,4−DCBの光触媒;温度お
よび光線強度の効果;CIR−FTIR界面分析、16ケモスフェ
ア(Chemosphere)7,14,47(1987)に開示されているよ
うに、既に研究されており、この開示については、ここ
で参考として取りあげておく。
b) to reduce the TiO 2 particles present in the solution due to PCB decomposition terminal dissolved on TiO 2 support film, it was stirred in distilled water glass supported film in advance.
The 3,4 dichlorobiphenyl (3,4-DCB) (0.05 mg from hexane solution) was evaporated and the solvent was added to the membrane. The membrane was then washed with 50 ml of Milli-Cue (Milli-
Q) It was immersed in distilled water and placed in a cylindrical Pyrex container. Temperature effect on the degradation of 3, 4-DCB adsorbed on TiO 2 particles, S. Tsuneshi (Runesi), M. Anderson (Anders
Effect of temperature and light intensity;; on), the photocatalyst of 3, 4-DCB in TiO 2 aqueous suspension CIR-FTIR interface analysis, 16 Kemosufea (Chemosphere) 7,14,47 (1987) as disclosed in This disclosure is already incorporated herein by reference.

したがって、60℃という一定温度をこの実験では選ん
だ。パイレックス容器を恒温水槽に浸漬することによ
り、温度を一定に保った。照射は、高強度のUV光源、ホ
トテクノロジーインタナショナル(Photo Technology I
nternational)のLPS200のようなXe−Mgランプで行っ
た。ブランク実験は、暗所で行った。照射5時間後に、
この3,4−DCBをヘキサン/アセトン(100:100ml)混合
でソックスレー抽出した。この粒子をヘキサン(5mlX
4)で水5mlから抽出した。EC検出器とキャピラリーカラ
ム付属ヒューレット・パッカード5730ガスクロマトグラ
フでガスクロマトグラフ分析を行い、有機物濃度を定量
した。暗所での実験を、減少ゼロの対照とみなし、パー
セント減少を算出した。この膜上で観察された最大減少
度は93%であり、一方、TiO2粒子での吸着による水中減
少は75%であった。暗所実験での重量回収は、膜に付着
した有機物量に関しては、37%であった。
Therefore, a constant temperature of 60 ° C. was chosen for this experiment. The temperature was kept constant by immersing the Pyrex container in a thermostatic water bath. Irradiation is with a high intensity UV light source, Photo Technology International
This was done with a Xe-Mg lamp such as LPS200 (nternational). Blank experiments were performed in the dark. 5 hours after irradiation,
This 3,4-DCB was subjected to Soxhlet extraction with a mixture of hexane / acetone (100: 100 ml). Use hexane (5mlX
In 4), it was extracted from 5 ml of water. Gas chromatographic analysis was performed using a Hewlett-Packard 5730 gas chromatograph with an EC detector and a capillary column to determine the concentration of organic substances. Experiments in the dark were considered zero reduction controls and percent reduction was calculated. The maximum reduction observed on this membrane was 93%, while the reduction in water due to adsorption on TiO 2 particles was 75%. Weight recovery in the dark experiment was 37% for the amount of organic matter attached to the membrane.

c)無担体TiO2膜上におけるサリチル酸(SALA)と3−
クロロサリチル酸(3Chs)の分解 サリチル酸の光触媒分解を、円筒状構造を有しかつ中
に無担持TiO2を入れた光化学反応器中で行った。反応器
内の液体が、ハノービア(Hanovia)UV−Hg洗浄灯の周
囲を循環するように、この反応器を設置した。温度を、
循環水ジャケットで制御した。染料フィルター(NaVO3
中5x10-2Mと5%NaOH)をUV灯および懸濁液間に循環さ
せ、直接の有機光分解を減少させるために340nmにおけ
るUV透過を減少させた。サリチル酸溶液は、45℃の温度
で4時間すると、25℃ミクロモラー(microMolar)の出
発溶液より25%分解を示すことが、以前からわかってい
た。
c) Salicylic acid (SALA) on carrier-free TiO 2 film and 3-
The photocatalytic degradation of degradation salicylic acid-chlorosalicylic acid (3Chs), made during and has a cylindrical structure in photochemical reactor containing the unsupported TiO 2. The reactor was set up such that the liquid in the reactor circulated around the Hanovia UV-Hg wash light. Temperature,
Controlled by a circulating water jacket. Dye filter (NaVO 3
(5 × 10 −2 M in 5% NaOH) was circulated between the UV light and the suspension to reduce UV transmission at 340 nm to reduce direct organic photolysis. It has previously been found that salicylic acid solutions show 25% decomposition at 25 ° C. for 4 hours over 25 ° C. microMolar starting solutions.

SALAの光触媒を、pH=7.3で29℃の温度で行った。こ
のTiO2膜は37.5℃で焼成したものであった。20mM SALA5
mlを、一晩pH平衡とした700mlの溶液に加えた。このSAL
Aを加えたあと、この懸濁液を1時間平衡としたが、こ
の時間は動力学的実験から、平衡に到達するのに充分な
時間であった。
The SALA photocatalyst was performed at a temperature of 29 ° C. at pH = 7.3. This TiO 2 film was fired at 37.5 ° C. 20mM SALA5
ml was added to 700 ml of solution at pH equilibration overnight. This SAL
After addition of A, the suspension was allowed to equilibrate for 1 hour, which was sufficient from kinetic experiments to reach equilibrium.

平衡溶液中でのSALA濃度をヌクレオポア(Nlcleopor
e)0.05ミクロン膜で限外ろ過し、88X10-6Mと測定され
た。次にこの溶液を3時間40分、照射し、SALA濃度を再
測定したが、0.6x10-6Mあるいは当初濃度の0.7%である
ことがわかった。
The concentration of SALA in the equilibrium solution was
e) Ultrafiltered through a 0.05 micron membrane and measured 88 × 10 −6 M. The solution was then irradiated for 3 hours and 40 minutes and the SALA concentration was re-measured and found to be 0.6 × 10 -6 M or 0.7% of the original concentration.

この同じ型の反応器を用い、同様の反応を3クロロサ
リチル酸(3−ChS)で行った。25℃、3時間で、3−C
hS分解度は、当初濃度のおよそ90%であることがわかっ
た。ここで例示として述べた特定材料、構造および製法
に本発明は限定されるものではなく、請求の範囲の変更
例も包含するものであることが了解される。
Using this same type of reactor, a similar reaction was carried out with 3-chlorosalicylic acid (3-ChS). 3-C at 25 ° C for 3 hours
The hS degradation was found to be approximately 90% of the original concentration. It is to be understood that this invention is not limited to the particular materials, structures, and processes described herein as examples, but also includes modifications of the claims.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 テュネシー シモネッタ アメリカ合衆国 ウイスコンシン州 53703 マディソン ウエスト ゴーラ ム ストリート 138 (72)発明者 ズー クーニン アメリカ合衆国 ウイスコンシン州 53705 マディソン イーグル ハイツ 803エイ (56)参考文献 特開 昭60−118289(JP,A) 特開 昭59−4436(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tennesee Simonetta 53703 Madison West Gorham Street, Wisconsin, United States of America 138 (72) Inventor Zoo Kunin 53705 Madison Eagle Heights, Wisconsin, United States 803 Ai (56) References 118289 (JP, A) JP-A-59-4436 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶液中の光触媒分解可能な有機分子を分解
する方法であって、該有機分子を含む溶液中に酸化チタ
ンの自立性多孔性セラミック膜を入れる工程、及び該セ
ラミック膜を紫外線で照射する工程を含むことを特徴と
する方法。
1. A method for decomposing photocatalytically decomposable organic molecules in a solution, comprising the steps of: placing a self-supporting porous ceramic film of titanium oxide in a solution containing the organic molecules; A method comprising irradiating.
【請求項2】前記光触媒分解可能な有機分子が、ポリ塩
素化ビフェニルである請求項1に記載の方法。
2. The method according to claim 1, wherein the organic molecule capable of photocatalytic decomposition is polychlorinated biphenyl.
JP63506624A 1987-07-27 1988-07-26 Decomposition method of organic chemicals by titanium ceramic membrane Expired - Lifetime JP2739128B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7804387A 1987-07-27 1987-07-27
US078,043 1987-07-27
US78,043 1987-07-27

Publications (2)

Publication Number Publication Date
JPH02500258A JPH02500258A (en) 1990-02-01
JP2739128B2 true JP2739128B2 (en) 1998-04-08

Family

ID=22141566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63506624A Expired - Lifetime JP2739128B2 (en) 1987-07-27 1988-07-26 Decomposition method of organic chemicals by titanium ceramic membrane

Country Status (5)

Country Link
JP (1) JP2739128B2 (en)
CA (1) CA1334520C (en)
DE (1) DE3890597C2 (en)
GB (1) GB2217321B (en)
WO (1) WO1989000985A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002437A1 (en) * 1990-01-27 1991-08-01 Man Technologie Gmbh Catalytic gas phase decomposition of organic halogen cpds.
US5137607A (en) * 1990-04-27 1992-08-11 Wisconsin Alumni Research Foundation Reactor vessel using metal oxide ceramic membranes
GB9102767D0 (en) * 1991-02-09 1991-03-27 Tioxide Group Services Ltd Destruction process
GB9102766D0 (en) * 1991-02-09 1991-03-27 Tioxide Group Services Ltd Destruction process
US5468699A (en) * 1992-07-30 1995-11-21 Inrad Molecular sieve - photoactive semiconductor membranes and reactions employing the membranes
US6284314B1 (en) 1993-12-09 2001-09-04 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Porous ceramic thin film and method for production thereof
JP2636158B2 (en) * 1993-12-09 1997-07-30 工業技術院長 Titanium oxide porous thin film photocatalyst and method for producing the same
US10471289B2 (en) 2017-01-04 2019-11-12 King Abdulaziz University Carbon-modified titanium dioxide nanoparticles and the photocatalytic remediation of aqueous sources systems and methods thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072596A (en) * 1975-04-30 1978-02-07 Westinghouse Electric Corporation Apparatus for removal of contaminants from water
JPS594436A (en) * 1982-06-29 1984-01-11 Toshiba Corp Photochemical reaction method using solar light
JPS60118289A (en) * 1983-11-30 1985-06-25 Giken Kogyo Kk Water purifying method
US4659443A (en) * 1984-08-22 1987-04-21 Pcb Sandpiper, Inc. Halogenated aromatic compound removal and destruction process
US4585533A (en) * 1985-04-19 1986-04-29 Exxon Research And Engineering Co. Removal of halogen from polyhalogenated compounds by electrolysis

Also Published As

Publication number Publication date
GB2217321B (en) 1991-11-27
DE3890597C2 (en) 1996-11-07
CA1334520C (en) 1995-02-21
WO1989000985A1 (en) 1989-02-09
GB2217321A (en) 1989-10-25
JPH02500258A (en) 1990-02-01
GB8906707D0 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US5035784A (en) Degradation of organic chemicals with titanium ceramic membranes
US5006248A (en) Metal oxide porous ceramic membranes with small pore sizes
US5104539A (en) Metal oxide porous ceramic membranes with small pore sizes
US6306796B1 (en) Photocatalyst, process for producing the same and multifunctional members
US20100190643A1 (en) Deactivation resistant photocatalyst and method of preparation
US5096745A (en) Preparation of titanium oxide ceramic membranes
US20110003085A1 (en) Production Of Tailored Metal Oxide Materials Using A Reaction Sol-Gel Approach
EP0846028B1 (en) Photocatalyst compound and process for production thereof
CA2027678C (en) Metal oxide porous ceramic membranes with small pore sizes
JP2739128B2 (en) Decomposition method of organic chemicals by titanium ceramic membrane
US5169576A (en) Method of making metal oxide ceramic membranes with small pore sizes
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP6660691B2 (en) Photocatalyst composite particles and method for producing the same
EP2276694A1 (en) Production of tailored metal oxide materials using a reaction sol-gel approach
JP5282735B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
CN107486203B (en) Recyclable floating type composite photocatalytic ball and preparation method and application thereof
US20200354228A1 (en) Titania porous body and method for producing same
Regalado-Raya et al. Synthesis and characterization of TiO2/SiO2 monoliths as photocatalysts on methanol oxidation
Hattab et al. Photocatalytic degradation of methylene blue by modified nanoparticles titania catalysts
JP2003062462A (en) Photocatalyst included between clay layers and method for producing the same
JPH01135842A (en) Photocatalyst-immobilized membrane
JP7462926B2 (en) Photocatalyst and its manufacturing method
Gong et al. Preparation and characterization of cerium‐doped titanium dioxide/ultrahigh‐molecular‐weight polyethylene porous composites with excellent photocatalytic activity
JP2005281031A (en) Metal-supporting titanium dioxide sol and production method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11