JPH084075B2 - Vapor phase growth equipment - Google Patents

Vapor phase growth equipment

Info

Publication number
JPH084075B2
JPH084075B2 JP62033293A JP3329387A JPH084075B2 JP H084075 B2 JPH084075 B2 JP H084075B2 JP 62033293 A JP62033293 A JP 62033293A JP 3329387 A JP3329387 A JP 3329387A JP H084075 B2 JPH084075 B2 JP H084075B2
Authority
JP
Japan
Prior art keywords
chamber
gas
vapor phase
nozzle
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62033293A
Other languages
Japanese (ja)
Other versions
JPS63202016A (en
Inventor
洋典 井上
誉也 鈴木
秋山  登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62033293A priority Critical patent/JPH084075B2/en
Publication of JPS63202016A publication Critical patent/JPS63202016A/en
Publication of JPH084075B2 publication Critical patent/JPH084075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体ウエハ表面に気相成長層を形成する装
置に係り、特に気相成長層を多数の半導体ウエハ表面上
に均一に形成するための気相成長装置に関する。
The present invention relates to an apparatus for forming a vapor phase growth layer on the surface of a semiconductor wafer, and particularly for forming a vapor phase growth layer uniformly on a large number of semiconductor wafer surfaces. The present invention relates to a vapor phase growth apparatus.

〔従来の技術〕[Conventional technology]

半導体ウエハ(以下ウエハと略記)上に気相化学反応
を利用してSiO2膜,ナイトライド膜,多結晶シリコン膜
を形成するCVD法や単結晶シリコン膜を形成するエピタ
キシヤル成長などの気相成長技術がLSI製造プロセスに
おいて広く適用されている。
Vapor phase such as CVD method to form SiO 2 film, nitride film, polycrystalline silicon film and epitaxial growth to form single crystal silicon film by using vapor phase chemical reaction on semiconductor wafer (hereinafter abbreviated as “wafer”) Growth technology is widely applied in the LSI manufacturing process.

近年、プロセスコストの低減や製品歩留りの向上を目
的とするウエハ径の大型化(>直径6インチ)が進めら
れており、CVD装置もこのようなすう勢に対応するため
の装置の大型化、ウエハ処理能力の増大が進められてい
る。
In recent years, the wafer diameter has been increased (> 6 inches in diameter) for the purpose of reducing the process cost and improving the product yield, and the CVD apparatus has also been increased in size to meet such trends. Processing capacity is increasing.

一方、デバイスの高集積化や高速化に伴い、形成する
薄膜の高精度の均一化も合せて要求されている。
On the other hand, along with the high integration and high speed of devices, there is also a demand for highly accurate uniformization of a thin film to be formed.

以上の要求に応えるCVD装置として特開昭59−50093号
公報に示されるように、ウエハをその主面を対向して等
間隔に並べ、前記ウエハを実質的に包含するように反応
容器内に設置したインナチユーブを加熱源とし前記ウエ
ハを均一に加熱し、反応ガスを孔を有するノズルを用い
て各ウエハの間に供給する方法で、一度に大量のウエハ
に均一なCVD膜を形成することを目的とする新たなCVD装
置が提案されている。
As shown in JP-A-59-50093 as a CVD apparatus that meets the above requirements, the wafers are arranged in a reaction container so that the main surfaces thereof are arranged at equal intervals and the wafers are substantially contained. Using the installed inner tube as a heating source to uniformly heat the wafer, and supplying a reaction gas between each wafer using a nozzle having holes, a uniform CVD film can be formed on a large number of wafers at one time. A new target CVD device has been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記従来方式の気相成長装置では、ノ
ズルの各孔から供給する原料ガスの流量分布に関して配
慮が不足していることから、各々のウエハに対し等量の
原料ガス供給が困難で、結局、高精度のウエハ間膜厚均
一性が得がたいという問題がある。この主な理由は、ノ
ズルの一端から原料ガスを供給しその流れ方向に配置し
た多数の孔からガスを噴出する場合、ノズル管内圧力に
分布が生じるためである。この解決策として、ノズル
管径を極端に大きくする。噴出孔径を極端に小さくす
るなどの方法でノズル管内抵抗に比べて噴出孔流出抵抗
を小さくし、ノズル管内の圧力を各部で実質的に均一に
する方法がある。しかしながら、前述は炉内の大きさ
に制限があること、はウエハに噴出するガス流速が大
きくなりウエハ面内の膜厚均一性が崩れてしまうなどの
欠点がある。
However, in the above-described conventional vapor phase growth apparatus, it is difficult to supply an equal amount of raw material gas to each wafer because the consideration of the flow rate distribution of the raw material gas supplied from each hole of the nozzle is insufficient. However, there is a problem that it is difficult to obtain highly accurate wafer-to-wafer film thickness uniformity. The main reason for this is that when the source gas is supplied from one end of the nozzle and the gas is ejected from a large number of holes arranged in the flow direction, the pressure in the nozzle pipe is distributed. As a solution to this, the nozzle tube diameter is made extremely large. There is a method of making the ejection hole outflow resistance smaller than the resistance in the nozzle pipe by making the diameter of the ejection hole extremely small so that the pressure in the nozzle pipe is substantially uniform in each part. However, the above-mentioned drawbacks are that the size of the inside of the furnace is limited, and the flow velocity of the gas ejected onto the wafer is increased, and the film thickness uniformity on the wafer surface is impaired.

本発明の目的は多数の大口径ウエハに対してもウエハ
間で均一な薄膜を比較的容易に形成可能な気相成長装置
を提供するにある。
An object of the present invention is to provide a vapor phase growth apparatus capable of relatively easily forming a uniform thin film between wafers even for a large number of large diameter wafers.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はガス供給ノズルを、一端にガスの導入口を
有し、かつガスの流れ方向において室内圧力が実質的に
はぼ等しい第1室と、第1室と連結して、かつ、第1室
からのガスの流れ方向と異なる方向でウエハにガスを供
給する孔を有し、第1室に比して圧力の低い第2室とか
ら成る2室構造とすることで達成される。
The above object is to connect a gas supply nozzle to a first chamber, which has a gas inlet at one end and has substantially the same chamber pressure in the gas flow direction, and to connect the first chamber to the first chamber. This is achieved by having a two-chamber structure having a second chamber having a pressure lower than that of the first chamber and having holes for supplying gas to the wafer in a direction different from the direction of gas flow from the chamber.

孔は、円形,楕円形,長円形,矩形等、各種の形をと
り得る。
The holes can have various shapes such as a circle, an ellipse, an oval, and a rectangle.

〔作用〕[Action]

前記ノズルの第1室と第2室を連結する導出口の流出
抵抗を第1室内の流出抵抗に比べて十分大きくし、第1
室内の圧力分布を実質的に均一とすることによつて第1
室から供給するガス流量を第2室の各部で均一とするこ
とができる。また、第2室には、各ウエハ面内の均一性
が最良となるガス流速を得るための噴出孔(またはスリ
ット)を、第1室より供給するガス流の方向と異なる方
向に設けることにより最適な流速でそれぞれのウエハに
均一に原料ガスを供給することができる。
The outflow resistance of the outlet connecting the first chamber and the second chamber of the nozzle is made sufficiently larger than the outflow resistance in the first chamber,
By making the pressure distribution in the chamber substantially uniform,
The gas flow rate supplied from the chamber can be made uniform in each part of the second chamber. Further, the second chamber is provided with ejection holes (or slits) for obtaining the gas flow velocity that gives the best uniformity within each wafer surface in a direction different from the direction of the gas flow supplied from the first chamber. The source gas can be uniformly supplied to each wafer at an optimum flow rate.

〔実施例〕〔Example〕

以下、本発明をSiのエピタキシヤル成長を一実施例と
し第1図,第2図に従つて説明する。
Hereinafter, the present invention will be described with reference to FIGS. 1 and 2 by using the epitaxial growth of Si as an example.

1はシリコン単結晶ウエハで、石英製ホルダ2に主面
を表側として2枚ずつ10段、合計20枚がチヤージされ
る。ホルダ2はウエハ面内の均一性を向上するためにモ
ータ8で回転されている。ウエハ1を筒状のカーボンサ
セプタ4で取囲み、高周波コイル5でサセプタ4を誘導
加熱してウエハ1をエピタキシヤル成長温度に均一に加
熱する。6は原料ガスを供給するためのノズルで、第2
図に示すように第1室6aと第2室6bから成る。6cは連結
管,6dは噴出孔である。7は廃ガスの排気管である。3
は反応容器となる石英製ベルジヤである。
Reference numeral 1 denotes a silicon single crystal wafer, which is charged into a quartz holder 2 with two main surfaces each having 10 layers, and 20 wafers in total. The holder 2 is rotated by a motor 8 in order to improve the uniformity within the wafer surface. The wafer 1 is surrounded by a cylindrical carbon susceptor 4, and the high frequency coil 5 induction-heats the susceptor 4 to uniformly heat the wafer 1 to the epitaxial growth temperature. 6 is a nozzle for supplying the raw material gas,
As shown, it comprises a first chamber 6a and a second chamber 6b. 6c is a connecting pipe, and 6d is an ejection hole. Reference numeral 7 is an exhaust gas exhaust pipe. Three
Is a quartz bell jar serving as a reaction vessel.

次にエピタキシヤル成長の実施例について説明する。
まず、12.7cm(5インチ)径の大口径ウエハを2枚ずつ
重ね合せ、1cm間隔で10段、20枚をホルダ2にチヤージ
じ、20rpmで回転する。ノズル6から水素ガス40l/minを
10分間供給し炉内を水素雰囲気とした後、高周波コイル
5に通電しサセプタ4を1150℃まで昇温する、水素ガス
中にSiCl4原料を約1.5mol%混入しエピタキシヤル成長
を開始する。この時、水素とSiCl4の混合ガス約40l/min
はノズル6の第1室6aに供給され、20mmの等間隔で5本
設けられた連結管6cを通じて第2室6bに供給される。第
1室6aの管内径は15mm、連結管6a内径は2mmであり、5
本の連結管6cからほぼ等量の原料ガスが第2室6bに供給
される。第2室6bには積載ウエハ間隔に応じて11個の直
径3mmの噴出孔6dが連結管6c位置から90゜ずらして設け
られており、連結管6c内流速に比べて遅い流速の原料ガ
スが各ウエハ1に均一に供給される。廃ガスは排気ノズ
ル7よりベルジヤ3外に廃出する。
Next, an example of epitaxial growth will be described.
First, two large-diameter wafers each having a diameter of 12.7 cm (5 inches) are superposed on each other, and 10 stages of 20 wafers are charged into the holder 2 at 1 cm intervals and rotated at 20 rpm. 40l / min hydrogen gas from nozzle 6
After supplying for 10 minutes to create a hydrogen atmosphere in the furnace, the high-frequency coil 5 is energized to raise the temperature of the susceptor 4 to 1150 ° C. The SiCl 4 raw material is mixed in hydrogen gas in an amount of about 1.5 mol% to start epitaxial growth. At this time, a mixed gas of hydrogen and SiCl 4 approx. 40 l / min
Is supplied to the first chamber 6a of the nozzle 6, and is supplied to the second chamber 6b through five connecting pipes 6c provided at equal intervals of 20 mm. The inner diameter of the first chamber 6a is 15 mm and the inner diameter of the connecting pipe 6a is 2 mm.
A substantially equal amount of raw material gas is supplied to the second chamber 6b from the book connecting pipe 6c. The second chamber 6b is provided with eleven ejection holes 6d having a diameter of 3 mm, which are shifted by 90 ° from the position of the connecting pipe 6c according to the distance between the loaded wafers, so that the raw material gas having a slower flow velocity than the flow velocity in the connecting pipe 6c is provided. It is uniformly supplied to each wafer 1. The exhaust gas is discharged to the outside of the bell jar 3 through the exhaust nozzle 7.

所定の時間エピタキシヤル成長を行なつた後、SiCl4
原料の供給を止めサセプタ4の降温を開始する。ウエハ
温度が低温となつたらベルジヤ3を開けウエハ1を取り
出す。
After performing epitaxial growth for a predetermined time, SiCl 4
The supply of raw materials is stopped and the temperature drop of the susceptor 4 is started. When the wafer temperature becomes low, the bell jar 3 is opened and the wafer 1 is taken out.

本実施例により直径12.7mmのウエハ20枚にエピタキシ
ヤル層を10μm形成した結果、ウエハ間膜厚ばらつき±
4%を得、従来のばらつき(±8.2%)に比べ均一性を
2倍以上向上できた。
As a result of forming the epitaxial layer with a thickness of 10 μm on 20 wafers with a diameter of 12.7 mm according to this embodiment, the film thickness variation between wafers ±
4% was obtained, and the uniformity could be more than doubled compared with the conventional variation (± 8.2%).

以上の操作によつてウエハ間のエピタキシヤル膜厚の
均一なエピタキシヤルウエハを得ることができる。
By the above operation, an epitaxial wafer having a uniform epitaxial film thickness between wafers can be obtained.

本実施例においては連結管が孔状のノズルについて説
明したが間隙を十分小さくしたスリット状としても効果
は同様である。
In this embodiment, the nozzle in which the connecting pipe has a hole shape has been described, but the same effect can be obtained if the connecting pipe has a slit shape with a sufficiently small gap.

第3図は一本のノズル管内を2室に分割して同様の効
果を得るようにしたノズルの断面説明図である。また、
第4図はノズル管内へのシリコンの析出を防ぐため二重
管とし、ガス冷却通路6eによりノズル6の温度上昇を防
ぐ場合のノズルの断面構造説明図である。
FIG. 3 is a cross-sectional explanatory view of a nozzle in which the inside of one nozzle tube is divided into two chambers to obtain the same effect. Also,
FIG. 4 is a cross-sectional structural explanatory view of a nozzle in the case of forming a double tube to prevent the deposition of silicon in the nozzle tube and preventing the temperature rise of the nozzle 6 by the gas cooling passage 6e.

〔発明の効果〕 以上述べたように、本発明装置によれば、大口径ウエ
ハに対してもウエハ間で均一に薄膜を容易に形成するこ
とができる。
[Advantages of the Invention] As described above, according to the apparatus of the present invention, it is possible to easily form a thin film evenly on a large-diameter wafer between the wafers.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す気相成長装置の縦断面
図、第2図(a)は第1図の気相成長装置に用いられて
いるノズルを拡大して示す図、第2図(b)は第2図
(a)のA−A切断線に沿つた横断面図、第3図,第4
図は他の実施例になるノズルを示す横断面図である。 1……ウエハ、2……ホルダ、3……ベルジヤ、4……
サセプタ、5……加熱コイル、6……ガスノズル、6a…
…第1室、6b……第2室、6C……連結管、6d……噴出
孔、7……排気ノズル、8……モータ。
FIG. 1 is a vertical sectional view of a vapor phase growth apparatus showing an embodiment of the present invention, FIG. 2 (a) is an enlarged view showing a nozzle used in the vapor phase growth apparatus of FIG. 2 (b) is a cross-sectional view taken along the line AA of FIG. 2 (a), FIG. 3 and FIG.
The drawing is a cross-sectional view showing a nozzle according to another embodiment. 1 ... Wafer, 2 ... Holder, 3 ... Belger, 4 ...
Susceptor, 5 ... Heating coil, 6 ... Gas nozzle, 6a ...
... 1st chamber, 6b ... 2nd chamber, 6C ... connecting pipe, 6d ... ejection hole, 7 ... exhaust nozzle, 8 ... motor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体ウエハを互にその主面を平行とし、
反応容器内に多数並べて収納し、加熱しながら前記反応
容器内に設置した多数の孔を有するガス供給ノズルの一
端から原料ガスを導入し、前記半導体ウエハ外周より主
面にほぼ平行に原料ガスを供給し気相成長層を形成する
装置において、前記ガス供給ノズルが、容器外からのガ
ス供給口を有し、かつノズルの長手方向において実質的
に同一圧力となる第1室と、第1室と連結し、かつ上記
半導体ウエハ面に原料ガスを供給するための孔を有する
第2室からなり、かつ第2室から上記半導体ウエハにガ
スを噴出する方向を第1室から第2室へのガスの流れ方
向と異なる方向にしたことを特徴とする気相成長装置。
1. The semiconductor wafers have their principal surfaces parallel to each other,
A large number of the raw material gases are placed side by side in a reaction vessel, and the raw material gas is introduced from one end of a gas supply nozzle having a large number of holes installed in the reaction vessel while being heated, and the raw material gas is introduced substantially parallel to the main surface from the outer periphery of the semiconductor wafer. In the apparatus for supplying and forming a vapor phase growth layer, the gas supply nozzle has a gas supply port from the outside of the container, and the first chamber and the first chamber have substantially the same pressure in the longitudinal direction of the nozzle. And a second chamber having a hole for supplying a raw material gas to the surface of the semiconductor wafer and injecting gas from the second chamber to the semiconductor wafer from the first chamber to the second chamber. A vapor phase growth apparatus characterized in that the direction is different from the gas flow direction.
【請求項2】上記特許請求の範囲第1項において、第2
室から半導体ウエハにガスを供給する孔は、円孔,楕円
孔,長円孔,矩形孔のいずれかであることを特徴とする
気相成長装置。
2. The method according to claim 1 above, wherein
The vapor phase growth apparatus, wherein the hole for supplying the gas from the chamber to the semiconductor wafer is any one of a circular hole, an elliptical hole, an oval hole, and a rectangular hole.
JP62033293A 1987-02-18 1987-02-18 Vapor phase growth equipment Expired - Lifetime JPH084075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62033293A JPH084075B2 (en) 1987-02-18 1987-02-18 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62033293A JPH084075B2 (en) 1987-02-18 1987-02-18 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPS63202016A JPS63202016A (en) 1988-08-22
JPH084075B2 true JPH084075B2 (en) 1996-01-17

Family

ID=12382492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62033293A Expired - Lifetime JPH084075B2 (en) 1987-02-18 1987-02-18 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH084075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481215A (en) * 1987-09-22 1989-03-27 Nec Corp Vapor growth apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827656B2 (en) * 1976-11-17 1983-06-10 株式会社東芝 Plasma CVD equipment
JPS60189220A (en) * 1984-03-07 1985-09-26 Nippon Denso Co Ltd Plasma cvd apparatus

Also Published As

Publication number Publication date
JPS63202016A (en) 1988-08-22

Similar Documents

Publication Publication Date Title
JP3040212B2 (en) Vapor phase growth equipment
JP3468859B2 (en) Gas phase processing apparatus and gas phase processing method
JPS612321A (en) Vertical hot wall type cvd reactor
TW200527511A (en) Chemical vapor deposition apparatus and film deposition method
JPH021116A (en) Heat treatment apparatus
JPH0587128B2 (en)
JPS5946088B2 (en) Gas phase reactor
JPS62263629A (en) Vapor growth device
JPH084075B2 (en) Vapor phase growth equipment
JP2019519933A (en) Method and apparatus for producing a coated semiconductor wafer
JPH0766139A (en) Chemical vapor deposition system
JPS6316617A (en) Vapor growth equipment
JP2943407B2 (en) Continuous transportation treatment device of high-temperature melt and its method
JPS6168393A (en) Hot wall type epitaxial growth device
JP3222723B2 (en) Method for manufacturing semiconductor device
JPH01253229A (en) Vapor growth device
JPH10102256A (en) Cvd device
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JPH01157519A (en) Vapor growth apparatus
JPH1050615A (en) Single wafer processing gas-phase growth device
JPH0530350Y2 (en)
JPH04154117A (en) Low pressure cvd system
JPS626682Y2 (en)
JPS5830125A (en) Apparatus for film formation using glow discharge
JPH07105352B2 (en) Vapor growth method