JPS5946088B2 - Gas phase reactor - Google Patents
Gas phase reactorInfo
- Publication number
- JPS5946088B2 JPS5946088B2 JP11344380A JP11344380A JPS5946088B2 JP S5946088 B2 JPS5946088 B2 JP S5946088B2 JP 11344380 A JP11344380 A JP 11344380A JP 11344380 A JP11344380 A JP 11344380A JP S5946088 B2 JPS5946088 B2 JP S5946088B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction chamber
- electrode
- gases
- substrates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
Description
【発明の詳細な説明】
本発明はガス体を減圧または常圧のプレーナ形反応室に
導入し、反応室に設置された基板(ウェハ)上に単結晶
、多結晶、または非晶質の固体を成長させる装置に関す
るものである。Detailed Description of the Invention The present invention introduces a gaseous body into a planar reaction chamber under reduced pressure or normal pressure, and forms a monocrystalline, polycrystalline, or amorphous solid on a substrate (wafer) installed in the reaction chamber. The invention relates to an apparatus for growing .
従来のプレーナ形気相成長装置においては、成長に必要
なガスの導入は第1図および第2図の断面図に示すよう
に、反応室1の上部電極2の中央部または下部電極3の
中央部より行うか、あるいは電極と反応室壁間の空隙か
ら導入されている。In a conventional planar vapor phase growth apparatus, the gas necessary for growth is introduced into the center of the upper electrode 2 or the center of the lower electrode 3 in the reaction chamber 1, as shown in the cross-sectional views of FIGS. 1 and 2. It is introduced through the gap between the electrode and the wall of the reaction chamber.
なお第1図および第2図において4は高周波発振器、5
は加熱用ヒータ、63T39はガス導入口をそれぞれ表
わし、8、Ba38bはガス排出口で排気(真空)ポン
プに接続される。またこれらのガスの排気は反応室1の
中央部からガスを導入された第2図の場合には、反応室
の周縁部から、また反応室周縁部からガスを導入された
第1図の場合には反応室の中心部からそれぞれ排気され
るようにしてある。しかしこのようなガス導入方法では
成長する基盤上の膜厚が導入されたガスの進行方向に沿
つて不均一になることは避けられない。もし成長膜厚の
不均一さが許容される範囲にできたとしても、2種以上
のガスを用い化合物あるいは混合物の膜を成長させる場
合には、2種以上のガスを導入するに当つて反応室に導
入される途中の経路に場合によつてはガス混合室を設け
てガス混合の状態で反応室に導くのであるが、このよう
な方法では2つのガスが化学反応性が強い場合には反応
室に導入される前に一部が固体を形成してしまうことが
ある。またもしガス導入の管内で形成されないとしても
、高周波電圧の電極間印加によつて生じる高周波放電に
よつて励起されたガスプラズマ反応室内に生じているば
かりでなく、反応室内に開口をもつガス導入孔にも強く
発生するため、孔の開口部に固体を形成する。In addition, in FIGS. 1 and 2, 4 is a high frequency oscillator, and 5 is a high frequency oscillator.
denotes a heater, 63T39 a gas inlet, and 8 and Ba38b a gas outlet connected to an exhaust (vacuum) pump. In addition, these gases are exhausted from the periphery of the reaction chamber in the case of Figure 2 where the gas is introduced from the center of the reaction chamber 1, and in the case of Figure 1 where the gas is introduced from the periphery of the reaction chamber. In each case, exhaust air is discharged from the center of the reaction chamber. However, in such a gas introduction method, it is inevitable that the film thickness on the growing substrate becomes non-uniform along the direction of propagation of the introduced gas. Even if the non-uniformity of the grown film thickness is within an acceptable range, if two or more gases are used to grow a film of a compound or a mixture, the reaction may occur when the two or more gases are introduced. In some cases, a gas mixing chamber is installed along the path of the gases being introduced into the chamber, and the gases are introduced into the reaction chamber in a mixed state. Some may form solids before being introduced into the reaction chamber. Furthermore, even if the gas is not formed in the gas introduction tube, it is generated not only in the gas plasma reaction chamber excited by the high-frequency discharge generated by applying a high-frequency voltage between the electrodes, but also in the case where the gas is introduced into the reaction chamber through an opening. Since it also occurs strongly in pores, it forms solids at the pore openings.
これら予期しない固体は基板表面に粒子状あるいは薄片
状となつて堆積するが、このような堆積は成長膜に不要
な凹凸を作るばかりでなく、膜の電気的、光学的および
結晶学的な性質を著しく損なうことになる。本発明はこ
れらの欠点を除いて望ましい反応ガスの導入によるプラ
ズマ励起あるいは高温の結晶、非結晶物質の製造装置を
提供するもので、以下詳細に説明する。These unexpected solids deposit on the substrate surface in the form of particles or flakes, but such deposition not only creates unnecessary irregularities in the grown film, but also affects the electrical, optical, and crystallographic properties of the film. will be significantly damaged. The present invention eliminates these drawbacks and provides an apparatus for producing plasma excitation or high-temperature crystalline or non-crystalline materials by introducing a desirable reactive gas, and will be described in detail below.
第3図は本発明を実施したプラズマシリコン窒化膜成長
装置の断面図である。FIG. 3 is a sectional view of a plasma silicon nitride film growth apparatus embodying the present invention.
この図においてステンレス製の反応室1は排気管10を
通して真空ポンプにより排気されるが、所定の減圧状態
に達した後ガス導入パイプAl3およびBl4より(図
示省略の電磁バルブを開いて)反応ガスを反応室1内に
導入する。こ\でSi3N4膜をSi基板上に成長させ
る場合を例にとることにすれば、ガス導入管Al3から
はNH3(5%Ar希釈)200m1/Mlnガスを導
入管Bl4からはSiH4(2%H2希釈)4001n
1,/Minをそれぞれ導入する。SlH4Bガスは周
波数13.56MHzの高周波電源12からマツチング
回路11を経て高周波電圧が印加されている電極2に導
入され、電極のスペース15から直径2〜2.5mmの
円形小孔16を通つて、たとえば磁石を利用した密閉容
器内の回転軸を外部から回転させる装置18によつて回
転しているアース電極19上の試料ホルダ(トレイ)2
0に平担にのせてある基板(ウエハ)21に衝突する。
他方NH3ガスAは電極2のスペース17に導入され、
円形小孔16を囲む幅2〜3mmのドーナツ状小孔22
を通つて基板21に衝突する。円形小孔16とドーナツ
伏小孔22は基板21にほマ垂直にガスを噴出するよう
に形成されているが、その噴出孔の組合せは、他の組合
わせとの間隔dが15m7!L以上とならぬように電極
2の底面上に第4図Bのように多数設けておく。第4図
はその要領を説明する電極2の底面図で、Aはスペース
15の下面、Bはスペース17の下面、それぞれ表わし
ている。また第3図は導入ガスを2種または互に直接に
は反応しないガスによつて区分した2群の場合であるが
、ガスがさらに多種多群となれば、多重管を用いればよ
く、この場合はたとえば第4図Bのように多重心のドー
ナツ状になるが、ガスの分離導入は同様に達成できる。
なお第3図中の23は反応室1の上部の絶縁体、24は
ゲートバルブを表わしている。さて高周波電極2とアー
ス電極19との間に高周波電界が印加されると、両電極
にガスによるグロー放電が発生し、ガスプラズマが形成
されてSiH4とNH3の間で化学反応が起り、Si3
H4の薄膜が基板21上に形成される。このように反応
ガスがおのおの分離された状態で反応室に送り込まれ、
かつ基板上を流れるガスの分布が均質であつて、基板上
のスペースで始めて化学反応を起すので、薄膜の堆積速
度が大きいばかりでなく均質な膜が得られる、また基板
上に固体の集塊が降下する前記のような問題は発生しな
い。基板21がヒ一゛夕5によつて350〜400℃に
加熱された状態で得られた厚さ100〜400μmの窒
化シリコン膜は化学量論的にSi3N4に極めて近く、
膜表面の屈折率は2.0密度は2.8〜3.0であつて
クラツクのないすぐれた窒化膜であつた、なお本発明装
置の思想はSiO2膜〔PSG(PhOsphOsll
lcateglass,BSG(BOrOnsjllc
ateglass)を含む〕の成長、Ptシリサイド、
TiW等の薄膜形成に用いられるばかりでなく、GaA
s,AsSe等の化合物半導体の単結晶、多結晶の薄膜
成長に利用することが可能である。In this figure, a reaction chamber 1 made of stainless steel is evacuated by a vacuum pump through an exhaust pipe 10, and after reaching a predetermined reduced pressure state, the reaction gas is introduced from gas introduction pipes Al3 and Bl4 (by opening electromagnetic valves (not shown)). Introduced into the reaction chamber 1. Taking as an example the case where a Si3N4 film is grown on a Si substrate, NH3 (5% Ar diluted) 200ml/Mln gas is supplied from the gas introduction pipe Al3, and SiH4 (2% H2) is grown from the introduction pipe Bl4. dilution) 4001n
1,/Min, respectively. SlH4B gas is introduced from a high frequency power supply 12 with a frequency of 13.56 MHz through a matching circuit 11 to an electrode 2 to which a high frequency voltage is applied, and passes from a space 15 of the electrode through a circular small hole 16 with a diameter of 2 to 2.5 mm. For example, a sample holder (tray) 2 on a ground electrode 19 is rotated by a device 18 that externally rotates a rotating shaft inside a closed container using a magnet.
It collides with the substrate (wafer) 21 which is placed flat on the ground.
On the other hand, NH3 gas A is introduced into the space 17 of the electrode 2,
A donut-shaped small hole 22 with a width of 2 to 3 mm surrounds the circular small hole 16.
It collides with the substrate 21 through the. The circular small hole 16 and the donut-shaped small hole 22 are formed to eject gas almost perpendicularly to the substrate 21, and the distance d between the combination of the ejection holes and other combinations is 15 m7! A large number of electrodes are provided on the bottom surface of the electrode 2, as shown in FIG. FIG. 4 is a bottom view of the electrode 2 to explain the procedure, in which A represents the lower surface of the space 15 and B represents the lower surface of the space 17, respectively. Also, Figure 3 shows a case where the introduced gases are separated into two groups by two types or gases that do not react directly with each other, but if there are even more types and groups of gases, multiple pipes can be used. In this case, for example, it becomes a doughnut-like shape with multiple centers as shown in FIG. 4B, but the separate introduction of gas can be achieved in the same way.
Note that 23 in FIG. 3 represents an insulator in the upper part of the reaction chamber 1, and 24 represents a gate valve. Now, when a high frequency electric field is applied between the high frequency electrode 2 and the earth electrode 19, a gas glow discharge occurs at both electrodes, a gas plasma is formed, a chemical reaction occurs between SiH4 and NH3, and Si3
A thin film of H4 is formed on the substrate 21. In this way, each of the reaction gases is separated and sent to the reaction chamber,
In addition, the distribution of the gas flowing over the substrate is homogeneous, and the chemical reaction occurs only in the space on the substrate, so not only the thin film deposition rate is high but also a homogeneous film can be obtained. The above-mentioned problem of falling does not occur. The silicon nitride film with a thickness of 100 to 400 μm obtained when the substrate 21 is heated to 350 to 400° C. by the heater 5 has a stoichiometry extremely close to that of Si3N4.
The film surface had a refractive index of 2.0, a density of 2.8 to 3.0, and was an excellent nitride film with no cracks.
lcateglass,BSG(BOrOnsjllc
ateglass) growth, Pt silicide,
It is not only used for forming thin films such as TiW, but also GaA
It can be used to grow single crystal and polycrystalline thin films of compound semiconductors such as S, AsSe, etc.
第1図および第2図は従来のプレーナ形気相成長装置の
断面図、第3図は本発明を実施したプラズマシリコン窒
化膜成長装置の断面図、第4図は第3図中の電極面より
のガス噴出口を示す電極面断面図である。
1・・・・・・反応室、2,3・・・・・・電極、4,
12・・・・・・高周波発振機、5・・・・・・加熱体
、6,7,8・・・・・・ガス導入口、8,8a,8b
・・・・・・ガス排出口、10・・・・・・排気管、1
1・・・・・・マツチング回路、13・・・・・・Aガ
ス導入管、14・・・・・・Bガス導人管、15,17
・・・・・・電極2の空房(スペース)、16・・・・
・・Bガス放出用小孔、19・・・・・・アース電極、
20・・・・・・試相ホルダ、21・・・・・・ウエハ
、22・・・・・・電極2のAガス放出用小孔。1 and 2 are cross-sectional views of a conventional planar vapor phase growth apparatus, FIG. 3 is a cross-sectional view of a plasma silicon nitride film growth apparatus in which the present invention is implemented, and FIG. 4 is an electrode surface shown in FIG. 3. FIG. 3 is a cross-sectional view of the electrode surface showing the gas ejection ports. 1... Reaction chamber, 2, 3... Electrode, 4,
12... High frequency oscillator, 5... Heating body, 6, 7, 8... Gas inlet, 8, 8a, 8b
...Gas exhaust port, 10...Exhaust pipe, 1
1...Matching circuit, 13...A gas introduction pipe, 14...B gas guide pipe, 15, 17
...Empty chamber (space) of electrode 2, 16...
... Small hole for B gas release, 19 ... Earth electrode,
20... Sample phase holder, 21... Wafer, 22... Small hole for A gas release of electrode 2.
Claims (1)
によりガス体を固体に変換成長させる装置において、固
体を形成する2種以上のガス体を互に分離して導入する
ためのガス体分離通路を設けると共に、この分離通路の
それぞれと連結されたガス噴出孔を同心状に並べたガス
噴射口を中心間の距離が一定値以下となるように隣接し
て複数個配設したガス噴射面を基板群を載置せる平面と
対向するように設け、ガス体を基板群に向つてほぼ垂直
に噴出させることを特徴とする気相反応装置。1. A gas separation passage for separating and introducing two or more types of gases that form a solid in an apparatus that converts and grows a gas into a solid by gas plasma or heating on the surface of a group of substrates in a reaction chamber. In addition, a gas injection surface is provided in which a plurality of gas injection ports are arranged concentrically and connected to each of the separation passages, and a plurality of gas injection ports are arranged adjacently so that the distance between the centers is a certain value or less. 1. A gas phase reaction device, which is disposed so as to face a plane on which a group of substrates is placed, and is characterized by ejecting a gas substantially perpendicularly toward the group of substrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11344380A JPS5946088B2 (en) | 1980-08-20 | 1980-08-20 | Gas phase reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11344380A JPS5946088B2 (en) | 1980-08-20 | 1980-08-20 | Gas phase reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5737821A JPS5737821A (en) | 1982-03-02 |
JPS5946088B2 true JPS5946088B2 (en) | 1984-11-10 |
Family
ID=14612348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11344380A Expired JPS5946088B2 (en) | 1980-08-20 | 1980-08-20 | Gas phase reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5946088B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4616597A (en) * | 1984-10-31 | 1986-10-14 | Rca Corporation | Apparatus for making a plasma coating |
JPS61116826A (en) * | 1984-11-12 | 1986-06-04 | Kanegafuchi Chem Ind Co Ltd | Formation of thin film |
JPH0685393B2 (en) * | 1986-01-27 | 1994-10-26 | キヤノン株式会社 | Deposited film forming equipment |
US5236636A (en) * | 1991-10-07 | 1993-08-17 | Ford Motor Company | In-mold plasma treatment |
JP3468859B2 (en) * | 1994-08-16 | 2003-11-17 | 富士通株式会社 | Gas phase processing apparatus and gas phase processing method |
US5660639A (en) * | 1995-10-17 | 1997-08-26 | Ford Motor Company | Method and apparatus for plasma treating an article |
US6565661B1 (en) * | 1999-06-04 | 2003-05-20 | Simplus Systems Corporation | High flow conductance and high thermal conductance showerhead system and method |
US6502530B1 (en) * | 2000-04-26 | 2003-01-07 | Unaxis Balzers Aktiengesellschaft | Design of gas injection for the electrode in a capacitively coupled RF plasma reactor |
KR20030078203A (en) * | 2002-03-28 | 2003-10-08 | (주)한백 | Gas shower of reactor for metal organic chemical vapor deposition system |
JP4306403B2 (en) | 2003-10-23 | 2009-08-05 | 東京エレクトロン株式会社 | Shower head structure and film forming apparatus using the same |
KR100646017B1 (en) * | 2006-01-19 | 2006-11-15 | 주식회사 아토 | A showerhead using multi-hollows cathode of a type of gas separation |
US8069817B2 (en) * | 2007-03-30 | 2011-12-06 | Lam Research Corporation | Showerhead electrodes and showerhead electrode assemblies having low-particle performance for semiconductor material processing apparatuses |
-
1980
- 1980-08-20 JP JP11344380A patent/JPS5946088B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5737821A (en) | 1982-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3468859B2 (en) | Gas phase processing apparatus and gas phase processing method | |
US4262631A (en) | Thin film deposition apparatus using an RF glow discharge | |
TW309628B (en) | ||
US5626679A (en) | Method and apparatus for preparing a silicon oxide film | |
US5105761A (en) | Diffusion plasma-assisted chemical treatment apparatus | |
US20010047764A1 (en) | Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors | |
JPS5946088B2 (en) | Gas phase reactor | |
TW201139723A (en) | PECVD multi-step processing with continuous plasma | |
JPH06302528A (en) | Vapor deposition of silicon nitride thin film | |
WO2006109735A1 (en) | Film forming method and film forming apparatus | |
US4461237A (en) | Plasma reactor for etching and coating substrates | |
JP4813637B2 (en) | Thin film polycrystalline silicon and silicon photoelectric conversion device manufacturing method | |
JPH11131239A (en) | Formation of plasma cvd coating film and device therefor | |
JP2001077028A (en) | System and device manufacture semiconductor | |
RU214891U1 (en) | DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS | |
JPS6021528A (en) | Plasma gas-phase reactor | |
JP2508717Y2 (en) | Mixing chamber for gas introduction in film forming equipment | |
JPS58151031A (en) | Plasma chemical vapor deposition apparatus | |
JP4782314B2 (en) | Plasma source and compound thin film forming apparatus | |
JPS60162777A (en) | Plasma cvd apparatus | |
JPS6357939B2 (en) | ||
JPS5893242A (en) | Formation of nitride film | |
JPH08134655A (en) | Microwave plasma chemical vapor deposition device | |
JPH0235814Y2 (en) | ||
JPH084075B2 (en) | Vapor phase growth equipment |