JPH0837771A - Linear-motor elevator - Google Patents

Linear-motor elevator

Info

Publication number
JPH0837771A
JPH0837771A JP17257894A JP17257894A JPH0837771A JP H0837771 A JPH0837771 A JP H0837771A JP 17257894 A JP17257894 A JP 17257894A JP 17257894 A JP17257894 A JP 17257894A JP H0837771 A JPH0837771 A JP H0837771A
Authority
JP
Japan
Prior art keywords
power supply
linear motor
armature
linear
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17257894A
Other languages
Japanese (ja)
Inventor
Kimimoto Mizuno
公元 水野
Toshiaki Ishii
敏昭 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17257894A priority Critical patent/JPH0837771A/en
Publication of JPH0837771A publication Critical patent/JPH0837771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To obtain a linear-motor elevator in which a rescue operation can be performed by a method wherein, even when either one armature winding for a double-sided linear motor is discontinued or short-circuited, an armature winding on the other side is used. CONSTITUTION:A right armature 5a and a left armature 5b for a double-sided linear induction motor are electrically separated completly. As a result, even when either one armature coil is short-circuited, a current detected by a DCT 17 is judged to be the detection of an convercurrent by an inverter control circuit 19, and a cage is emergency-stopped. In addition, when either one armature coil is discontinued or when either one power-supply cable is detached or disconnected, a motor current detected by the DCT 17 with reference to an instruction current is reduced to 1/2, it cannot follow the instruction current, and it can be detected by means of simple software or hardware. Thereby, when one atmature for a linear motor installed at a counterweight becomes abnormal, a rescue operation can be performed easily without switching over the interconnection of a power-supply wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は巻上機が不要なリニア
モ−タエレベ−タ、特に固定子の両側に2個の電機子を
持つ両側式リニアモ−タエレベ−タに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor elevator which does not require a hoisting machine, and more particularly to a double-sided linear motor elevator having two armatures on both sides of a stator.

【0002】[0002]

【従来の技術】従来のロ−プ式エレベ−タは巻上機を用
いたものが一般的である。この方式はエレベ−タの昇降
路の上部に機械室を設けて、この室内にトラクションを
持つ巻上機を設置し、この巻上機の回転モ−タを駆動す
ることにより、かごと吊り合いおもりを吊り下げたロ−
プを上下動させて、かごを昇降させるものである。しか
しこの方式では、昇降路上部に機械室が必要となるた
め、建てや屋上に専用のペントハウス等が必要となり、
その分だけ建て物の高さが高くなり、日照権等の問題が
ある建て物では不具合を生じていた。
2. Description of the Related Art A conventional rope-type elevator generally uses a hoist. In this system, a machine room is provided in the upper part of the elevator hoistway, a hoisting machine with traction is installed in this room, and the rotating motor of the hoisting machine is driven to suspend the cage. A rope with a weight hanging
The car is moved up and down to raise and lower the car. However, with this method, a machine room is required above the hoistway, so a dedicated penthouse etc. is required on the building or roof,
The height of the building was increased by that much, and there was a problem with the building that had problems such as sunshine rights.

【0003】このような不具合を改善するために、近年
リニア誘導モ−タを利用したリニアモ−タエレベ−タが
考えられている。リニアモ−タエレベ−タの種類にはか
ごを吊り下げるロ−プを有するものと有しないものがあ
る。この内ロ−プを有するリニアモ−タエレベ−タは、
従来のロ−プ式エレベ−タから巻上機をなくし、吊り合
いおもり部にリニア誘導モ−タの1次側可動子、建て物
側の昇降路に2次側固定子である2次導体を配置するよ
うにしたものである。
In order to improve such a problem, a linear motor elevator using a linear induction motor has been considered in recent years. There are two types of linear motor elevators, one with a rope for suspending the car and the other without. The linear motor elevator with the inner rope is
The hoisting machine has been eliminated from the conventional rope type elevator, the primary side mover of the linear induction motor is installed in the hanging weight part, and the secondary conductor is the secondary side stator in the hoistway on the building side. Are arranged.

【0004】平板2次導体の片側に1次側可動子を配し
た片側式平板リニアモ−タエレベ−タでは、可動子を取
りつけた吊り合いおもりと建て物側に取りつけた平板2
次導体の間に吸引力が働く。このため、一般に吸引力を
打ち消す構造をした円筒形リニアモ−タエレベ−タや両
側式平板リニアモ−タエレベ−タ等が利用される。円筒
形リニアモ−タエレベ−タは1次側可動子を円筒形状に
して、円柱状の2次導体の周りに配置したものである。
しかしこの場合、2次導体の円柱は、上下部分のみでで
支えられるため、昇降階数に制限がある。一方、両側式
平板リニアモ−タエレベ−タでは原理的に昇降階数の制
限がない代わりに、2次導体の両側に配置された電機子
の1次巻き線間には吸引力が働くために、一次側可動子
を取りつける構造部材に強度が必要となる。
In a one-sided flat plate linear motor elevator in which a primary side mover is arranged on one side of a flat plate secondary conductor, a hanging weight having the mover attached and a flat plate 2 attached to the building side.
A suction force works between the next conductors. Therefore, a cylindrical linear motor elevator or a double-sided flat plate linear motor elevator having a structure for canceling the suction force is generally used. In the cylindrical linear motor elevator, the primary side mover has a cylindrical shape and is arranged around a cylindrical secondary conductor.
However, in this case, the column of the secondary conductor is supported only by the upper and lower portions, and thus the number of floors to be lifted is limited. On the other hand, in the double-sided flat plate linear motor elevator, in principle, there is no limit to the number of floors that can be lifted and lowered, but because a suction force acts between the primary windings of the armatures arranged on both sides of the secondary conductor, The structural member to which the side mover is attached requires strength.

【0005】両側式平板リニアモ−タエレベ−タの一例
として、平成5年度電気学会全国大会講演論文集の番号
S.10−3−1、題名「リニアドライブのACドライ
ブ応用(1)リニアモ−タエレベ−タ」に記載されたも
のを図6に示す。図において、1は人間等が乗るエレベ
−タのかご、2はかご1と吊り合いおもり4を吊り下げ
るロ−プ、3はロ−プ2の方向を変える返し車、4はか
ご1と重さのバランスを取る釣り合いおもり、5は釣り
合いおもり4に取りつけられたリニア誘導モ−タの可動
子、6はアルミニウム等の導体で構成された平板2次導
体、7は釣り合いおもり4に取りつけられ、かご1を制
動するレ−ル挟み式ブレ−キである。
As an example of a double-sided flat plate linear motor elevator, the S.S. FIG. 6 shows the contents described in 10-3-1, "AC Drive Application of Linear Drive (1) Linear Motor Elevator". In the figure, 1 is an elevator car on which a person or the like rides, 2 is a car 1 and a rope for suspending a weight 4, 3 is a return wheel for changing the direction of the rope 2, 4 is a car and 1 The counterweight 5 for balancing the balance is a mover of the linear induction motor attached to the counterweight 4, 6 is a flat secondary conductor made of a conductor such as aluminum, and 7 is attached to the counterweight 4. It is a rail clamp type brake that brakes the car 1.

【0006】このような両側式平板リニアモ−タエレベ
−タでは、釣り合いおもり4に取りつけられた誘導モ−
タの可動子5に電力が供給されると、固定子である平板
2次導体6との間に推力が発生し、釣り合いおもり4が
昇降する。釣り合いおもり4とかご1はロ−プ2でつな
がっているため、釣り合いおもり4が昇降すると、返し
車3で上下方向が反転されて、かご1が昇降する。ブレ
−キ7はかご1の停止時や異常発生時に作動してかご1
を制動する。
In such a double-sided flat plate linear motor elevator, an induction motor mounted on the counterweight 4 is used.
When power is supplied to the movable element 5 of the rotor, a thrust is generated between the movable element 5 and the flat plate secondary conductor 6 which is the stator, and the counterweight 4 moves up and down. Since the balance weight 4 and the car 1 are connected by the rope 2, when the balance weight 4 moves up and down, the vertical direction is reversed by the return wheel 3 and the car 1 moves up and down. The brake 7 operates when the car 1 is stopped or an abnormality occurs.
Brake.

【0007】また図7に、図6に示した両側式リニアモ
−タエレベ−タのリニアモ−タに電力を供給する従来の
給電ケ−ブルの釣り方の一例を示す。図において、8は
給電ケ−ブル、9は給電ケ−ブル8のかご1下部での中
継支え、10は給電ケ−ブル8の建物側の中継支え、1
1はリニアモ−タ駆動の制御装置である。
FIG. 7 shows an example of a conventional feeding cable for feeding power to the linear motor of the double-sided linear motor elevator shown in FIG. In the figure, 8 is a power supply cable, 9 is a relay support under the car 1 of the power supply cable 8, 10 is a relay support on the building side of the power supply cable 8, 1
Reference numeral 1 is a controller for driving a linear motor.

【0008】また図8に、従来の4極の両側式リニア誘
導モ−タの巻き線方式を示す。図において5a、5bは
誘導モ−タの固定子6の両側に設けられた電機子、12
は誘導モ−タの電機子5a、5bに電力を供給する3相
給電線で、釣り合いおもり4と制御装置11の間は給電
ケ−ブル8に内蔵されている。
FIG. 8 shows a conventional 4-pole double-sided linear induction motor winding system. In the figure, 5a and 5b are armatures provided on both sides of the stator 6 of the induction motor, and 12
Is a three-phase power supply line for supplying electric power to the armatures 5a, 5b of the induction motor, and is built in the power supply cable 8 between the counterweight 4 and the control device 11.

【0009】図7と図8に示すように、従来の両側式リ
ニアモ−タでは、制御装置11に接続された給電ケ−ブ
ル8は、建物側の中継支え10、かご中継支え9を経由
して釣り合いおもり4に達する。釣り合いおもり4上で
給電ケ−ブル8中の3相給電線12は2組に分岐してリ
ニア誘導モ−タの可動子5の左右の電機子5a,5bに
接続される。また左右の電機子5aと5bは通常同じ巻
き線の電機子コイルを利用するため、左右の電機子コイ
ルへの3相入力は、U相、V相、W相の3相の内U相と
W相を逆接続としている。
As shown in FIGS. 7 and 8, in the conventional double-sided linear motor, the power supply cable 8 connected to the control device 11 passes through the relay support 10 and the car relay support 9 on the building side. And reach the counterweight 4. The three-phase power supply line 12 in the power supply cable 8 on the counterweight 4 is branched into two sets and connected to the left and right armatures 5a and 5b of the mover 5 of the linear induction motor. Further, since the left and right armatures 5a and 5b normally use armature coils of the same winding, the three-phase input to the left and right armature coils is the U phase among the U phase, V phase, and W phase. The W phase is reversely connected.

【0010】[0010]

【発明が解決しようとする課題】このようなリニア誘導
モ−タの電機子を組み込んだ従来のリニアモ−タエレベ
−タでは以下の問題点があった。リニアモ−タエレベ−
タでは釣り合いおもりにリニアモ−タの可動子が組み込
まれているために、可動子の巻き線が断線したり、短絡
したりするようなリニアモ−タ自身の不具合が発生した
り、或は、リニアモ−タへの給電ケ−ブルが脱落したり
するような不具合が発生することがある。このような場
合には、ブレ−キを解放し、かごと釣り合いおもりの重
い方に自由落下させてかご内の乗客を救出する等の方法
が一般的である。しかしこのような救出方法は、自由落
下中のかごの位置、速度等が昇降路を覗かないと不明な
ため非常に難しかった。
The conventional linear motor elevator incorporating the armature of such a linear induction motor has the following problems. Linear motor elevator
On the other hand, since the counterweight incorporates a linear motor mover, the linear motor itself may be broken or short-circuited, or the linear motor itself may malfunction. -There may be a problem that the power supply cable to the power supply is dropped. In such a case, it is common practice to release the brake and let the car and the counterweight heavier fall to free the passengers in the car. However, such a rescue method is very difficult because the position, speed, etc. of the car during free fall are unknown unless it is looked into the hoistway.

【0011】本発明は、上述した点に鑑みて両側式リニ
ア誘導モ−タエレベ−タについてなされたもので、一方
の電機子巻き線の異常や、給電ケ−ブルの脱落等に左右
されずに、救出運転が可能な信頼性の高いリニアモ−タ
エレベ−タを提供することを目的としている。
The present invention has been made in view of the above-mentioned points and has been made for a double-sided linear induction motor elevator, and is not affected by an abnormality of one armature winding or a drop of the power supply cable. The purpose is to provide a highly reliable linear motor elevator capable of rescue operation.

【0012】[0012]

【課題を解決するための手段】本発明は、昇降路に設け
られた固定子と固定子の両側に2個の電機子を有すると
共に釣り合いおもり部に設けられた可動子とからなるリ
ニアモ−タと、電機子のそれぞれに別個に電力を供給す
る複数組の給電線と、給電線のそれぞれに別個に接続す
る接続手段を有する制御装置とを具備するようにしたも
のである。
SUMMARY OF THE INVENTION The present invention is a linear motor comprising a stator provided in a hoistway and two armatures on both sides of the stator and a mover provided in a counterweight portion. And a plurality of sets of power supply lines for supplying electric power to each of the armatures separately, and a control device having a connecting means for separately connecting to each of the power supply lines.

【0013】ここで、上述の給電線のそれぞれに流れる
電流を別個に検出する電流検出手段を設け、電流検出手
段からの出力に基づき、給電線に供給する電力を制御す
る制御回路を備えるようにしてもよい。
Here, a current detection means for separately detecting the current flowing through each of the above-mentioned power supply lines is provided, and a control circuit for controlling the power supplied to the power supply line based on the output from the current detection means is provided. May be.

【0014】さらにまた、上述の給電線のそれぞれに別
個に電力を供給する給電手段を備えるようにしてもよ
い。
Furthermore, you may make it comprise the electric power feeding means which supplies electric power separately to each of the above-mentioned electric power feeding lines.

【0015】[0015]

【作用】本発明により、両側式リニアモ−タのどちらか
一方の電機子が断線、短絡した場合にも、他の一方の電
機子巻き線を使用することにより救出運転が可能にな
る。また、電機子への1組の給電線が脱落断線した場合
にも、他の組の給電線により他の電機子への給電が可能
となるため救出運転が可能になる。
According to the present invention, even if one of the armatures of the double-sided linear motor is broken or short-circuited, the rescue operation can be performed by using the other armature winding. Further, even when one set of power supply lines to the armature is disconnected and disconnected, power can be supplied to another armature by the other set of power supply lines, so that rescue operation can be performed.

【0016】また、両側式リニアモ−タのどちら側の電
機子巻き線または、給電線が異常かの自動判別が可能と
なり、自動的に救出運転可能となる。
Further, it is possible to automatically determine on which side of the double-sided linear motor the armature winding or the power supply line is abnormal, and the rescue operation can be automatically performed.

【0017】さらに、どれか一組の給電線への給電手段
が故障の場合にも、自動的に救出運転可能となる。
Further, even if any one of the power supply means for the power supply line is out of order, the rescue operation can be automatically performed.

【0018】[0018]

【実施例】【Example】

実施例1.図1は実施例1による給電方式を示す図であ
る。図において、13は交流電源入力を直流に変換する
ダイオ−ドコンバ−タ、14は平滑用コンデンサであ
る。15は可動子5からの回生エネルギ−を消費するた
めの抵抗とトランジスタからなるチョッパ−回路、16
はパルス幅変調(PWM)を行うインバ−タブリッジ回
路、17は通常2相の電流検出を行う電流検出用DCC
T(Direct CurrentCurrent Transducer 、直流変換
器)、18a、18bは制御装置11に設けられ、給電
ケ−ブル8a、8b内の3相給電線12と制御装置11
内の3相給電線12とを接続するコンタクタ接点、19
はエレベ−タの速度制御を行うインバ−タ制御回路であ
る。ここでダイオ−ドコンバ−タ13、平滑用コンデン
サ14、チョッパ−回路15、インバ−タブリッジ回路
16、電流検出用DCCT17、コンタクタ接点18
a、18bおよびインバ−タ制御回路19で制御装置1
1を形成している。
Example 1. FIG. 1 is a diagram illustrating a power supply method according to the first embodiment. In the figure, 13 is a diode converter for converting an AC power input into DC, and 14 is a smoothing capacitor. Reference numeral 15 is a chopper circuit composed of a resistor and a transistor for consuming the regenerative energy from the mover 5, 16
Is an inverter bridge circuit that performs pulse width modulation (PWM), and 17 is a DCC for current detection that normally detects two-phase current
T (Direct Current Current Transducer), 18a and 18b are provided in the control device 11, and the three-phase power supply line 12 and the control device 11 in the power supply cables 8a and 8b are provided.
A contactor contact for connecting with the three-phase power supply line 12 inside, 19
Is an inverter control circuit for controlling the speed of the elevator. Here, a diode converter 13, a smoothing capacitor 14, a chopper circuit 15, an inverter bridge circuit 16, a DCCT 17 for current detection, a contactor contact 18
a, 18b and inverter control circuit 19 for controlling device 1
1 is formed.

【0019】このように構成された実施例1のリニアモ
−タエレベ−タでは、交流電源(図示せず)からの交流
をダイオ−ドコンバ−タ13と平滑用コンデンサ14に
よって直流に変換する。そしてインバ−タ制御回路19
によりエレベ−タが所定の速度で昇降するようにベクト
ル制御を行い、この制御に従って前記直流をインバ−タ
ブリッジ回路15によりパルス幅変調(PWM)する。
インバ−タブリッジ回路15からは3相給電線12が出
ているが、途中で2方に枝わかれしてコンタクト接点1
8a、18bに入る。制御装置11の外側から2組の3
相給電線がコンタクタ接点18a、18bに接続され、
それぞれ給電ケ−ブル8a、8bを介して釣り合いおも
り4に取り付けられたリニアモ−タの左右の電機子5
a,5bに接続される。このようにインバ−タブリッジ
回路15でパルス幅変調された電力は、制御装置11か
ら別々の給電ケ−ブル8a、8bによって左右の電機子
5a,5bへ給電される。インバ−タブリッジ回路15
から出て未だ枝わかれしていない部分の3相給電線12
には、通常2相の電流検出を行う電流検出用DCCT1
7が取りつけられ、検知された電流値はインバ−タ制御
回路19に入力し、これに基づきインバ−タ制御を行
う。
In the linear motor elevator of the first embodiment constructed as described above, the alternating current from the alternating current power source (not shown) is converted into the direct current by the diode converter 13 and the smoothing capacitor 14. And the inverter control circuit 19
In accordance with this control, vector control is performed so that the elevator moves up and down at a predetermined speed, and the direct current is pulse-width modulated (PWM) by the inverter bridge circuit 15 according to this control.
Although the three-phase power supply line 12 is output from the inverter bridge circuit 15, the contact contact 1 is branched in the middle in two directions.
Enter 8a, 18b. From the outside of the control device 11, two sets of three
The phase feed line is connected to the contactor contacts 18a, 18b,
Left and right armatures 5 of the linear motor attached to the counterweight 4 via the power supply cables 8a and 8b, respectively.
a, 5b. The power thus pulse-width modulated by the inverter bridge circuit 15 is supplied from the control device 11 to the left and right armatures 5a and 5b by the separate power supply cables 8a and 8b. Inverter bridge circuit 15
Three-phase power supply line 12 in the part that has not yet been branched from the
Is a DCCT1 for current detection that normally detects two-phase current.
7 is attached, and the detected current value is input to the inverter control circuit 19, and the inverter control is performed based on this.

【0020】このようなシステムでは両側式リニア誘導
モ−タの左右の電機子5a,5bは電気的に完全に分離
されているため、どちらか一方の電機子コイルが短絡の
場合はDCCT17により検出された電流を、インバ−
タ制御回路19にて過電流検出と判断し、かご1を非常
停止する。また、どちらか一方の電機子コイル断線、ま
たはどちらか一方の給電ケ−ブルの脱落断線の場合に
は、指令電流に対してDCCT17により検出されたモ
−タ電流は1/2となり、指令電流に追従しなくなるた
め、図示されていないが簡単なソフトウエア、或は、ハ
−ドウエアで検出可能となる。
In such a system, since the left and right armatures 5a and 5b of the double-sided linear induction motor are electrically completely separated, when one of the armature coils is short-circuited, it is detected by the DCCT 17. Inverted current
The control circuit 19 judges that the overcurrent has been detected, and the car 1 is brought to an emergency stop. Also, in the case of either one of the armature coil disconnection or the disconnection of one of the power supply cables, the motor current detected by the DCCT 17 is 1/2 of the command current, and the command current However, it can be detected by simple software or hardware (not shown).

【0021】また過熱等の場合は、通常電機子に内蔵さ
れている不図示のサ−マルスイッチの接点入力を給電ケ
−ブル8a、8bを経由して制御回路19により感知
し、容易に異常判別される。このように異常が判別され
た場合、レ−ル挟み式ブレ−キ7を作動させると共に、
インバ−タブリッジ回路16を遮断後、コンタクタ接点
18a、18bを開放し非常停止することができる。
In the case of overheating, etc., the contact input of a thermal switch (not shown) usually built in the armature is detected by the control circuit 19 via the power supply cables 8a and 8b, and the abnormality is easily detected. To be determined. When an abnormality is discriminated in this way, the rail pinch type brake 7 is activated and
After the inverter bridge circuit 16 is cut off, the contactor contacts 18a and 18b can be opened for an emergency stop.

【0022】このような回路では異常側の電機子への給
電配線を人間が判断し、正常側の電機子に給電するコン
タクタ18aまたは18bを投入し片側の電機子に電流
を流し、両側式リニア誘導モ−タを片側式リニア誘導モ
−タとして使用し救出運転を実行する。
In such a circuit, a person judges the power supply wiring to the armature on the abnormal side, turns on the contactor 18a or 18b for supplying power to the armature on the normal side, and causes a current to flow through the armature on one side, and a double-sided linear The induction motor is used as a one-sided linear induction motor to perform rescue operation.

【0023】両側式リニア誘導モ−タが片側式リニア誘
導モ−タとして利用できることを示した原理図を図3、
4に示す。図4は両側式リニア誘導モ−タの磁路の等価
回路である。図5は両側式リニア誘導モ−タの片側の電
機子5bが故障し、単なる鉄とみなした片側式リニア誘
導モ−タの磁路の等価回路である。20a、20bは電
機子5a、5bの起磁力であるアンペアタ−ンN・Iで
ある。ここでNはタ−ン数、Iは電流である。21、2
2は主として磁路のエア−ギャップにより発生する磁気
抵抗Rgである。
A principle diagram showing that the double-sided linear induction motor can be used as a single-sided linear induction motor is shown in FIG.
4 shows. FIG. 4 is an equivalent circuit of the magnetic path of the double-sided linear induction motor. FIG. 5 is an equivalent circuit of the magnetic path of the one-sided linear induction motor in which the armature 5b on one side of the two-sided linear induction motor has failed and is regarded as simple iron. Numerals 20a and 20b are ampere patterns N · I which are the magnetomotive forces of the armatures 5a and 5b. Here, N is the number of turns and I is the current. 21, 2
Reference numeral 2 is a magnetic resistance Rg mainly generated by the air-gap of the magnetic path.

【0024】図4では磁束Φ=2N・I/2Rg=N・
I/Rgとなる。また図5では磁束Φ=N・I/2Rg
=N・I/2Rgとなる。従って、両側式リニア誘導モ
−タを片側式リニア誘導モ−タとして利用しても電機子
鉄芯が飽和しない限り、図5に示す回路で、電流Iを2
倍流すことにより、図4の回路と同じ磁束を発生するこ
とが可能となり、推力もほぼ同程度出すことが可能とな
る。リニアモ−タエレベ−タに利用されるリニアモ−タ
の場合、通常、加速推力等も含め、定常必要推力の2倍
程度の推力が得られるように設計されている。このた
め、片側のリニアモ−タの電機子が異常或は、給電ケ−
ブルが脱落したような場合には加速時間を問題にしない
救出運転が十分可能となる。また以上説明したリニアモ
−タエレベ−タでは釣り合いおもりにリニアモ−タの
他、速度、位置検出用のエンコ−ダ等が敷設されている
ために釣り合いおもりへの信号ケ−ブルにはそれらの信
号線が敷設されているが、本発明と直接関係ないため図
示されていない。
In FIG. 4, the magnetic flux Φ = 2N · I / 2Rg = N ·
It becomes I / Rg. Further, in FIG. 5, magnetic flux Φ = N · I / 2Rg
= N · I / 2Rg. Therefore, as long as the armature iron core is not saturated even when the double-sided linear induction motor is used as the single-sided linear induction motor, the current I is set to 2 in the circuit shown in FIG.
By doubling the flow rate, it is possible to generate the same magnetic flux as the circuit of FIG. In the case of a linear motor used for a linear motor elevator, it is usually designed so as to obtain a thrust about twice as much as a steady required thrust including acceleration thrust and the like. Therefore, the armature of the linear motor on one side is abnormal or the power supply case
If the bull falls off, rescue operation without acceleration time is sufficient. Further, in the linear motor elevator described above, in addition to the linear motor as the counterweight, an encoder or the like for speed and position detection is laid, so the signal cable to the counterweight has those signal lines. Is laid, but is not shown because it is not directly related to the present invention.

【0025】実施例2.図2は実施例1を改良した本発
明の他の一例である。図2ではインバ−タブリッジ回路
15から出た3相給電線12は、途中で2方に枝わかれ
してコンタクタ接点18a、18bに接続される。コン
タクタ接点18a、18bには電機子5a、5bに給電
する2組の3相給電線12がそれぞれ接続されている
が、この2組の3相給電線のそれぞれに通常2相の電流
検出を行う電流検出用DCCT17a、17bが取りつ
けられ、検知された電流値はインバ−タ制御回路19に
入力し、これに基づきインバ−タ制御を行う。
Example 2. FIG. 2 is another example of the present invention which is an improvement of the first embodiment. In FIG. 2, the three-phase power supply line 12 output from the inverter bridge circuit 15 is branched into two in the middle and connected to the contactor contacts 18a and 18b. Two sets of three-phase power supply lines 12 for supplying power to the armatures 5a, 5b are respectively connected to the contactor contacts 18a, 18b. Normally, two-phase current detection is performed for each of these two sets of three-phase power supply lines. The current detecting DCCTs 17a and 17b are attached, and the detected current value is input to the inverter control circuit 19, and the inverter control is performed based on this.

【0026】このような回路にすることにより、インバ
−タ制御回路19では両側式リニア誘導モ−タの電機子
各々の電流をDCCT17a、17bにて別個に監視で
きるため、異常側が容易に判別可能となる。従って異常
後の救出運転の場合も、投入すべきコンタクタ接点が、
18a、18bのどちらかを制御回路19にて自動判別
し、投入させることが可能になるため、所定階に運転停
止させることが容易に可能となる。またこの場合、イン
バ−タの電流制御には2組のDCCT出力Iu1、Iv
1、Iu2、Iv2を加算して、Iu=Iu1+Iu
2、Iv=Iv1+Iv2、Iw=−Iu−Ivとして
利用している。
With this circuit, the inverter control circuit 19 can separately monitor the current of each armature of the double-sided linear induction motor by the DCCTs 17a and 17b, so that the abnormal side can be easily discriminated. Becomes Therefore, even in the case of rescue operation after an abnormality,
Since the control circuit 19 can automatically discriminate between either 18a or 18b and turn them on, it is possible to easily stop the operation at a predetermined floor. In this case, two sets of DCCT outputs Iu1 and Iv are used for controlling the current of the inverter.
1, Iu2, Iv2 are added, and Iu = Iu1 + Iu
2, Iv = Iv1 + Iv2, and Iw = −Iu−Iv.

【0027】実施例3.図3に実施例2を更に改良した
他の実施例を示す。即ち、リニアモ−タを駆動する電流
をパルス幅変調するインバ−タブリッジ回路を16a、
16bと2つ設け、2個の電機子5a、5bに、独立し
たインバ−タブリッジ回路により給電するようにしたも
のである。インバ−タ制御回路19には図示されていな
いが、2個のインバ−タブリッジ16a,16bに対応
し、電流制御回路が2組設けられている。
Embodiment 3 FIG. FIG. 3 shows another embodiment in which the second embodiment is further improved. That is, an inverter bridge circuit 16a for pulse-width-modulating the current for driving the linear motor,
16b and two armatures 5a and 5b are provided by an independent inverter bridge circuit. Although not shown in the inverter control circuit 19, two sets of current control circuits are provided corresponding to the two inverter bridges 16a and 16b.

【0028】このような制御系を持つリニアモ−タエレ
ベ−タではインバ−タブリッジ回路、給電ケ−ブル、リ
ニアモ−タ部が2重系のシステムとなるため、前記の給
電ケ−ブル、リニアモ−タの異常のみならず、インバ−
タブリッジの破損の場合にも正常側インバ−タブリッジ
にて救出運転を行うように作動する。
In the linear motor elevator having such a control system, since the inverter bridge circuit, the feeding cable and the linear motor section are a double system, the feeding cable and the linear motor are the same. Not only the abnormalities of the
Even if the bridge is damaged, the normal side inverter bridge operates to perform rescue operation.

【0029】以上の説明ではリニアモ−タとしてリニア
誘導モ−タとして説明したが、同様な両側式の構成をし
た他のリニアモ−タ例えば、リニア同期モ−タで構成さ
れたリニアモ−タエレベ−タにても同様な効果を奏す
る。
In the above description, a linear induction motor was used as the linear motor, but another linear motor having a similar double-sided structure, for example, a linear motor elevator composed of a linear synchronous motor. The same effect can be obtained with.

【0030】[0030]

【発明の効果】本発明によれば、釣り合いおもりに設け
られたリニアモ−タの片方の電機子が異常になった場合
や、電機子への給電線が脱落断線した場合に、給電線の
配線換えを行わずに容易にリニアモ−タエレベ−タの救
出運転が可能となる。
According to the present invention, when one armature of the linear motor provided on the counterweight becomes abnormal, or when the power feeding line to the armature is disconnected, the wiring of the power feeding line is performed. The rescue operation of the linear motor elevator can be easily performed without replacement.

【0031】また2個の電機子または給電線のうちのど
れが異常かを、制御回路により容易に自動判別するた
め、所定階への救出運転が自動的に可能となる。
Further, the control circuit easily and automatically determines which of the two armatures or the power supply line is abnormal, so that the rescue operation to a predetermined floor can be automatically performed.

【0032】更にまた、2個の電機子に電力を供給する
給電手段の一つが故障した場合にも、容易に異常を自動
判別し所定階への救出運転が自動的に可能となる。
Furthermore, even if one of the power feeding means for supplying power to the two armatures fails, the abnormality can be easily automatically discriminated and the rescue operation to a predetermined floor can be automatically performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるリニアモ−タエレベ−
タの給電方式を示す説明図。
FIG. 1 is a linear motor elevator according to an embodiment of the present invention.
FIG.

【図2】本発明の他の実施例によるリニアモ−タエレベ
−タの給電方式を示す説明図。
FIG. 2 is an explanatory view showing a power supply system of a linear motor elevator according to another embodiment of the present invention.

【図3】本発明の実施例3によるリニアモ−タエレベ−
タの給電方式を示す説明図。
FIG. 3 is a linear motor elevator according to a third embodiment of the present invention.
FIG.

【図4】両側式リニア誘導モ−タの一次側の磁路を示し
た原理図。
FIG. 4 is a principle view showing a magnetic path on the primary side of a double-sided linear induction motor.

【図5】片側が故障した両側式リニア誘導モ−タの一次
側の磁路を示した原理図。
FIG. 5 is a principle diagram showing a magnetic path on the primary side of a double-sided linear induction motor in which one side has failed.

【図6】両側式平板リニア誘導モ−タエレベ−タの概略
を示す説明図。
FIG. 6 is an explanatory view showing the outline of a double-sided flat plate linear induction motor elevator.

【図7】従来のリニアモ−タエレベ−タの給電ケ−ブル
の吊り方を示す説明図。
FIG. 7 is an explanatory view showing how to suspend a power supply cable of a conventional linear motor elevator.

【図8】従来のリニアモ−タエレベ−タの給電方式を示
す説明図。
FIG. 8 is an explanatory view showing a power feeding system of a conventional linear motor elevator.

【符号の説明】[Explanation of symbols]

1.かご 2.ロ−プ 3.返し車 4.釣り合いおもり 5.リニアモ−タの可動子 5a.リニアモ−タの電機子 5b.リニアモ−タの電機子 6.2次導体 7.レ−ル挟みブレ−キ 8a.給電ケ−ブル 8b.給電ケ−ブル 11.制御装置 12.3相給電線 13.ダイオ−ドコンバ−タ 14.平滑用コンデンサ 15.チョッパ回路 16.インバ−タブリッジ回路 16a.インバ−タブリッジ回路 16b.インバ−タブリッジ回路 17.電流検出用DCCT 17a.電流検出用DCCT 17b.電流検出用DCCT 18a.コンタクタ接点 18b.コンタクタ接点 19.インバ−タ制御回路 20a.起磁力 20b.起磁力 21.磁気抵抗 22.磁気抵抗 1. Basket 2. Rope 3. Return car 4. Balance weight 5. Linear motor mover 5a. Linear motor armature 5b. Linear motor armature 6. Secondary conductor 7. Rail sandwich break 8a. Power supply cable 8b. Power supply cable 11. Control device 12. Three-phase power supply line 13. Diode converter 14. Smoothing capacitor 15. Chopper circuit 16. Inverter bridge circuit 16a. Inverter bridge circuit 16b. Inverter bridge circuit 17. DCCT for current detection 17a. DCCT for current detection 17b. DCCT for current detection 18a. Contactor contact 18b. Contactor contact 19. Inverter control circuit 20a. Magnetomotive force 20b. Magnetomotive force 21. Magnetic resistance 22. Magnetic resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 昇降路に設けられた固定子と該固定子の
両側に2個の電機子を有すると共に釣り合いおもり部に
設けられた可動子とからなるリニアモ−タと、前記電機
子のそれぞれに別個に電力を供給する複数組の給電線
と、該給電線のそれぞれに別個に接続する接続手段を有
する制御装置とを具備することを特徴とするリニアモ−
タエレベ−タ。
1. A linear motor comprising a stator provided on a hoistway and two armatures on both sides of the stator and a mover provided on a counterweight portion, and each of the armatures. A plurality of sets of power supply lines for separately supplying electric power to each of the power supply lines, and a control device having a connecting means for separately connecting to each of the power supply lines.
Taelevet.
【請求項2】 前記給電線のそれぞれに流れる電流を別
個に検出する電流検出手段を設け、該電流検出手段から
の出力に基づき、前記給電線に供給する電力を制御する
制御回路を備えたことを特徴とする請求項1記載のリニ
アモ−タエレベ−タ。
2. A current detection means for separately detecting a current flowing through each of the power supply lines is provided, and a control circuit for controlling electric power supplied to the power supply line based on an output from the current detection means is provided. The linear motor elevator according to claim 1, wherein:
【請求項3】 前記給電線のそれぞれに別個に電力を供
給する給電手段を備えたことを特徴とする請求項2記載
のリニアモ−タエレベ−タ。
3. The linear motor elevator according to claim 2, further comprising power feeding means for individually feeding power to each of the power feeding lines.
JP17257894A 1994-07-25 1994-07-25 Linear-motor elevator Pending JPH0837771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17257894A JPH0837771A (en) 1994-07-25 1994-07-25 Linear-motor elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17257894A JPH0837771A (en) 1994-07-25 1994-07-25 Linear-motor elevator

Publications (1)

Publication Number Publication Date
JPH0837771A true JPH0837771A (en) 1996-02-06

Family

ID=15944441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17257894A Pending JPH0837771A (en) 1994-07-25 1994-07-25 Linear-motor elevator

Country Status (1)

Country Link
JP (1) JPH0837771A (en)

Similar Documents

Publication Publication Date Title
JP5420140B2 (en) Elevator control device
JP4986541B2 (en) Elevator control device
JPH04506744A (en) Power supply method
US4307793A (en) Elevator system
JP2017017785A (en) Electric hoist
JP2009035393A (en) Method and device for driving one half of elevator
JP2000309475A (en) Elevator device
JPH0837771A (en) Linear-motor elevator
JP2618138B2 (en) Low-press elevator equipment
JPH04286587A (en) Linear motor type elevator control device
JPH11322208A (en) Elevator controller
JP2002120973A (en) Elevator control device
JP2006290497A (en) Control device for elevator
JP3669761B2 (en) Elevator operation device
JP3181656B2 (en) Low-press elevator control device
JPH07252073A (en) Controller of man conveyor
JP4945313B2 (en) Regenerative resistance fault judgment system
JPH04365770A (en) Control device for elevator
JP2001354366A (en) Control device for elevator
JP2006176257A (en) Elevator control device
JP2001253650A (en) Controller of elevator
JP2526732B2 (en) Elevator control device
WO2023105786A1 (en) Electric safety device for elevator, and elevator device
EP3331793A1 (en) Rescue control and method of operating an elevator system including a permanent magnet (pm) synchronous motor drive system
JP2616574B2 (en) Elevator equipment