WO2023105786A1 - Electric safety device for elevator, and elevator device - Google Patents

Electric safety device for elevator, and elevator device Download PDF

Info

Publication number
WO2023105786A1
WO2023105786A1 PCT/JP2021/045648 JP2021045648W WO2023105786A1 WO 2023105786 A1 WO2023105786 A1 WO 2023105786A1 JP 2021045648 W JP2021045648 W JP 2021045648W WO 2023105786 A1 WO2023105786 A1 WO 2023105786A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
power supply
contact
elevator
Prior art date
Application number
PCT/JP2021/045648
Other languages
French (fr)
Japanese (ja)
Inventor
猛彦 久保田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023566057A priority Critical patent/JPWO2023105786A1/ja
Priority to PCT/JP2021/045648 priority patent/WO2023105786A1/en
Publication of WO2023105786A1 publication Critical patent/WO2023105786A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/14Control systems or devices

Definitions

  • the present disclosure relates to elevator electrical safety devices and elevator devices.
  • Patent Document 1 describes an elevator device.
  • the elevator device described in Patent Document 1 includes a door chain circuit in which a contact of a car door switch and a plurality of contacts of a landing door switch are connected in series. If the door chain circuit is closed, the relay contacts are closed. The relay relay contacts are included in the safety chain circuit.
  • Elevator equipment is equipped with an electrical safety device that stops power supply to the hoist when a specific abnormality is detected.
  • a device including a door chain circuit and a safety chain circuit described in Patent Document 1 is an example of an electrical safety device.
  • the present disclosure was made to solve the problems described above. SUMMARY OF THE DISCLOSURE It is an object of the present disclosure to provide an elevator electrical safety device that can reduce costs. Another object of the present disclosure is to provide an elevator system with such an electrical safety device.
  • An elevator electrical safety device includes a single-phase bridge inverter circuit for converting DC voltage to AC voltage from a safety chain circuit including a plurality of safety device contacts connected in series, and a first contact of a car door switch. a first contact circuit connected to a first output on the AC side of the single-phase bridge inverter circuit; a plurality of second contacts of the landing door switch; When the second contact circuit connected to the second output on the AC side of the bridge inverter circuit, the first contact and the plurality of second contacts are closed, the first contact circuit and the second contact circuit are removed from the single-phase bridge inverter circuit. and a single-phase rectifier circuit for converting an AC voltage input through the DC voltage into a DC voltage.
  • the elevator apparatus includes the above electrical safety device, a converter circuit that converts an AC voltage from an AC power supply to a DC voltage, a smoothing capacitor connected to the DC side of the converter circuit, and a an inverter circuit that converts a DC voltage into an AC voltage and drives the motor of the hoist.
  • the cost required for elevator electrical safety devices can be reduced.
  • FIG. 1 is a diagram showing an example of an elevator device according to Embodiment 1;
  • FIG. 1 is a diagram showing an example of an elevator device according to Embodiment 1;
  • FIG. It is a figure which expands and shows an electric safety device. It is a figure for demonstrating the function of an electrical safety device. It is a figure for demonstrating the function of an electrical safety device. It is a figure for demonstrating the function of an electrical safety device. It is a figure for demonstrating the function of an electrical safety device.
  • FIG. 5 is a diagram showing another example of the elevator device according to Embodiment 1;
  • FIG. 5 is a diagram showing another example of the elevator device according to Embodiment 1;
  • FIG. 5 is a diagram showing another example of the elevator device according to Embodiment 1;
  • Embodiment 1. 1 and 2 are diagrams showing an example of an elevator device according to Embodiment 1.
  • the elevator system includes a converter circuit 2, a bus 3, a smoothing capacitor 4, an inverter circuit 5, and a control circuit 6.
  • the converter circuit 2 is connected to the AC power supply 1 via the main breaker.
  • the AC power supply 1 is, for example, a commercial three-phase AC power supply.
  • the converter circuit 2 converts the AC voltage from the AC power supply 1 into a DC voltage.
  • Bus line 3 is connected between converter circuit 2 and inverter circuit 5 .
  • a DC voltage from the converter circuit 2 is supplied to the bus 3 .
  • a smoothing capacitor 4 is connected to the DC side of the converter circuit 2, that is, between the bus lines 3. Smoothing capacitor 4 smoothes the DC voltage from converter circuit 2 .
  • the inverter circuit 5 converts the DC voltage smoothed by the smoothing capacitor 4 into an AC voltage.
  • FIG. 1 shows an example in which the inverter circuit 5 includes an IGBT (Insulated Gate Bipolar Transistor) as a switching element and a freewheeling diode connected in anti-parallel to the IGBT.
  • the inverter circuit 5 is controlled by the control circuit 6 . That is, the control circuit 6 controls switching elements included in the inverter circuit 5 .
  • the elevator device further comprises a car 7, a counterweight 8, a rope 9, and a hoist 10.
  • the hoisting machine 10 comprises a drive sheave 11 , a motor 12 and a braking device 13 .
  • FIG. 2 shows an example of a 1:1 roping elevator system.
  • the rope 9 is wound around the drive sheave 11.
  • a motor 12 generates a force for rotating the drive sheave 11 .
  • the car 7 moves in a direction corresponding to the direction of rotation of the drive sheave 11 . That is, when the motor 12 is driven by the inverter circuit 5, the drive sheave 11 rotates and the car 7 moves.
  • the brake device 13 has a brake coil 14 .
  • the brake device 13 generates a force to prevent the drive sheave 11 from rotating. In the following, this force is also referred to as blocking force.
  • the elevator device further comprises a DC-DC converter 15, a drive circuit 16, a control circuit 17, a control circuit 18, and a power supply circuit 19.
  • the DC-DC converter 15 includes a single-phase bridge inverter circuit 20 , an isolation transformer 21 and a single-phase diode bridge circuit 22 .
  • the drive circuit 16 is a circuit for driving the brake device 13. If the brake coil 14 is not energized, the braking device 13 produces a blocking force. When current flows through the brake coil 14, the blocking force disappears.
  • FIG. 1 shows an example in which the drive circuit 16 includes a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) as a switching element.
  • Drive circuit 16 is controlled by control circuit 18 . That is, the control circuit 18 controls switching elements included in the drive circuit 16 .
  • the single-phase bridge inverter circuit 20 is connected to the primary side coil of the isolation transformer 21 .
  • the single-phase bridge inverter circuit 20 converts the DC voltage from the bus 3 into AC voltage.
  • the AC voltage converted by the single-phase bridge inverter circuit 20 is supplied to the primary coil of the isolation transformer 21 .
  • the single-phase diode bridge circuit 22 is connected to the secondary side coil of the isolation transformer 21 .
  • the single-phase diode bridge circuit 22 converts AC voltage induced in the secondary coil of the insulating transformer 21 into DC voltage.
  • a DC voltage converted by the single-phase diode bridge circuit 22 is supplied to the drive circuit 16 . That is, the DC-DC converter 15 supplies a DC voltage to the drive circuit 16 .
  • the DC-DC converter 15 functions as a power supply circuit for the drive circuit 16 .
  • FIG. 1 shows an example in which the single-phase bridge inverter circuit 20 includes, as switching elements, IGBTs and freewheeling diodes connected in anti-parallel to the IGBTs.
  • Single-phase bridge inverter circuit 20 is controlled by control circuit 17 . That is, the control circuit 17 controls the DC-DC converter 15 by driving the switching elements included in the single-phase bridge inverter circuit 20 .
  • the power supply circuit 19 supplies a DC voltage to the control circuit 6 .
  • the control circuit 6 controls the inverter circuit 5 by being supplied with a DC voltage from the power supply circuit 19 . If the DC voltage is not supplied from the power supply circuit 19 to the control circuit 6, the motor 12 will not be driven. In other words, the car 7 cannot be moved by the motor 12 unless a DC voltage is supplied from the power supply circuit 19 to the control circuit 6 .
  • the power supply circuit 19 supplies a DC voltage to the control circuit 17 .
  • the control circuit 17 controls the single-phase bridge inverter circuit 20 by being supplied with a DC voltage from the power supply circuit 19 . If no DC voltage is supplied from the power supply circuit 19 to the control circuit 17 , no current will flow through the brake coil 14 . In other words, if the DC voltage is not supplied from the power supply circuit 19 to the control circuit 17, the braking device 13 generates blocking force.
  • the elevator device is further equipped with an electrical safety device 23.
  • FIG. 3 is an enlarged view of the electrical safety device 23.
  • the electrical safety device 23 includes a power supply circuit 24, a safety chain circuit 25, a single-phase bridge inverter circuit 26, a control circuit 27, a contact circuit 28, a contact circuit 29, a single-phase diode bridge circuit 30, a monitoring circuit 31, and a monitoring circuit 32. Prepare.
  • the power supply circuit 24 converts the AC voltage from the AC power supply 1 into a DC voltage.
  • a safety chain circuit 25 is connected between the power supply circuit 24 and the single-phase bridge inverter circuit 26 .
  • a DC voltage converted by the power supply circuit 24 is supplied to the safety chain circuit 25 .
  • the safety chain circuit 25 includes multiple safety device contacts connected in series.
  • a safety device is a device for detecting a specific abnormality that requires power supply to the hoisting machine 10 to be stopped. Each safety device is provided with a safety contact. When a safety device detects a specific fault, the safety device contacts provided in the safety device open.
  • a speed governor that detects overspeed of the car 7 is an example of a safety device. For example, when the governor detects overspeed of the car 7, a safety contact provided to the governor opens.
  • the single-phase bridge inverter circuit 26 converts the DC voltage from the safety chain circuit 25 into AC voltage.
  • the single-phase bridge inverter circuit 26 converts to a square wave AC voltage.
  • FIG. 1 shows an example in which the single-phase bridge inverter circuit 26 includes, as switching elements, IGBTs and freewheeling diodes connected in anti-parallel to the IGBTs.
  • Single-phase bridge inverter circuit 26 is controlled by control circuit 27 . That is, the control circuit 27 controls switching elements included in the single-phase bridge inverter circuit 26 .
  • the contact circuit 28 is connected to one output 26 a on the AC side of the single-phase bridge inverter circuit 26 .
  • the contact circuit 29 is connected to the other output 26 b on the AC side of the single-phase bridge inverter circuit 26 .
  • the car 7 includes a car door 50 and a car door switch 51.
  • a car door 50 opens and closes an entrance formed in the car 7 .
  • the car door switch 51 is a switch for detecting that the car door 50 is in a specific fully closed position. When the car door 50 is in the fully closed position, the contact 51a of the car door switch 51 is closed. If the car door 50 is not in the fully closed position, the contact 51a of the car door switch 51 is open. For example, when the car door 50 moves from the fully closed position, the contact 51a opens.
  • a contact 51 a of the car door switch 51 is included in the contact circuit 28 .
  • a landing door 52 and a landing door switch 53 are provided at each landing where the car 7 stops.
  • the landing door 52 opens and closes an entrance formed in the landing.
  • the landing door switch 53 is a switch for detecting that the landing door 52 is in a specific fully closed position. When the landing door 52 is in the fully closed position, the contact 53a of the landing door switch 53 is closed. If the landing door 52 is not in the fully closed position, the contact 53a of the landing door switch 53 is opened. For example, when the landing door 52 on the first floor moves from the fully closed position, the contact 53a of the landing door switch 53 on the first floor opens.
  • a contact 53 a of the landing door switch 53 is included in the contact circuit 29 .
  • the contacts 53a included in the contact circuit 29 are connected in series. For example, if there are landings on each floor from the first floor to the tenth floor of a building, ten landing door switches 53 are provided in the elevator device. In this case, the contact circuit 29 has ten contacts 53a connected in series, that is, the contact 53a of the landing door switch 53 on the first floor, the contact 53a of the landing door switch 53 on the second floor, . landing door switch 53 contact 53a.
  • a single-phase diode bridge circuit 30 is connected between the contact circuit 28 and the contact circuit 29 .
  • the AC voltage from the single-phase bridge inverter circuit 26 is input to the single-phase diode bridge circuit 30 via the contact circuits 28 and 29 .
  • Single-phase diode bridge circuit 30 is an example of a single-phase rectifier circuit.
  • the single-phase diode bridge circuit 30 converts the input AC voltage into a DC voltage.
  • a DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the power supply circuit 19 .
  • FIG. 1 shows an example in which a smoothing capacitor is connected to the DC side of the single-phase diode bridge circuit 30 .
  • the monitoring circuit 31 is connected between the single-phase diode bridge circuit 30 side of the contact circuit 28 and the output 26 b of the single-phase bridge inverter circuit 26 .
  • FIG. 1 shows an example in which the monitoring circuit 31 has a photocoupler as an element for detecting that the contact 51a of the car door switch 51 is short-circuited. That is, if the contact 51 a is short-circuited, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 31 . When the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler, the monitoring circuit 31 outputs a detection signal.
  • the monitoring circuit 32 is connected between the single-phase diode bridge circuit 30 side of the contact circuit 29 and the output 26 a of the single-phase bridge inverter circuit 26 .
  • FIG. 1 shows an example in which the monitoring circuit 32 includes a photocoupler as an element for detecting that all the contacts 53a included in the contact circuit 29 are short-circuited. That is, if all the contacts 53 a are short-circuited, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 32 . When the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler, the monitoring circuit 32 outputs a detection signal.
  • FIGS. 4 to 6 are diagrams for explaining the function of the electrical safety device 23.
  • FIG. 4 to 6 show examples in which the electrical safety device 23 further comprises a monitoring circuit 33.
  • FIG. A monitoring circuit 33 is connected to the DC side of the single-phase diode bridge circuit 30 .
  • the monitoring circuit 33 comprises a photocoupler. When the DC voltage from the single-phase diode bridge circuit 30 is supplied to the photocoupler, the monitoring circuit 33 outputs a detection signal.
  • FIG. 4 shows an example in which the contact 51a and all the contacts 53a included in the contact circuit 29 are closed.
  • the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the single-phase diode bridge circuit 30. Therefore, the DC voltage from the single-phase diode bridge circuit 30 is supplied to the power supply circuit 19 .
  • the power supply circuit 19 supplies DC voltage to the control circuit 6 and the control circuit 17 .
  • the DC voltage from the single-phase diode bridge circuit 30 is supplied to the photocoupler of the monitoring circuit 33. Therefore, a detection signal is output from the monitoring circuit 33 .
  • the contact 51 a since the contact 51 a is closed, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 31 . Therefore, a detection signal is output from the monitoring circuit 31 .
  • the contacts 53 a included in the contact circuit 29 are closed, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 32 . Therefore, a detection signal is output from the monitoring circuit 32 .
  • the car door 50 and the landing door 52 of a certain floor are open.
  • the contact of the landing door switch 53 for detecting that the open landing door 52 is in the fully closed position is referred to as "contact 53b" to distinguish it from other contacts 53a.
  • contact 53a represents a closed contact.
  • FIG. 5 shows an example in which the contact 51a itself of the car door switch 51 is open, but for some reason the contact 51a is short-circuited.
  • the contact 53b is open. Therefore, no voltage is generated on the DC side of the single-phase diode bridge circuit 30 . That is, no DC voltage is supplied from the single-phase diode bridge circuit 30 to the power supply circuit 19 . No detection signal is output from the monitoring circuit 33 .
  • FIG. 6 shows an example in which the contact 53b itself is open, but for some reason the contact 53b is short-circuited.
  • the contact 51a is open. Therefore, no voltage is generated on the DC side of the single-phase diode bridge circuit 30 . That is, no DC voltage is supplied from the single-phase diode bridge circuit 30 to the power supply circuit 19 . No detection signal is output from the monitoring circuit 33 .
  • the single-phase diode bridge circuit 30 receives input from the single-phase bridge inverter circuit 26 via the contact circuit 28 and the contact circuit 29 when the contact 51a and all the contacts 53a are closed. Converts AC voltage to DC voltage. Therefore, it is not necessary to equip the electrical safety device 23 with a relay relay. Moreover, since it is not necessary to connect the contact circuit 28 and the contact circuit 29 in series, the wiring can be simplified. In the example shown in this embodiment, the cost required for the electrical safety device 23 can be reduced.
  • the monitoring circuit 31 can monitor the opening and closing of the contact circuit 28 independently.
  • the monitoring circuit 32 can independently monitor the opening and closing of the contact circuit 29 . Therefore, for example, as shown in FIG. 5, it is possible to detect a short circuit of the contact 51a when the car door 50 and the landing door 52 of a certain floor are open. Further, as shown in FIG. 6, it is possible to detect a short circuit of the contact 53b when the car door 50 and the landing door 52 of a certain floor are open.
  • the DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the power supply circuit 19 . Therefore, it is not necessary to provide a contactor to stop power supply to the hoisting machine 10 .
  • FIGS. 7 and 8 are diagrams showing other examples of the elevator device according to Embodiment 1. FIG. Only the differences from the examples shown in FIGS. 1 and 2 will be described in detail below.
  • FIG. 7 shows an example in which an IGBT is employed as the switching element 35, as in FIG. During regenerative operation of the motor 12 , the switching element 35 is turned on as necessary, and the power supplied to the bus 3 is consumed by the resistor 34 .
  • the control circuit 36 controls the switching element 35 .
  • a DC voltage from the power supply circuit 24 is supplied to the control circuit 36 .
  • FIG. 7 shows an example in which the DC voltage from the power supply circuit 24 is also supplied to the control circuit 18 and the control circuit 27 .
  • the power supply circuit 19 includes an upper arm power supply circuit 37 and a lower arm power supply circuit 38 .
  • the control circuit 6 includes a drive circuit 39 and a drive circuit 40 .
  • the control circuit 17 includes a drive circuit 41 and a drive circuit 42 .
  • FIG. 8 shows an example in which the inverter circuit 5 is realized by an IPM (Intelligence Power Module) for driving the motor 12.
  • IPM Intelligent Power Module
  • FIG. The drive circuit 39 is a gate drive circuit for driving switching elements included in the upper arm of the inverter circuit 5 .
  • the drive circuit 39 is connected to each gate driver connected to the switching element included in the upper arm of the inverter circuit 5 among the gate drivers (GD) included in the IPM.
  • GD gate drivers
  • the drive circuit 40 is a gate drive circuit for driving switching elements included in the lower arm of the inverter circuit 5 .
  • the drive circuit 40 is connected to a gate driver connected to a switching element included in the lower arm of the inverter circuit 5 among the gate drivers included in the IPM.
  • FIG. 8 shows an example in which the inverter function of the DC-DC converter 15 is realized by the power supply IPM for the brake device 13 .
  • the drive circuit 41 is a gate drive circuit for driving switching elements included in the upper arm of the single-phase bridge inverter circuit 20 .
  • the drive circuit 41 is connected to each gate driver connected to the switching element included in the upper arm of the single-phase bridge inverter circuit 20 among the gate drivers (GD) included in the IPM.
  • the drive circuit 42 is a gate drive circuit for driving switching elements included in the lower arm of the single-phase bridge inverter circuit 20 .
  • the drive circuit 42 is connected to the gate drivers included in the IPM and connected to the switching elements included in the lower arm of the single-phase bridge inverter circuit 20 .
  • a DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the upper arm power supply circuit 37 .
  • the upper arm power supply circuit 37 is a circuit for providing power necessary to drive the upper arm of the inverter circuit 5 and the upper arm of the single-phase bridge inverter circuit 20 .
  • the upper arm power supply circuit 37 supplies a DC voltage to the drive circuit 39 .
  • the upper arm power supply circuit 37 supplies a DC voltage to the drive circuit 41 .
  • a DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the lower arm power supply circuit 38 .
  • the lower arm power supply circuit 38 is a circuit for providing power necessary to drive the lower arm of the inverter circuit 5 and the lower arm of the single-phase bridge inverter circuit 20 .
  • the lower arm power supply circuit 38 supplies a DC voltage to the drive circuit 40 .
  • the lower arm power supply circuit 38 supplies a DC voltage to the drive circuit 42 .
  • the lower arm power supply circuit 38 is provided independently of the upper arm power supply circuit 37 . For example, no voltage is supplied from the upper arm power supply circuit 37 to the lower arm power supply circuit 38 . No voltage is supplied from the lower arm power supply circuit 38 to the upper arm power supply circuit 37 .
  • FIG. 8 shows an example in which the upper arm power supply circuit 37 includes a switching element and a transformer.
  • the transformer includes secondary coils corresponding to switching elements included in the upper arm of the inverter circuit 5 and the upper arm of the single-phase bridge inverter circuit 20, respectively.
  • the transformer of the upper arm power supply circuit 37 is provided with three secondary coils corresponding to the three switching elements included in the upper arm of the inverter circuit 5 .
  • the AC voltages induced in these three secondary coils are rectified and smoothed, respectively, and supplied to corresponding gate drive circuits in the drive circuit 39 .
  • the upper arm power supply circuit 37 is provided with two secondary coils corresponding to the two switching elements included in the upper arm of the single-phase bridge inverter circuit 20 .
  • the AC voltages induced in these two secondary coils are rectified and smoothed, respectively, and supplied to corresponding gate drive circuits in the drive circuit 41 .
  • FIG. 8 shows an example in which the lower arm power supply circuit 38 includes a switching element and a transformer.
  • the transformer includes a secondary coil corresponding to the lower arm of the inverter circuit 5 and a secondary coil corresponding to the lower arm of the single-phase bridge inverter circuit 20 .
  • the AC voltage induced in the secondary coil corresponding to the lower arm of the inverter circuit 5 is rectified and smoothed and supplied to the drive circuit 40 .
  • the drive circuit 40 includes three gate drive circuits corresponding to the three switching elements included in the lower arm of the inverter circuit 5 .
  • a DC voltage from the lower arm power supply circuit 38 is supplied to each of these three gate drive circuits in the drive circuit 40 .
  • the AC voltage induced in the secondary coil corresponding to the lower arm of the single-phase bridge inverter circuit 20 is rectified and smoothed and supplied to the drive circuit 42 .
  • the drive circuit 42 is provided with two gate drive circuits corresponding to the two switching elements included in the lower arm of the single-phase bridge inverter circuit 20 .
  • a DC voltage from the lower arm power supply circuit 38 is supplied to each of these two gate drive circuits in the drive circuit 42 .
  • both the inverter circuit 5 and the single-phase bridge inverter circuit 20 stop if voltage is not supplied from either the upper arm power supply circuit 37 or the lower arm power supply circuit 38 . That is, the motor 12 is stopped and the braking device 13 generates blocking force. Therefore, the safety of the elevator system can be enhanced.
  • the inverter circuit 5 and the single-phase bridge inverter circuit 20 share the upper arm power supply circuit 37 and the lower arm power supply circuit 38 . Therefore, the power supply circuit 19 can be simplified.
  • FIG. 9 is a diagram showing another example of the elevator device according to Embodiment 1.
  • FIG. 7 and 8 show an example in which the control circuit 18 is supplied with a DC voltage from the power supply circuit 24.
  • the control circuit 18 may be supplied with power based on the DC voltage from the single-phase diode bridge circuit 30 .
  • FIG. 9 shows an example in which the control circuit 18 is supplied with a DC voltage from the power supply circuit 19 .
  • the transformer of the lower arm power supply circuit 38 is further provided with a secondary coil corresponding to the control circuit 18 .
  • the AC voltage induced in the secondary coil is rectified and smoothed and supplied to the control circuit 18 .
  • the control circuit 18 includes a gate driver (GD) corresponding to the switching element included in the drive circuit 16 and a gate drive circuit.
  • a DC voltage from the lower arm power supply circuit 38 is supplied to the gate driving circuit.
  • the control circuit 18 if no voltage is supplied from the lower arm power supply circuit 38, the control circuit 18 also stops. Therefore, the timing at which the braking device 13 generates the blocking force can be further advanced. Thereby, the safety of the elevator system can be further enhanced.
  • the transformer of the upper arm power supply circuit 37 may be provided with a secondary coil corresponding to the control circuit 18 . That is, the control circuit 18 may be supplied with a DC voltage from the upper arm power supply circuit 37 .
  • the electrical safety device according to the present disclosure can be applied to all kinds of elevator devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Abstract

This electric safety device (23) comprises, e.g., a single-phase bridge inverter circuit (26), a contact circuit (28), a contact circuit (29), and a single-phase diode bridge circuit (30). The single-phase bridge inverter circuit (26) converts a DC voltage from a safety chain circuit (25) to an AC voltage. When a contact (51a) and a plurality of contacts (53a) are closed, the single-phase diode bridge circuit (30) converts the AC voltage inputted from the single-phase bridge inverter circuit (30) via the contact circuit (28) and the contact circuit (29) to a DC voltage.

Description

エレベーターの電気安全装置及びエレベーター装置Elevator electrical safety device and elevator device
 本開示は、エレベーターの電気安全装置とエレベーター装置とに関する。 The present disclosure relates to elevator electrical safety devices and elevator devices.
 特許文献1に、エレベーター装置が記載されている。特許文献1に記載されたエレベーター装置は、かご戸スイッチの接点と乗場戸スイッチの複数の接点とが直列に接続されたドアチェーン回路を備える。ドアチェーン回路が閉じていれば、中継リレーの接点が閉じられる。中継リレーの接点は、安全チェーン回路に含まれる。 Patent Document 1 describes an elevator device. The elevator device described in Patent Document 1 includes a door chain circuit in which a contact of a car door switch and a plurality of contacts of a landing door switch are connected in series. If the door chain circuit is closed, the relay contacts are closed. The relay relay contacts are included in the safety chain circuit.
日本特開平7-2472号公報Japanese Patent Laid-Open No. 7-2472
 エレベーター装置には、特定の異常が検出された際に巻上機への給電を停止するための電気安全装置が備えられる。特許文献1に記載されたドアチェーン回路及び安全チェーン回路を含む装置は、電気安全装置の一例である。  Elevator equipment is equipped with an electrical safety device that stops power supply to the hoist when a specific abnormality is detected. A device including a door chain circuit and a safety chain circuit described in Patent Document 1 is an example of an electrical safety device.
 特許文献1に記載されたエレベーター装置では、電気安全装置を実現するために中継リレーが必要になる。また、かご戸スイッチの接点と乗場戸スイッチの接点とを直列に接続するため、配線が複雑になる。このため、電気安全装置に必要なコストが高くなるといった問題があった。 In the elevator device described in Patent Document 1, a relay relay is required to realize an electrical safety device. Moreover, since the contact of the car door switch and the contact of the landing door switch are connected in series, the wiring becomes complicated. Therefore, there is a problem that the cost required for the electrical safety device increases.
 本開示は、上述のような課題を解決するためになされた。本開示の目的は、コストを低減できるエレベーターの電気安全装置を提供することである。本開示の他の目的は、そのような電気安全装置を備えたエレベーター装置を提供することである。 The present disclosure was made to solve the problems described above. SUMMARY OF THE DISCLOSURE It is an object of the present disclosure to provide an elevator electrical safety device that can reduce costs. Another object of the present disclosure is to provide an elevator system with such an electrical safety device.
 本開示に係るエレベーターの電気安全装置は、直列に接続された複数の安全装置接点を含む安全チェーン回路からの直流電圧を交流電圧に変換する単相ブリッジインバータ回路と、かご戸スイッチの第1接点を含み、単相ブリッジインバータ回路の交流側の第1出力に接続された第1接点回路と、乗場戸スイッチの複数の第2接点を含み、複数の第2接点が直列に接続され、単相ブリッジインバータ回路の交流側の第2出力に接続された第2接点回路と、第1接点及び複数の第2接点が閉じられると、単相ブリッジインバータ回路から第1接点回路及び第2接点回路を介して入力される交流電圧を直流電圧に変換する単相整流回路と、を備える。 An elevator electrical safety device according to the present disclosure includes a single-phase bridge inverter circuit for converting DC voltage to AC voltage from a safety chain circuit including a plurality of safety device contacts connected in series, and a first contact of a car door switch. a first contact circuit connected to a first output on the AC side of the single-phase bridge inverter circuit; a plurality of second contacts of the landing door switch; When the second contact circuit connected to the second output on the AC side of the bridge inverter circuit, the first contact and the plurality of second contacts are closed, the first contact circuit and the second contact circuit are removed from the single-phase bridge inverter circuit. and a single-phase rectifier circuit for converting an AC voltage input through the DC voltage into a DC voltage.
 本開示に係るエレベーター装置は、上記電気安全装置と、交流電源からの交流電圧を直流電圧に変換するコンバータ回路と、コンバータ回路の直流側に接続された平滑コンデンサと、平滑コンデンサによって平滑化された直流電圧を交流電圧に変換し、巻上機のモータを駆動するインバータ回路と、を備える。 The elevator apparatus according to the present disclosure includes the above electrical safety device, a converter circuit that converts an AC voltage from an AC power supply to a DC voltage, a smoothing capacitor connected to the DC side of the converter circuit, and a an inverter circuit that converts a DC voltage into an AC voltage and drives the motor of the hoist.
 本開示によれば、エレベーターの電気安全装置に必要なコストを低減できる。 According to the present disclosure, the cost required for elevator electrical safety devices can be reduced.
実施の形態1におけるエレベーター装置の例を示す図である。1 is a diagram showing an example of an elevator device according to Embodiment 1; FIG. 実施の形態1におけるエレベーター装置の例を示す図である。1 is a diagram showing an example of an elevator device according to Embodiment 1; FIG. 電気安全装置を拡大して示す図である。It is a figure which expands and shows an electric safety device. 電気安全装置の機能を説明するための図である。It is a figure for demonstrating the function of an electrical safety device. 電気安全装置の機能を説明するための図である。It is a figure for demonstrating the function of an electrical safety device. 電気安全装置の機能を説明するための図である。It is a figure for demonstrating the function of an electrical safety device. 実施の形態1におけるエレベーター装置の他の例を示す図である。FIG. 5 is a diagram showing another example of the elevator device according to Embodiment 1; 実施の形態1におけるエレベーター装置の他の例を示す図である。FIG. 5 is a diagram showing another example of the elevator device according to Embodiment 1; 実施の形態1におけるエレベーター装置の他の例を示す図である。FIG. 5 is a diagram showing another example of the elevator device according to Embodiment 1;
 以下に、図面を参照して詳細な説明を行う。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。 A detailed description is given below with reference to the drawings. Duplicate descriptions are appropriately simplified or omitted. In each figure, the same reference numerals denote the same or corresponding parts.
実施の形態1.
 図1及び図2は、実施の形態1におけるエレベーター装置の例を示す図である。エレベーター装置は、コンバータ回路2、母線3、平滑コンデンサ4、インバータ回路5、及び制御回路6を備える。
Embodiment 1.
1 and 2 are diagrams showing an example of an elevator device according to Embodiment 1. FIG. The elevator system includes a converter circuit 2, a bus 3, a smoothing capacitor 4, an inverter circuit 5, and a control circuit 6.
 コンバータ回路2は、メインブレーカを介して交流電源1に接続される。交流電源1は、例えば商用の三相交流電源である。コンバータ回路2は、交流電源1からの交流電圧を直流電圧に変換する。コンバータ回路2とインバータ回路5との間に母線3が接続される。コンバータ回路2からの直流電圧は、母線3に供給される。 The converter circuit 2 is connected to the AC power supply 1 via the main breaker. The AC power supply 1 is, for example, a commercial three-phase AC power supply. The converter circuit 2 converts the AC voltage from the AC power supply 1 into a DC voltage. Bus line 3 is connected between converter circuit 2 and inverter circuit 5 . A DC voltage from the converter circuit 2 is supplied to the bus 3 .
 コンバータ回路2の直流側、即ち母線3間に、平滑コンデンサ4が接続される。平滑コンデンサ4は、コンバータ回路2からの直流電圧を平滑化する。インバータ回路5は、平滑コンデンサ4によって平滑化された直流電圧を交流電圧に変換する。図1は、インバータ回路5が、スイッチング素子として、IGBT(Insulated Gate Bipolar Transistor)と当該IGBTに対して逆並列に接続された還流用のダイオードとを備える例を示す。インバータ回路5は、制御回路6によって制御される。即ち、制御回路6は、インバータ回路5に含まれるスイッチング素子を制御する。 A smoothing capacitor 4 is connected to the DC side of the converter circuit 2, that is, between the bus lines 3. Smoothing capacitor 4 smoothes the DC voltage from converter circuit 2 . The inverter circuit 5 converts the DC voltage smoothed by the smoothing capacitor 4 into an AC voltage. FIG. 1 shows an example in which the inverter circuit 5 includes an IGBT (Insulated Gate Bipolar Transistor) as a switching element and a freewheeling diode connected in anti-parallel to the IGBT. The inverter circuit 5 is controlled by the control circuit 6 . That is, the control circuit 6 controls switching elements included in the inverter circuit 5 .
 エレベーター装置は、かご7、つり合いおもり8、ロープ9、及び巻上機10を更に備える。巻上機10は、駆動綱車11、モータ12、及びブレーキ装置13を備える。 The elevator device further comprises a car 7, a counterweight 8, a rope 9, and a hoist 10. The hoisting machine 10 comprises a drive sheave 11 , a motor 12 and a braking device 13 .
 かご7は、昇降路を上下に移動する。かご7及びつり合いおもり8は、ロープ9によって昇降路に吊り下げられる。つり合いおもり8は、かご7が移動する方向とは逆の方向に昇降路を上下に移動する。図2は、1:1ローピング方式のエレベーター装置を一例として示す。 Car 7 moves up and down the hoistway. The car 7 and counterweight 8 are suspended in the hoistway by ropes 9 . The counterweight 8 moves up and down the hoistway in a direction opposite to the direction in which the car 7 moves. FIG. 2 shows an example of a 1:1 roping elevator system.
 ロープ9は、駆動綱車11に巻き掛けられる。モータ12は、駆動綱車11を回転させるための力を発生させる。駆動綱車11が回転すると、駆動綱車11の回転方向に応じた方向にかご7が移動する。即ち、モータ12がインバータ回路5によって駆動されることにより、駆動綱車11が回転し、かご7が移動する。ブレーキ装置13は、ブレーキコイル14を備える。ブレーキ装置13は、駆動綱車11が回転することを阻止するための力を発生させる。以下においては、当該力を阻止力ともいう。 The rope 9 is wound around the drive sheave 11. A motor 12 generates a force for rotating the drive sheave 11 . When the drive sheave 11 rotates, the car 7 moves in a direction corresponding to the direction of rotation of the drive sheave 11 . That is, when the motor 12 is driven by the inverter circuit 5, the drive sheave 11 rotates and the car 7 moves. The brake device 13 has a brake coil 14 . The brake device 13 generates a force to prevent the drive sheave 11 from rotating. In the following, this force is also referred to as blocking force.
 エレベーター装置は、DC-DCコンバータ15、駆動回路16、制御回路17、制御回路18、及び電源回路19を更に備える。DC-DCコンバータ15は、単相ブリッジインバータ回路20、絶縁トランス21、及び単相ダイオードブリッジ回路22を備える。 The elevator device further comprises a DC-DC converter 15, a drive circuit 16, a control circuit 17, a control circuit 18, and a power supply circuit 19. The DC-DC converter 15 includes a single-phase bridge inverter circuit 20 , an isolation transformer 21 and a single-phase diode bridge circuit 22 .
 駆動回路16は、ブレーキ装置13を駆動するための回路である。ブレーキコイル14に電流が流れていなければ、ブレーキ装置13は阻止力を発生させる。ブレーキコイル14に電流が流れると、当該阻止力は消失する。図1は、駆動回路16が、スイッチング素子として、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を備える例を示す。駆動回路16は、制御回路18によって制御される。即ち、制御回路18は、駆動回路16に含まれるスイッチング素子を制御する。 The drive circuit 16 is a circuit for driving the brake device 13. If the brake coil 14 is not energized, the braking device 13 produces a blocking force. When current flows through the brake coil 14, the blocking force disappears. FIG. 1 shows an example in which the drive circuit 16 includes a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) as a switching element. Drive circuit 16 is controlled by control circuit 18 . That is, the control circuit 18 controls switching elements included in the drive circuit 16 .
 単相ブリッジインバータ回路20は、絶縁トランス21の一次側コイルに接続される。単相ブリッジインバータ回路20は、母線3からの直流電圧を交流電圧に変換する。単相ブリッジインバータ回路20によって変換された交流電圧は、絶縁トランス21の一次側コイルに供給される。 The single-phase bridge inverter circuit 20 is connected to the primary side coil of the isolation transformer 21 . The single-phase bridge inverter circuit 20 converts the DC voltage from the bus 3 into AC voltage. The AC voltage converted by the single-phase bridge inverter circuit 20 is supplied to the primary coil of the isolation transformer 21 .
 単相ダイオードブリッジ回路22は、絶縁トランス21の二次側コイルに接続される。単相ダイオードブリッジ回路22は、絶縁トランス21の二次側コイルに誘導された交流電圧を直流電圧に変換する。単相ダイオードブリッジ回路22によって変換された直流電圧は、駆動回路16に供給される。即ち、DC-DCコンバータ15は、駆動回路16に対して直流電圧を供給する。DC-DCコンバータ15は、駆動回路16に対する電源回路として機能する。 The single-phase diode bridge circuit 22 is connected to the secondary side coil of the isolation transformer 21 . The single-phase diode bridge circuit 22 converts AC voltage induced in the secondary coil of the insulating transformer 21 into DC voltage. A DC voltage converted by the single-phase diode bridge circuit 22 is supplied to the drive circuit 16 . That is, the DC-DC converter 15 supplies a DC voltage to the drive circuit 16 . The DC-DC converter 15 functions as a power supply circuit for the drive circuit 16 .
 図1は、単相ブリッジインバータ回路20が、スイッチング素子として、IGBTと当該IGBTに対して逆並列に接続された還流用のダイオードとを備える例を示す。単相ブリッジインバータ回路20は、制御回路17によって制御される。即ち、制御回路17は、単相ブリッジインバータ回路20に含まれるスイッチング素子を駆動することにより、DC-DCコンバータ15を制御する。 FIG. 1 shows an example in which the single-phase bridge inverter circuit 20 includes, as switching elements, IGBTs and freewheeling diodes connected in anti-parallel to the IGBTs. Single-phase bridge inverter circuit 20 is controlled by control circuit 17 . That is, the control circuit 17 controls the DC-DC converter 15 by driving the switching elements included in the single-phase bridge inverter circuit 20 .
 電源回路19は、制御回路6に直流電圧を供給する。制御回路6は、電源回路19から直流電圧が供給されることにより、インバータ回路5を制御する。電源回路19から制御回路6に直流電圧が供給されなければ、モータ12は駆動しない。即ち、電源回路19から制御回路6に直流電圧が供給されなければ、モータ12によってかご7を移動させることはできない。 The power supply circuit 19 supplies a DC voltage to the control circuit 6 . The control circuit 6 controls the inverter circuit 5 by being supplied with a DC voltage from the power supply circuit 19 . If the DC voltage is not supplied from the power supply circuit 19 to the control circuit 6, the motor 12 will not be driven. In other words, the car 7 cannot be moved by the motor 12 unless a DC voltage is supplied from the power supply circuit 19 to the control circuit 6 .
 また、電源回路19は、制御回路17に直流電圧を供給する。制御回路17は、電源回路19から直流電圧が供給されることにより、単相ブリッジインバータ回路20を制御する。電源回路19から制御回路17に直流電圧が供給されなければ、ブレーキコイル14に電流は流れない。即ち、電源回路19から制御回路17に直流電圧が供給されなければ、ブレーキ装置13は阻止力を発生させる。 Also, the power supply circuit 19 supplies a DC voltage to the control circuit 17 . The control circuit 17 controls the single-phase bridge inverter circuit 20 by being supplied with a DC voltage from the power supply circuit 19 . If no DC voltage is supplied from the power supply circuit 19 to the control circuit 17 , no current will flow through the brake coil 14 . In other words, if the DC voltage is not supplied from the power supply circuit 19 to the control circuit 17, the braking device 13 generates blocking force.
 エレベーター装置は、電気安全装置23を更に備える。図3は、電気安全装置23を拡大して示す図である。電気安全装置23は、電源回路24、安全チェーン回路25、単相ブリッジインバータ回路26、制御回路27、接点回路28、接点回路29、単相ダイオードブリッジ回路30、監視回路31、及び監視回路32を備える。 The elevator device is further equipped with an electrical safety device 23. FIG. 3 is an enlarged view of the electrical safety device 23. As shown in FIG. The electrical safety device 23 includes a power supply circuit 24, a safety chain circuit 25, a single-phase bridge inverter circuit 26, a control circuit 27, a contact circuit 28, a contact circuit 29, a single-phase diode bridge circuit 30, a monitoring circuit 31, and a monitoring circuit 32. Prepare.
 電源回路24は、交流電源1からの交流電圧を直流電圧に変換する。電源回路24と単相ブリッジインバータ回路26との間に安全チェーン回路25が接続される。電源回路24によって変換された直流電圧は、安全チェーン回路25に供給される。 The power supply circuit 24 converts the AC voltage from the AC power supply 1 into a DC voltage. A safety chain circuit 25 is connected between the power supply circuit 24 and the single-phase bridge inverter circuit 26 . A DC voltage converted by the power supply circuit 24 is supplied to the safety chain circuit 25 .
 安全チェーン回路25には、直列に接続された複数の安全装置接点が含まれる。安全装置は、巻上機10への給電を停止する必要がある特定の異常を検出するための装置である。各安全装置に安全装置接点が備えられる。安全装置が特定の異常を検出すると、その安全装置に備えられた安全装置接点が開放する。かご7の過速度を検出する調速機は、安全装置の一例である。例えば、調速機がかご7の過速度を検出すると、調速機に備えられた安全装置接点が開放する。 The safety chain circuit 25 includes multiple safety device contacts connected in series. A safety device is a device for detecting a specific abnormality that requires power supply to the hoisting machine 10 to be stopped. Each safety device is provided with a safety contact. When a safety device detects a specific fault, the safety device contacts provided in the safety device open. A speed governor that detects overspeed of the car 7 is an example of a safety device. For example, when the governor detects overspeed of the car 7, a safety contact provided to the governor opens.
 単相ブリッジインバータ回路26は、安全チェーン回路25からの直流電圧を交流電圧に変換する。例えば、単相ブリッジインバータ回路26は、方形波の交流電圧に変換する。図1は、単相ブリッジインバータ回路26が、スイッチング素子として、IGBTと当該IGBTに対して逆並列に接続された還流用のダイオードとを備える例を示す。単相ブリッジインバータ回路26は、制御回路27によって制御される。即ち、制御回路27は、単相ブリッジインバータ回路26に含まれるスイッチング素子を制御する。 The single-phase bridge inverter circuit 26 converts the DC voltage from the safety chain circuit 25 into AC voltage. For example, the single-phase bridge inverter circuit 26 converts to a square wave AC voltage. FIG. 1 shows an example in which the single-phase bridge inverter circuit 26 includes, as switching elements, IGBTs and freewheeling diodes connected in anti-parallel to the IGBTs. Single-phase bridge inverter circuit 26 is controlled by control circuit 27 . That is, the control circuit 27 controls switching elements included in the single-phase bridge inverter circuit 26 .
 接点回路28は、単相ブリッジインバータ回路26の交流側の一方の出力26aに接続される。接点回路29は、単相ブリッジインバータ回路26の交流側のもう一方の出力26bに接続される。 The contact circuit 28 is connected to one output 26 a on the AC side of the single-phase bridge inverter circuit 26 . The contact circuit 29 is connected to the other output 26 b on the AC side of the single-phase bridge inverter circuit 26 .
 図2に示すように、かご7は、かご戸50、及びかご戸スイッチ51を備える。かご戸50は、かご7に形成された出入口を開閉する。かご戸スイッチ51は、かご戸50が特定の全閉位置にあることを検出するためのスイッチである。かご戸50が全閉位置にあれば、かご戸スイッチ51の接点51aは閉じている。かご戸50が全閉位置になければ、かご戸スイッチ51の接点51aは開放する。例えば、かご戸50が全閉位置から移動すると、接点51aは開放する。かご戸スイッチ51の接点51aは、接点回路28に含まれる。 As shown in FIG. 2, the car 7 includes a car door 50 and a car door switch 51. A car door 50 opens and closes an entrance formed in the car 7 . The car door switch 51 is a switch for detecting that the car door 50 is in a specific fully closed position. When the car door 50 is in the fully closed position, the contact 51a of the car door switch 51 is closed. If the car door 50 is not in the fully closed position, the contact 51a of the car door switch 51 is open. For example, when the car door 50 moves from the fully closed position, the contact 51a opens. A contact 51 a of the car door switch 51 is included in the contact circuit 28 .
 かご7が停止する各乗場に、乗場戸52、及び乗場戸スイッチ53が設けられる。乗場戸52は、乗場に形成された出入口を開閉する。乗場戸スイッチ53は、乗場戸52が特定の全閉位置にあることを検出するためのスイッチである。乗場戸52が全閉位置にあれば、乗場戸スイッチ53の接点53aは閉じている。乗場戸52が全閉位置になければ、乗場戸スイッチ53の接点53aは開放する。例えば、1階の乗場戸52が全閉位置から移動すると、1階の乗場戸スイッチ53の接点53aは開放する。 A landing door 52 and a landing door switch 53 are provided at each landing where the car 7 stops. The landing door 52 opens and closes an entrance formed in the landing. The landing door switch 53 is a switch for detecting that the landing door 52 is in a specific fully closed position. When the landing door 52 is in the fully closed position, the contact 53a of the landing door switch 53 is closed. If the landing door 52 is not in the fully closed position, the contact 53a of the landing door switch 53 is opened. For example, when the landing door 52 on the first floor moves from the fully closed position, the contact 53a of the landing door switch 53 on the first floor opens.
 乗場戸スイッチ53の接点53aは、接点回路29に含まれる。接点回路29に含まれる接点53aは、直列に接続される。例えば、建物の1階から10階の各階に乗場があれば、エレベーター装置には10個の乗場戸スイッチ53が備えられる。かかる場合、接点回路29には、直列に接続された10個の接点53a、即ち1階の乗場戸スイッチ53の接点53a、2階の乗場戸スイッチ53の接点53a、・・・、及び10階の乗場戸スイッチ53の接点53aが含まれる。 A contact 53 a of the landing door switch 53 is included in the contact circuit 29 . The contacts 53a included in the contact circuit 29 are connected in series. For example, if there are landings on each floor from the first floor to the tenth floor of a building, ten landing door switches 53 are provided in the elevator device. In this case, the contact circuit 29 has ten contacts 53a connected in series, that is, the contact 53a of the landing door switch 53 on the first floor, the contact 53a of the landing door switch 53 on the second floor, . landing door switch 53 contact 53a.
 単相ダイオードブリッジ回路30は、接点回路28と接点回路29との間に接続される。接点51aと全ての接点53aとが閉じられると、単相ブリッジインバータ回路26からの交流電圧が接点回路28及び接点回路29を介して単相ダイオードブリッジ回路30に入力される。単相ダイオードブリッジ回路30は、単相整流回路の一例である。単相ダイオードブリッジ回路30は、入力された交流電圧を直流電圧に変換する。単相ダイオードブリッジ回路30によって変換された直流電圧は、電源回路19に供給される。なお、図1は、単相ダイオードブリッジ回路30の直流側に平滑コンデンサが接続される例を示す。 A single-phase diode bridge circuit 30 is connected between the contact circuit 28 and the contact circuit 29 . When the contacts 51 a and all the contacts 53 a are closed, the AC voltage from the single-phase bridge inverter circuit 26 is input to the single-phase diode bridge circuit 30 via the contact circuits 28 and 29 . Single-phase diode bridge circuit 30 is an example of a single-phase rectifier circuit. The single-phase diode bridge circuit 30 converts the input AC voltage into a DC voltage. A DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the power supply circuit 19 . Note that FIG. 1 shows an example in which a smoothing capacitor is connected to the DC side of the single-phase diode bridge circuit 30 .
 監視回路31は、接点回路28の単相ダイオードブリッジ回路30側と単相ブリッジインバータ回路26の出力26bとの間に接続される。図1は、監視回路31が、かご戸スイッチ51の接点51aが短絡していることを検出するための素子として、フォトカプラを備える例を示す。即ち、接点51aが短絡していれば、単相ブリッジインバータ回路26からの交流電圧が監視回路31のフォトカプラに供給される。単相ブリッジインバータ回路26からの交流電圧が当該フォトカプラに供給されると、監視回路31から検出信号が出力される。 The monitoring circuit 31 is connected between the single-phase diode bridge circuit 30 side of the contact circuit 28 and the output 26 b of the single-phase bridge inverter circuit 26 . FIG. 1 shows an example in which the monitoring circuit 31 has a photocoupler as an element for detecting that the contact 51a of the car door switch 51 is short-circuited. That is, if the contact 51 a is short-circuited, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 31 . When the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler, the monitoring circuit 31 outputs a detection signal.
 監視回路32は、接点回路29の単相ダイオードブリッジ回路30側と単相ブリッジインバータ回路26の出力26aとの間に接続される。図1は、監視回路32が、接点回路29に含まれる全ての接点53aが短絡していることを検出するための素子として、フォトカプラを備える例を示す。即ち、全ての接点53aが短絡していれば、単相ブリッジインバータ回路26からの交流電圧が監視回路32のフォトカプラに供給される。単相ブリッジインバータ回路26からの交流電圧が当該フォトカプラに供給されると、監視回路32から検出信号が出力される。 The monitoring circuit 32 is connected between the single-phase diode bridge circuit 30 side of the contact circuit 29 and the output 26 a of the single-phase bridge inverter circuit 26 . FIG. 1 shows an example in which the monitoring circuit 32 includes a photocoupler as an element for detecting that all the contacts 53a included in the contact circuit 29 are short-circuited. That is, if all the contacts 53 a are short-circuited, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 32 . When the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler, the monitoring circuit 32 outputs a detection signal.
 図4から図6は、電気安全装置23の機能を説明するための図である。図4から図6は、電気安全装置23が監視回路33を更に備える例を示す。監視回路33は、単相ダイオードブリッジ回路30の直流側に接続される。図4から図6に示す例では、監視回路33はフォトカプラを備える。単相ダイオードブリッジ回路30からの直流電圧が当該フォトカプラに供給されると、監視回路33から検出信号が出力される。 4 to 6 are diagrams for explaining the function of the electrical safety device 23. FIG. 4 to 6 show examples in which the electrical safety device 23 further comprises a monitoring circuit 33. FIG. A monitoring circuit 33 is connected to the DC side of the single-phase diode bridge circuit 30 . In the examples shown in FIGS. 4-6, the monitoring circuit 33 comprises a photocoupler. When the DC voltage from the single-phase diode bridge circuit 30 is supplied to the photocoupler, the monitoring circuit 33 outputs a detection signal.
 図4に示す例では、かご戸50と全ての乗場戸52とが閉じられている。即ち、図4は、接点51aと接点回路29に含まれる全ての接点53aとが閉じている例を示す。 In the example shown in FIG. 4, the car door 50 and all the landing doors 52 are closed. That is, FIG. 4 shows an example in which the contact 51a and all the contacts 53a included in the contact circuit 29 are closed.
 図4に示す例では、単相ブリッジインバータ回路26からの交流電圧が単相ダイオードブリッジ回路30に供給される。このため、単相ダイオードブリッジ回路30からの直流電圧が電源回路19に供給される。電源回路19は、制御回路6及び制御回路17に直流電圧を供給する。 In the example shown in FIG. 4, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the single-phase diode bridge circuit 30. Therefore, the DC voltage from the single-phase diode bridge circuit 30 is supplied to the power supply circuit 19 . The power supply circuit 19 supplies DC voltage to the control circuit 6 and the control circuit 17 .
 図4に示す例では、単相ダイオードブリッジ回路30からの直流電圧が監視回路33のフォトカプラに供給される。このため、監視回路33から検出信号が出力される。 In the example shown in FIG. 4, the DC voltage from the single-phase diode bridge circuit 30 is supplied to the photocoupler of the monitoring circuit 33. Therefore, a detection signal is output from the monitoring circuit 33 .
 また、接点51aが閉じられているため、単相ブリッジインバータ回路26からの交流電圧が監視回路31のフォトカプラに供給される。このため、監視回路31から検出信号が出力される。同様に、接点回路29に含まれる全ての接点53aが閉じられているため、単相ブリッジインバータ回路26からの交流電圧が監視回路32のフォトカプラに供給される。このため、監視回路32から検出信号が出力される。 Also, since the contact 51 a is closed, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 31 . Therefore, a detection signal is output from the monitoring circuit 31 . Similarly, since all the contacts 53 a included in the contact circuit 29 are closed, the AC voltage from the single-phase bridge inverter circuit 26 is supplied to the photocoupler of the monitoring circuit 32 . Therefore, a detection signal is output from the monitoring circuit 32 .
 図5及び図6に示す例では、かご戸50とある階の乗場戸52とが開いている。図5及び図6に関する説明では、開いている乗場戸52が全閉位置にあることを検出するための乗場戸スイッチ53の接点を「接点53b」と表記し、他の接点53aと区別する。即ち、図5及び図6では、接点53aは閉じている接点を表す。 In the examples shown in FIGS. 5 and 6, the car door 50 and the landing door 52 of a certain floor are open. 5 and 6, the contact of the landing door switch 53 for detecting that the open landing door 52 is in the fully closed position is referred to as "contact 53b" to distinguish it from other contacts 53a. 5 and 6, contact 53a represents a closed contact.
 図5は、かご戸スイッチ51の接点51a自体は開放しているが、何らかの理由によって接点51aが短絡している例を示す。図5示す例では、接点53bは開放している。このため、単相ダイオードブリッジ回路30の直流側に電圧は発生しない。即ち、単相ダイオードブリッジ回路30から電源回路19に対して直流電圧は供給されない。監視回路33から検出信号は出力されない。 FIG. 5 shows an example in which the contact 51a itself of the car door switch 51 is open, but for some reason the contact 51a is short-circuited. In the example shown in FIG. 5, the contact 53b is open. Therefore, no voltage is generated on the DC side of the single-phase diode bridge circuit 30 . That is, no DC voltage is supplied from the single-phase diode bridge circuit 30 to the power supply circuit 19 . No detection signal is output from the monitoring circuit 33 .
 一方、かご戸スイッチ51の接点51aが短絡しているため、監視回路31には電圧が発生する。このため、監視回路31から検出信号が出力される。また、接点53bは開放しているため、監視回路32に電圧は発生しない。このため、監視回路32から検出信号は出力されない。 On the other hand, since the contact 51a of the car door switch 51 is short-circuited, a voltage is generated in the monitoring circuit 31. Therefore, a detection signal is output from the monitoring circuit 31 . Also, since the contact 53b is open, no voltage is generated in the monitoring circuit 32. FIG. Therefore, the detection signal is not output from the monitoring circuit 32 .
 図6は、接点53b自体は開放しているが、何らかの理由によって接点53bが短絡している例を示す。図6示す例では、接点51aは開放している。このため、単相ダイオードブリッジ回路30の直流側に電圧は発生しない。即ち、単相ダイオードブリッジ回路30から電源回路19に対して直流電圧は供給されない。監視回路33から検出信号は出力されない。 FIG. 6 shows an example in which the contact 53b itself is open, but for some reason the contact 53b is short-circuited. In the example shown in FIG. 6, the contact 51a is open. Therefore, no voltage is generated on the DC side of the single-phase diode bridge circuit 30 . That is, no DC voltage is supplied from the single-phase diode bridge circuit 30 to the power supply circuit 19 . No detection signal is output from the monitoring circuit 33 .
 一方、接点53bが短絡しているため、監視回路32には電圧が発生する。このため、監視回路32から検出信号が出力される。また、接点51aは開放しているため、監視回路31に電圧は発生しない。このため、監視回路31から検出信号は出力されない。 On the other hand, since the contact 53b is short-circuited, a voltage is generated in the monitoring circuit 32. Therefore, a detection signal is output from the monitoring circuit 32 . Also, since the contact 51a is open, no voltage is generated in the monitoring circuit 31. FIG. Therefore, the detection signal is not output from the monitoring circuit 31 .
 なお、図6に示す例において接点53bが短絡していなければ、単相ダイオードブリッジ回路30の直流側に電圧は発生しない。監視回路31に電圧は発生しない。監視回路32に電圧は発生しない。このため、監視回路31~33の何れの回路からも検出信号は出力されない。 In the example shown in FIG. 6, no voltage is generated on the DC side of the single-phase diode bridge circuit 30 if the contact 53b is not short-circuited. No voltage is generated in the monitoring circuit 31 . No voltage is generated in the monitoring circuit 32 . Therefore, no detection signal is output from any of the monitoring circuits 31-33.
 本実施の形態に示す例では、単相ダイオードブリッジ回路30は、接点51aと全ての接点53aとが閉じられると、単相ブリッジインバータ回路26から接点回路28及び接点回路29を介して入力される交流電圧を直流電圧に変換する。このため、電気安全装置23に中継リレーを備える必要がない。また、接点回路28と接点回路29とを直列で接続する必要がないため、配線を簡素化できる。本実施の形態に示す例であれば、電気安全装置23に必要なコストを低減できる。 In the example shown in this embodiment, the single-phase diode bridge circuit 30 receives input from the single-phase bridge inverter circuit 26 via the contact circuit 28 and the contact circuit 29 when the contact 51a and all the contacts 53a are closed. Converts AC voltage to DC voltage. Therefore, it is not necessary to equip the electrical safety device 23 with a relay relay. Moreover, since it is not necessary to connect the contact circuit 28 and the contact circuit 29 in series, the wiring can be simplified. In the example shown in this embodiment, the cost required for the electrical safety device 23 can be reduced.
 本実施の形態に示す例では、監視回路31によって接点回路28の開閉を独立に監視できる。監視回路32によって接点回路29の開閉を独立に監視できる。このため、例えば、図5に示すように、かご戸50とある階の乗場戸52とが開いている時の接点51aの短絡を検出することが可能である。また、図6に示すように、かご戸50とある階の乗場戸52とが開いている時の接点53bの短絡を検出することが可能である。 In the example shown in the present embodiment, the monitoring circuit 31 can monitor the opening and closing of the contact circuit 28 independently. The monitoring circuit 32 can independently monitor the opening and closing of the contact circuit 29 . Therefore, for example, as shown in FIG. 5, it is possible to detect a short circuit of the contact 51a when the car door 50 and the landing door 52 of a certain floor are open. Further, as shown in FIG. 6, it is possible to detect a short circuit of the contact 53b when the car door 50 and the landing door 52 of a certain floor are open.
 本実施の形態に示す例では、単相ダイオードブリッジ回路30によって変換された直流電圧が電源回路19に供給される。このため、巻上機10への給電を停止するために、コンタクタを備える必要がない。 In the example shown in this embodiment, the DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the power supply circuit 19 . Therefore, it is not necessary to provide a contactor to stop power supply to the hoisting machine 10 .
 図7及び図8は、実施の形態1におけるエレベーター装置の他の例を示す図である。以下においては、図1及び図2に示す例と相違する点についてのみ詳しく説明する。 7 and 8 are diagrams showing other examples of the elevator device according to Embodiment 1. FIG. Only the differences from the examples shown in FIGS. 1 and 2 will be described in detail below.
 エレベーター装置では、母線3間に、抵抗34、及びスイッチング素子35が直列に接続される。図7は、図1と同様に、スイッチング素子35として、IGBTが採用される例を示す。モータ12の回生運転時に、必要に応じてスイッチング素子35がオンになり、母線3に供給される電力が抵抗34によって消費される。 In the elevator device, a resistor 34 and a switching element 35 are connected in series between the busbars 3. FIG. 7 shows an example in which an IGBT is employed as the switching element 35, as in FIG. During regenerative operation of the motor 12 , the switching element 35 is turned on as necessary, and the power supplied to the bus 3 is consumed by the resistor 34 .
 制御回路36は、スイッチング素子35を制御する。図7に示す例では、電源回路24からの直流電圧が制御回路36に供給される。図7は、電源回路24からの直流電圧が制御回路18及び制御回路27にも供給される例を示す。 The control circuit 36 controls the switching element 35 . In the example shown in FIG. 7, a DC voltage from the power supply circuit 24 is supplied to the control circuit 36 . FIG. 7 shows an example in which the DC voltage from the power supply circuit 24 is also supplied to the control circuit 18 and the control circuit 27 .
 図7及び図8に示す例では、電源回路19は、上アーム用電源回路37、及び下アーム用電源回路38を備える。制御回路6は、駆動回路39、及び駆動回路40を備える。制御回路17は、駆動回路41、及び駆動回路42を備える。 In the examples shown in FIGS. 7 and 8, the power supply circuit 19 includes an upper arm power supply circuit 37 and a lower arm power supply circuit 38 . The control circuit 6 includes a drive circuit 39 and a drive circuit 40 . The control circuit 17 includes a drive circuit 41 and a drive circuit 42 .
 図8は、インバータ回路5がモータ12を駆動するためのIPM(Intelligence Power Module)で実現される例を示す。駆動回路39は、インバータ回路5の上アームに含まれるスイッチング素子を駆動するためのゲート駆動回路である。駆動回路39は、当該IPMに含まれるゲートドライバ(GD)のうち、インバータ回路5の上アームに含まれるスイッチング素子に接続された各ゲートドライバに接続される。 FIG. 8 shows an example in which the inverter circuit 5 is realized by an IPM (Intelligence Power Module) for driving the motor 12. FIG. The drive circuit 39 is a gate drive circuit for driving switching elements included in the upper arm of the inverter circuit 5 . The drive circuit 39 is connected to each gate driver connected to the switching element included in the upper arm of the inverter circuit 5 among the gate drivers (GD) included in the IPM.
 駆動回路40は、インバータ回路5の下アームに含まれるスイッチング素子を駆動するためのゲート駆動回路である。駆動回路40は、当該IPMに含まれるゲートドライバのうち、インバータ回路5の下アームに含まれるスイッチング素子に接続されたゲートドライバに接続される。 The drive circuit 40 is a gate drive circuit for driving switching elements included in the lower arm of the inverter circuit 5 . The drive circuit 40 is connected to a gate driver connected to a switching element included in the lower arm of the inverter circuit 5 among the gate drivers included in the IPM.
 また、図8は、DC-DCコンバータ15のインバータ機能がブレーキ装置13に対する電源用のIPMで実現される例を示す。駆動回路41は、単相ブリッジインバータ回路20の上アームに含まれるスイッチング素子を駆動するためのゲート駆動回路である。駆動回路41は、当該IPMに含まれるゲートドライバ(GD)のうち、単相ブリッジインバータ回路20の上アームに含まれるスイッチング素子に接続された各ゲートドライバに接続される。 Also, FIG. 8 shows an example in which the inverter function of the DC-DC converter 15 is realized by the power supply IPM for the brake device 13 . The drive circuit 41 is a gate drive circuit for driving switching elements included in the upper arm of the single-phase bridge inverter circuit 20 . The drive circuit 41 is connected to each gate driver connected to the switching element included in the upper arm of the single-phase bridge inverter circuit 20 among the gate drivers (GD) included in the IPM.
 駆動回路42は、単相ブリッジインバータ回路20の下アームに含まれるスイッチング素子を駆動するためのゲート駆動回路である。駆動回路42は、当該IPMに含まれるゲートドライバのうち、単相ブリッジインバータ回路20の下アームに含まれるスイッチング素子に接続されたゲートドライバに接続される。 The drive circuit 42 is a gate drive circuit for driving switching elements included in the lower arm of the single-phase bridge inverter circuit 20 . The drive circuit 42 is connected to the gate drivers included in the IPM and connected to the switching elements included in the lower arm of the single-phase bridge inverter circuit 20 .
 上アーム用電源回路37には、単相ダイオードブリッジ回路30によって変換された直流電圧が供給される。上アーム用電源回路37は、インバータ回路5の上アーム及び単相ブリッジインバータ回路20の上アームを駆動するために必要な電源を提供するための回路である。上アーム用電源回路37は、駆動回路39に直流電圧を供給する。また、上アーム用電源回路37は、駆動回路41に直流電圧を供給する。 A DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the upper arm power supply circuit 37 . The upper arm power supply circuit 37 is a circuit for providing power necessary to drive the upper arm of the inverter circuit 5 and the upper arm of the single-phase bridge inverter circuit 20 . The upper arm power supply circuit 37 supplies a DC voltage to the drive circuit 39 . Also, the upper arm power supply circuit 37 supplies a DC voltage to the drive circuit 41 .
 下アーム用電源回路38には、単相ダイオードブリッジ回路30によって変換された直流電圧が供給される。下アーム用電源回路38は、インバータ回路5の下アーム及び単相ブリッジインバータ回路20の下アームを駆動するために必要な電源を提供するための回路である。下アーム用電源回路38は、駆動回路40に直流電圧を供給する。また、下アーム用電源回路38は、駆動回路42に直流電圧を供給する。下アーム用電源回路38は、上アーム用電源回路37とは独立して設けられる。例えば、上アーム用電源回路37から下アーム用電源回路38に電圧は供給されない。下アーム用電源回路38から上アーム用電源回路37に電圧は供給されない。 A DC voltage converted by the single-phase diode bridge circuit 30 is supplied to the lower arm power supply circuit 38 . The lower arm power supply circuit 38 is a circuit for providing power necessary to drive the lower arm of the inverter circuit 5 and the lower arm of the single-phase bridge inverter circuit 20 . The lower arm power supply circuit 38 supplies a DC voltage to the drive circuit 40 . Also, the lower arm power supply circuit 38 supplies a DC voltage to the drive circuit 42 . The lower arm power supply circuit 38 is provided independently of the upper arm power supply circuit 37 . For example, no voltage is supplied from the upper arm power supply circuit 37 to the lower arm power supply circuit 38 . No voltage is supplied from the lower arm power supply circuit 38 to the upper arm power supply circuit 37 .
 図8は、上アーム用電源回路37が、スイッチング素子、及びトランスを備える例を示す。当該トランスには、インバータ回路5の上アームと単相ブリッジインバータ回路20の上アームとに含まれるスイッチング素子のそれぞれに対応する二次側コイルが備えられる。図8に示す例では、上アーム用電源回路37のトランスに、インバータ回路5の上アームに含まれる3つのスイッチング素子に対応して3つの二次側コイルが備えられる。これら3つの二次側コイルに誘導された交流電圧は、それぞれが整流及び平滑化され、駆動回路39内の対応するゲート駆動用の回路に供給される。 FIG. 8 shows an example in which the upper arm power supply circuit 37 includes a switching element and a transformer. The transformer includes secondary coils corresponding to switching elements included in the upper arm of the inverter circuit 5 and the upper arm of the single-phase bridge inverter circuit 20, respectively. In the example shown in FIG. 8 , the transformer of the upper arm power supply circuit 37 is provided with three secondary coils corresponding to the three switching elements included in the upper arm of the inverter circuit 5 . The AC voltages induced in these three secondary coils are rectified and smoothed, respectively, and supplied to corresponding gate drive circuits in the drive circuit 39 .
 また、図8に示す例では、上アーム用電源回路37に、単相ブリッジインバータ回路20の上アームに含まれる2つのスイッチング素子に対応して2つの二次側コイルが備えられる。これら2つの二次側コイルに誘導された交流電圧は、それぞれが整流及び平滑化され、駆動回路41内の対応するゲート駆動用の回路に供給される。 In addition, in the example shown in FIG. 8 , the upper arm power supply circuit 37 is provided with two secondary coils corresponding to the two switching elements included in the upper arm of the single-phase bridge inverter circuit 20 . The AC voltages induced in these two secondary coils are rectified and smoothed, respectively, and supplied to corresponding gate drive circuits in the drive circuit 41 .
 図8は、下アーム用電源回路38が、スイッチング素子、及びトランスを備える例を示す。当該トランスには、インバータ回路5の下アームに対応する二次側コイルと単相ブリッジインバータ回路20の下アームに対応する二次側コイルとが備えられる。インバータ回路5の下アームに対応する二次側コイルに誘導された交流電圧は、整流及び平滑化され、駆動回路40に供給される。駆動回路40には、インバータ回路5の下アームに含まれる3つのスイッチング素子に対応して3つのゲート駆動用の回路が備えられる。下アーム用電源回路38からの直流電圧は、駆動回路40内で、これら3つのゲート駆動用の回路のそれぞれに供給される。 FIG. 8 shows an example in which the lower arm power supply circuit 38 includes a switching element and a transformer. The transformer includes a secondary coil corresponding to the lower arm of the inverter circuit 5 and a secondary coil corresponding to the lower arm of the single-phase bridge inverter circuit 20 . The AC voltage induced in the secondary coil corresponding to the lower arm of the inverter circuit 5 is rectified and smoothed and supplied to the drive circuit 40 . The drive circuit 40 includes three gate drive circuits corresponding to the three switching elements included in the lower arm of the inverter circuit 5 . A DC voltage from the lower arm power supply circuit 38 is supplied to each of these three gate drive circuits in the drive circuit 40 .
 また、単相ブリッジインバータ回路20の下アームに対応する二次側コイルに誘導された交流電圧は、整流及び平滑化され、駆動回路42に供給される。駆動回路42には、単相ブリッジインバータ回路20の下アームに含まれる2つのスイッチング素子に対応して2つのゲート駆動用の回路が備えられる。下アーム用電源回路38からの直流電圧は、駆動回路42内で、これら2つのゲート駆動用の回路のそれぞれに供給される。 Also, the AC voltage induced in the secondary coil corresponding to the lower arm of the single-phase bridge inverter circuit 20 is rectified and smoothed and supplied to the drive circuit 42 . The drive circuit 42 is provided with two gate drive circuits corresponding to the two switching elements included in the lower arm of the single-phase bridge inverter circuit 20 . A DC voltage from the lower arm power supply circuit 38 is supplied to each of these two gate drive circuits in the drive circuit 42 .
 図7及び図8に示す例では、上アーム用電源回路37又は下アーム用電源回路38の一方から電圧が供給されなければ、インバータ回路5及び単相ブリッジインバータ回路20の双方が停止する。即ち、モータ12が停止し、ブレーキ装置13が阻止力を発生させる。このため、エレベーター装置の安全性を高めることができる。 In the examples shown in FIGS. 7 and 8, both the inverter circuit 5 and the single-phase bridge inverter circuit 20 stop if voltage is not supplied from either the upper arm power supply circuit 37 or the lower arm power supply circuit 38 . That is, the motor 12 is stopped and the braking device 13 generates blocking force. Therefore, the safety of the elevator system can be enhanced.
 図7及び図8に示す例では、インバータ回路5及び単相ブリッジインバータ回路20が上アーム用電源回路37と下アーム用電源回路38とを共用する。このため、電源回路19を簡素化することができる。 In the examples shown in FIGS. 7 and 8, the inverter circuit 5 and the single-phase bridge inverter circuit 20 share the upper arm power supply circuit 37 and the lower arm power supply circuit 38 . Therefore, the power supply circuit 19 can be simplified.
 図9は、実施の形態1におけるエレベーター装置の他の例を示す図である。図7及び図8は、制御回路18が電源回路24から直流電圧を供給される例を示す。制御回路18は、単相ダイオードブリッジ回路30からの直流電圧に基づく電源供給が行われても良い。図9は、制御回路18が電源回路19から直流電圧を供給される例を示す。 FIG. 9 is a diagram showing another example of the elevator device according to Embodiment 1. FIG. 7 and 8 show an example in which the control circuit 18 is supplied with a DC voltage from the power supply circuit 24. FIG. The control circuit 18 may be supplied with power based on the DC voltage from the single-phase diode bridge circuit 30 . FIG. 9 shows an example in which the control circuit 18 is supplied with a DC voltage from the power supply circuit 19 .
 図9に示す例では、下アーム用電源回路38のトランスに、制御回路18に対応する二次側コイルが更に備えられる。当該二次側コイルに誘導された交流電圧は、整流及び平滑化され、制御回路18に供給される。制御回路18には、駆動回路16に含まれるスイッチング素子に対応したゲートドライバ(GD)とゲート駆動用の回路とが備えられる。下アーム用電源回路38からの直流電圧は、当該ゲート駆動用の回路に供給される。 In the example shown in FIG. 9 , the transformer of the lower arm power supply circuit 38 is further provided with a secondary coil corresponding to the control circuit 18 . The AC voltage induced in the secondary coil is rectified and smoothed and supplied to the control circuit 18 . The control circuit 18 includes a gate driver (GD) corresponding to the switching element included in the drive circuit 16 and a gate drive circuit. A DC voltage from the lower arm power supply circuit 38 is supplied to the gate driving circuit.
 図9に示す例では、下アーム用電源回路38から電圧が供給されなければ、制御回路18も停止する。このため、ブレーキ装置13が阻止力を発生させるタイミングを更に早めることができる。これにより、エレベーター装置の安全性を更に高めることができる。 In the example shown in FIG. 9, if no voltage is supplied from the lower arm power supply circuit 38, the control circuit 18 also stops. Therefore, the timing at which the braking device 13 generates the blocking force can be further advanced. Thereby, the safety of the elevator system can be further enhanced.
 他の例として、上アーム用電源回路37のトランスに、制御回路18に対応する二次側コイルが備えられても良い。即ち、制御回路18は、上アーム用電源回路37から直流電圧が供給されても良い。 As another example, the transformer of the upper arm power supply circuit 37 may be provided with a secondary coil corresponding to the control circuit 18 . That is, the control circuit 18 may be supplied with a DC voltage from the upper arm power supply circuit 37 .
 本開示に係る電気安全装置は、あらゆる種類のエレベーター装置に適用できる。 The electrical safety device according to the present disclosure can be applied to all kinds of elevator devices.
 1 交流電源、 2 コンバータ回路、 3 母線、 4 平滑コンデンサ、 5 インバータ回路、 6 制御回路、 7 かご、 8 つり合いおもり、 9 ロープ、 10 巻上機、 11 駆動綱車、 12 モータ、 13 ブレーキ装置、 14 ブレーキコイル、 15 DC-DCコンバータ、 16 駆動回路、 17~18 制御回路、 19 電源回路、 20 単相ブリッジインバータ回路、 21 絶縁トランス、 22 単相ダイオードブリッジ回路、 23 電気安全装置、 24 電源回路、 25 安全チェーン回路、 26 単相ブリッジインバータ回路、 27 制御回路、 28~29 接点回路、 30 単相ダイオードブリッジ回路、 31~33 監視回路、 34 抵抗、 35 スイッチング素子、 36 制御回路、 37 上アーム用電源回路、 38 下アーム用電源回路、 39~42 駆動回路、 50 かご戸、 51 かご戸スイッチ、 51a 接点、 52 乗場戸、 53 乗場戸スイッチ、 53a 接点 1 AC power supply, 2 converter circuit, 3 busbar, 4 smoothing capacitor, 5 inverter circuit, 6 control circuit, 7 cage, 8 counterweight, 9 rope, 10 hoisting machine, 11 drive sheave, 12 motor, 13 brake device, 14 Brake coil 15 DC-DC converter 16 Drive circuit 17-18 Control circuit 19 Power circuit 20 Single-phase bridge inverter circuit 21 Insulation transformer 22 Single-phase diode bridge circuit 23 Electrical safety device 24 Power circuit , 25 Safety chain circuit, 26 Single-phase bridge inverter circuit, 27 Control circuit, 28-29 Contact circuit, 30 Single-phase diode bridge circuit, 31-33 Monitoring circuit, 34 Resistor, 35 Switching element, 36 Control circuit, 37 Upper arm power supply circuit, 38 lower arm power supply circuit, 39-42 drive circuit, 50 car door, 51 car door switch, 51a contact, 52 landing door, 53 landing door switch, 53a contact

Claims (8)

  1.  直列に接続された複数の安全装置接点を含む安全チェーン回路からの直流電圧を交流電圧に変換する単相ブリッジインバータ回路と、
     かご戸スイッチの第1接点を含み、前記単相ブリッジインバータ回路の交流側の第1出力に接続された第1接点回路と、
     乗場戸スイッチの複数の第2接点を含み、前記複数の第2接点が直列に接続され、前記単相ブリッジインバータ回路の交流側の第2出力に接続された第2接点回路と、
     前記第1接点及び前記複数の第2接点が閉じられると、前記単相ブリッジインバータ回路から前記第1接点回路及び前記第2接点回路を介して入力される交流電圧を直流電圧に変換する単相整流回路と、
    を備えたエレベーターの電気安全装置。
    a single-phase bridge inverter circuit for converting a DC voltage to an AC voltage from a safety chain circuit including a plurality of safety contacts connected in series;
    a first contact circuit including a first contact of a car door switch and connected to a first output on the AC side of the single-phase bridge inverter circuit;
    a second contact circuit including a plurality of second contacts of a landing door switch, wherein the plurality of second contacts are connected in series and connected to a second output on the AC side of the single-phase bridge inverter circuit;
    When the first contact and the plurality of second contacts are closed, the single-phase converts an AC voltage input from the single-phase bridge inverter circuit via the first contact circuit and the second contact circuit into a DC voltage. a rectifier circuit;
    Elevator electrical safety device with
  2.  前記第1接点回路の前記単相整流回路側と前記第2出力との間に接続された第1監視回路と、
     前記第2接点回路の前記単相整流回路側と前記第1出力との間に接続された第2監視回路と、
    を更に備えた請求項1に記載のエレベーターの電気安全装置。
    a first monitoring circuit connected between the single-phase rectifier circuit side of the first contact circuit and the second output;
    a second monitoring circuit connected between the single-phase rectifier circuit side of the second contact circuit and the first output;
    The elevator electrical safety device of claim 1, further comprising:
  3.  請求項1又は請求項2に記載された前記電気安全装置と、
     交流電源からの交流電圧を直流電圧に変換するコンバータ回路と、
     前記コンバータ回路の直流側に接続された平滑コンデンサと、
     前記平滑コンデンサによって平滑化された直流電圧を交流電圧に変換し、巻上機のモータを駆動するインバータ回路と、
    を備えたエレベーター装置。
    The electrical safety device according to claim 1 or claim 2;
    a converter circuit that converts an AC voltage from an AC power supply to a DC voltage;
    a smoothing capacitor connected to the DC side of the converter circuit;
    an inverter circuit that converts the DC voltage smoothed by the smoothing capacitor into an AC voltage to drive the motor of the hoist;
    Elevator device with
  4.  前記電気安全装置は、前記交流電源からの交流電圧を直流電圧に変換し、前記安全チェーン回路に供給する第1電源回路を更に備えた請求項3に記載のエレベーター装置。 The elevator apparatus according to claim 3, wherein the electrical safety device further comprises a first power supply circuit that converts an AC voltage from the AC power supply into a DC voltage and supplies the DC voltage to the safety chain circuit.
  5.  前記インバータ回路を制御する第1制御回路と、
     前記巻上機のブレーキ装置を駆動するための回路に対して直流電圧を供給する第2電源回路と、
     前記第2電源回路を制御する第2制御回路と、
     前記第1制御回路及び前記第2制御回路に直流電圧を供給する第3電源回路と、
    を更に備え、
     前記第3電源回路は、前記単相整流回路から直流電圧が供給される請求項3又は請求項4に記載のエレベーター装置。
    a first control circuit that controls the inverter circuit;
    a second power supply circuit that supplies a DC voltage to a circuit for driving the braking device of the hoist;
    a second control circuit that controls the second power supply circuit;
    a third power supply circuit that supplies a DC voltage to the first control circuit and the second control circuit;
    further comprising
    5. The elevator apparatus according to claim 3, wherein the third power supply circuit is supplied with a DC voltage from the single-phase rectifier circuit.
  6.  前記第1制御回路は、
     前記インバータ回路の上アームに含まれるスイッチング素子を駆動するための第1駆動回路と、
     前記インバータ回路の下アームに含まれるスイッチング素子を駆動するための第2駆動回路と、
    を備え、
     前記第3電源回路は、
     前記第1駆動回路に直流電圧を供給する上アーム用電源回路と、
     前記上アーム用電源回路とは独立して設けられ、前記第2駆動回路に直流電圧を供給する下アーム用電源回路と、
    を備えた請求項5に記載のエレベーター装置。
    The first control circuit is
    a first drive circuit for driving a switching element included in the upper arm of the inverter circuit;
    a second drive circuit for driving a switching element included in the lower arm of the inverter circuit;
    with
    The third power supply circuit is
    an upper arm power supply circuit that supplies a DC voltage to the first drive circuit;
    a lower arm power supply circuit provided independently of the upper arm power supply circuit for supplying a DC voltage to the second drive circuit;
    6. The elevator system of claim 5, comprising:
  7.  前記第2制御回路は、
     前記第2電源回路の上アームに含まれるスイッチング素子を駆動するための第3駆動回路と、
     前記第2電源回路の下アームに含まれるスイッチング素子を駆動するための第4駆動回路と、
    を備え、
     前記上アーム用電源回路は、前記第3駆動回路に直流電圧を供給し、
     前記下アーム用電源回路は、前記第4駆動回路に直流電圧を供給する請求項6に記載のエレベーター装置。
    The second control circuit is
    a third drive circuit for driving a switching element included in the upper arm of the second power supply circuit;
    a fourth drive circuit for driving a switching element included in the lower arm of the second power supply circuit;
    with
    The upper arm power supply circuit supplies a DC voltage to the third drive circuit,
    7. The elevator apparatus according to claim 6, wherein the lower arm power supply circuit supplies DC voltage to the fourth drive circuit.
  8.  前記ブレーキ装置を駆動するための前記回路を制御する第3制御回路を更に備え、
     前記第3電源回路は、前記第3制御回路に直流電圧を供給する請求項5から請求項7の何れか一項に記載のエレベーター装置。
    further comprising a third control circuit for controlling the circuit for driving the braking device;
    8. The elevator apparatus according to any one of claims 5 to 7, wherein the third power supply circuit supplies DC voltage to the third control circuit.
PCT/JP2021/045648 2021-12-10 2021-12-10 Electric safety device for elevator, and elevator device WO2023105786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023566057A JPWO2023105786A1 (en) 2021-12-10 2021-12-10
PCT/JP2021/045648 WO2023105786A1 (en) 2021-12-10 2021-12-10 Electric safety device for elevator, and elevator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045648 WO2023105786A1 (en) 2021-12-10 2021-12-10 Electric safety device for elevator, and elevator device

Publications (1)

Publication Number Publication Date
WO2023105786A1 true WO2023105786A1 (en) 2023-06-15

Family

ID=86729905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045648 WO2023105786A1 (en) 2021-12-10 2021-12-10 Electric safety device for elevator, and elevator device

Country Status (2)

Country Link
JP (1) JPWO2023105786A1 (en)
WO (1) WO2023105786A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266388A (en) * 1990-12-26 1992-09-22 Mitsubishi Electric Corp Control device for elevator
JPH09208164A (en) * 1996-02-06 1997-08-12 Mitsubishi Electric Corp Elevator door device
JP2004217338A (en) * 2003-01-10 2004-08-05 Toshiba Corp Door device for elevator
JP2013234073A (en) * 2013-07-23 2013-11-21 Otis Elevator Co Elevator having shallow pit and/or low overhead
JP2018102033A (en) * 2016-12-19 2018-06-28 株式会社安川電機 Motor control system, startup method therefor, and auxiliary device for motor control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266388A (en) * 1990-12-26 1992-09-22 Mitsubishi Electric Corp Control device for elevator
JPH09208164A (en) * 1996-02-06 1997-08-12 Mitsubishi Electric Corp Elevator door device
JP2004217338A (en) * 2003-01-10 2004-08-05 Toshiba Corp Door device for elevator
JP2013234073A (en) * 2013-07-23 2013-11-21 Otis Elevator Co Elevator having shallow pit and/or low overhead
JP2018102033A (en) * 2016-12-19 2018-06-28 株式会社安川電機 Motor control system, startup method therefor, and auxiliary device for motor control

Also Published As

Publication number Publication date
JPWO2023105786A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US9873591B2 (en) Brake controller, elevator system and a method for performing an emergency stop with an elevator hoisting machine driven with a frequency converter
US7176653B2 (en) Electric motor drive
US8207700B2 (en) Electric motor drive
JP4986541B2 (en) Elevator control device
CN108946369B (en) Method for performing manual driving in elevator after main power supply is turned off
US20130133987A1 (en) Electricity supply apparatus and an elevator system
WO2006074696A1 (en) Operation device for an elevator system
JP4864620B2 (en) Three-phase load operation device
WO2023105786A1 (en) Electric safety device for elevator, and elevator device
JPH11322208A (en) Elevator controller
JPH05132262A (en) Ropeless elevator system
JP3669761B2 (en) Elevator operation device
JP7375503B2 (en) elevator power supply
JPH0368637B2 (en)
KR20070097098A (en) Operation device for an elevator system
JP2009220907A (en) Control device of elevator
JPH0859125A (en) Operation of linear motor elevator
JPS61112537A (en) Elevator controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566057

Country of ref document: JP