JPH0835045A - Production of di can body made of aluminum alloy - Google Patents

Production of di can body made of aluminum alloy

Info

Publication number
JPH0835045A
JPH0835045A JP19096594A JP19096594A JPH0835045A JP H0835045 A JPH0835045 A JP H0835045A JP 19096594 A JP19096594 A JP 19096594A JP 19096594 A JP19096594 A JP 19096594A JP H0835045 A JPH0835045 A JP H0835045A
Authority
JP
Japan
Prior art keywords
processing
cold
cold rolling
heat treatment
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19096594A
Other languages
Japanese (ja)
Other versions
JP3069008B2 (en
Inventor
Toshio Komatsubara
俊雄 小松原
Masaichi Shiina
昌市 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP6190965A priority Critical patent/JP3069008B2/en
Publication of JPH0835045A publication Critical patent/JPH0835045A/en
Application granted granted Critical
Publication of JP3069008B2 publication Critical patent/JP3069008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a DI can body good in formability by suitably combining the componental compsn. of allay stock, the cold working degree after final recrystallization and heating treatment after DI working. CONSTITUTION:A DI can body is produced from an alloy constituted of, by weight, 0.1 to 1.5% Mg, 0.5 to 1.8% Mn, 0.1 to 0.8% Fe, 0.05 to 0.5% Si, 0.05 to 0.7% Cu, and the balance Al. In this case, the sheet thickness at final recrystallization is defined as (t)1, the finish sheet thickness as (t)2 and the true strain epsilon of the sheet thickness from final recrystallization to cold rolling at the finish sheet thickness as epsilon=In (t1/t2), furthermore, the heat treating temp. after DI working as T (K), the activation energy of the self diffusion of Al as Q, the gas constant as R and the self diffusion D of Al is defined as D=exp (-Q/R.T), and moreover, the content of Mg is defined as Mg% and the heating time after DI working as t (sec), and they are suitably controlled so as to satisfy the inequality epsilon<3>XDXIn (t)/(Mg%)<4>>1. Thus, the DI can body in which the edge parts of the can body after coating and baking contain >=10% subgrains can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はDI加工(絞り−しご
き加工)による2ピースアルミニウム缶用の缶胴、すな
わちアルミニウム合金製DI缶胴を製造する方法に関
し、特にDI加工および塗装焼付け処理の後に缶胴縁部
(フランジ部)に施されるフランジ加工等における成形
性が良好なアルミニウム合金製缶胴を得る方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a can barrel for a two-piece aluminum can by DI machining (drawing-ironing), that is, a DI can barrel made of an aluminum alloy, and particularly after DI machining and paint baking treatment. The present invention relates to a method for obtaining an aluminum alloy can body having good formability in flanging or the like applied to a can body edge portion (flange portion).

【0002】[0002]

【従来の技術】一般に2ピースアルミニウム缶の製造工
程としては、缶胴素材に対して深絞り加工、しごき加工
によるDI成形を施して缶胴形状とした後、所定のサイ
ズにトリミングを施してから塗装焼付け処理を施し、そ
の後、缶胴縁部に対してネッキング加工(口絞り加
工)、フランジ加工(口拡げ加工)を行ない、さらに別
に成形した缶蓋(缶エンド)を合わせてシーミング加工
(巻締め加工)を行なうのが通常である。
2. Description of the Related Art Generally, as a manufacturing process for a two-piece aluminum can, a can body material is subjected to DI drawing by deep drawing and ironing into a can body shape, and then trimmed to a predetermined size. After painting and baking, the neck of the can is necked (narrowing) and flanged (expanding), and the separately formed can lid (can end) is combined and seamed (rolled). The tightening process is usually performed.

【0003】ところで従来のDI缶の缶胴材としては、
Al−Mg−Mn系合金であるJIS 3004合金や
AA 3104合金が広く用いられている。これらの合
金は、しごき加工性に優れており、強度を高めるために
高圧延率で冷間圧延を施した場合でも、比較的良好な成
形性を示すところから、DI缶胴材として最適であると
されている。
By the way, as a can body for a conventional DI can,
JIS 3004 alloy and AA 3104 alloy, which are Al-Mg-Mn based alloys, are widely used. These alloys are excellent in ironing workability, and are suitable as DI can body materials because they show relatively good formability even when cold rolled at a high rolling rate to increase strength. It is said that.

【0004】[0004]

【発明が解決しようとする課題】2ピースアルミニウム
缶については、より薄肉化を図って材料コストの低減、
軽量化を図ることが強く望まれている。このように薄肉
化を図るためにはより一層の高強度化が望まれる。また
DI缶胴材は、高強度を有するばかりでなく、DI成形
性が良好であることが要求され、さらにDI缶胴に成形
して塗装焼付け処理を施した後のネッキング加工、フラ
ンジ加工、シーミング加工での成形性も優れていること
が要求される。特に缶胴縁部については、素材製造過程
での冷間圧延、缶胴成形時のDI成形、塗装焼付け処理
後のネッキング加工、フランジ加工、シーミング加工と
いった、多段階、多種類の加工が加えられるため、加工
中にクラックが生じたりしやすい。特に最近では缶胴の
薄肉化に伴なって缶胴縁部の板厚も小さくなっており、
そのためフランジ加工やシーミング加工において縁部に
破断が生じやすく、そこで缶胴縁部のフランジ加工性、
シーミング加工性の改善が強く望まれている。また缶蓋
の軽量化の要請から缶胴のネック径の小径化が望まれて
おり、この場合ネッキング加工量の増大が必要となるこ
とから、より一層の缶胴縁部の成形性の向上が望まれて
いる。
For the two-piece aluminum can, the material cost is reduced by further reducing the wall thickness.
There is a strong demand for weight reduction. In order to reduce the wall thickness as described above, it is desired to further increase the strength. Further, the DI can body material is required to have not only high strength but also good DI moldability, and further, necking, flanging, and seaming after molding the DI can body and applying baking treatment. Excellent formability in processing is also required. In particular, the can barrel edge is subjected to multi-stage, multi-type processing such as cold rolling in the material manufacturing process, DI molding during can barrel molding, necking processing after paint baking, flange processing, and seaming processing. Therefore, cracks are likely to occur during processing. Especially recently, the plate thickness of the can edge has become smaller as the can body becomes thinner.
As a result, the edges tend to break during flanging and seaming, which is why the flangeability of the can edge is
Improvement of seaming workability is strongly desired. Further, due to the demand for weight reduction of the can lid, it is desired to reduce the neck diameter of the can body. In this case, since it is necessary to increase the necking processing amount, it is possible to further improve the moldability of the can body edge portion. Is desired.

【0005】本発明者等は前述の課題を解決するべく鋭
意実験・研究を重ねた結果、素材の合金成分組成を適切
に選定すると同時に、組織状態、特に缶胴縁部の組織状
態を最適化し、その缶胴縁部が10%以上の亜結晶粒
(サブグレイン)を有する組織とすることによって、D
I加工および塗装焼付け処理が施されたDI缶胴とし
て、その縁部の成形性に優れたDI缶胴が得られること
を見出し、本願出願人は、既に平成6年5月25日付で
発明の名称「アルミニウム合金製DI缶胴」の特許出願
を行なっている。
As a result of intensive experiments and research to solve the above-mentioned problems, the present inventors have properly selected the alloy component composition of the material and, at the same time, optimized the microstructure state, particularly the microstructure state of the can edge portion. , The can body edge portion has a structure having 10% or more of sub-grains (subgrains).
As a DI can barrel that has been subjected to I processing and paint baking, it was found that a DI can barrel having excellent edge formability can be obtained, and the applicant of the present invention has already invented the invention on May 25, 1994. We have filed a patent application for the name "DI alloy can body made of aluminum alloy".

【0006】すなわち本発明者等が缶胴縁部の成形性に
関して多数の実験を重ねた結果、缶胴縁部における亜結
晶粒の存在が、その成形性、特にフランジ加工性に大き
な影響を与え、缶胴縁部の金属組織中の亜結晶粒(サブ
グレイン)の占める割合が面積率にして10%以上であ
ること、すなわちサブグレイン化率が10%以上である
ことが、缶胴縁部の成形性、すなわちネッキング加工
性、フランジ加工性、シーミング加工性向上に有効であ
ることを見出したのである。このように缶胴縁部に10
%以上(好ましくは20%以上)の亜結晶粒が存在すれ
ば、ネッキング加工、フランジ加工、シーミング加工で
与えられる転位(加工歪)は、亜結晶粒界に吸収される
から、これらの加工中にほとんど加工硬化を生じること
なく、良好な成形性が得られることが本発明者等によっ
て見出されている。
That is, as a result of many experiments conducted by the present inventors on the formability of the can edge, the presence of sub-crystal grains in the can edge greatly affects its formability, particularly flange formability. That the sub-crystal grains (subgrains) account for 10% or more in area ratio in the metal structure of the can body edge portion, that is, the subgrain conversion rate is 10% or more, the can body edge portion It was found that it is effective in improving the moldability of N, ie, necking workability, flange workability, and seaming workability. In this way,
% Or more (preferably 20% or more) of subgrains, dislocations (working strains) given by necking, flanging, or seaming are absorbed in the subgrain boundaries. It has been found by the present inventors that good moldability can be obtained with almost no work hardening.

【0007】この発明は以上の事情を背景としてなされ
たもので、前述のように缶胴縁部が10%以上、好まし
くは20%以上の亜結晶粒を有する組織となるような缶
胴を確実かつ安定に得られるようになし、これによって
強度、DI成形性ばかりでなく、缶胴縁部の成形性、す
なわちネッキング加工、フランジ加工、シーミング加工
における成形性に優れた缶胴を確実かつ安定に得るよう
にしたアルミニウム合金製DI缶胴の製造方法を提供す
ることを目的とするものである。
The present invention has been made in view of the above circumstances, and as described above, a can body having a structure in which the can body edge has 10% or more, preferably 20% or more of sub-crystal grains is surely formed. In addition to the strength and the DI formability, the formability of the can body edge, that is, the formability in necking, flanging, and seaming can be reliably and stably obtained. It is an object of the present invention to provide a method for producing an aluminum alloy DI can body thus obtained.

【0008】[0008]

【課題を解決するための手段】本発明者等は前述の課題
を解決するべく鋭意実験・研究を重ねた結果、缶胴用素
材の製造過程における最終再結晶時から仕上板厚(最終
冷間圧延後の缶胴素材板厚)までの冷間加工度と、DI
加工後における乾燥処理や塗装焼付処理等の加熱処理時
の温度、時間との関係を所定の相関関係で適切に設定す
ることによって、缶胴縁部の亜結晶粒が10%以上を占
める組織が確実に得られることを見出し、この発明をな
すに至った。
[Means for Solving the Problems] As a result of intensive experiments and researches conducted by the present inventors to solve the above-mentioned problems, as a result of the final recrystallization in the manufacturing process of the material for a can body, the finished plate thickness (final cold The degree of cold work up to the thickness of the can body material after rolling) and DI
By appropriately setting the relationship between the temperature and time during the heat treatment such as the drying treatment or the coating baking treatment after the processing in a predetermined correlation, the structure in which the sub-crystal grains in the can edge portion occupy 10% or more can be obtained. The inventors have found that it can be reliably obtained and have completed the present invention.

【0009】具体的には、この発明は、Mg0.1〜
1.5%、Mn0.5〜1.8%、Fe0.1〜0.8
%、Si0.05〜0.5%、Cu0.05〜0.7%
を含有し、残部がAlおよび不可避的不純物よりなる合
金を鋳造し、均熱処理、熱間圧延および冷間圧延を行な
って所定の板厚に仕上げ、しかも熱間圧延から冷間圧延
中途までの間に再結晶させ、さらに冷間圧延後の仕上板
厚の缶胴素材に対して、DI加工と塗装焼付処理を含む
加熱処理とを行なうアルミニウム合金製DI缶胴の製造
方法において、最終再結晶時の板厚をt1 とするととも
に仕上板厚をt2 として、最終再結晶時から仕上板厚ま
での冷間圧延板厚真歪εをε=ln(t1 /t2 )と定
義し、かつDI加工後の加熱処理温度をT(K)、アル
ミニウムの自己拡散の活性化エネルギをQ、気体定数を
Rとして、アルミニウムの自己拡散Dを、D=exp
(−Q/R・T)と定義し、さらにMg量(重量%)を
Mg%とし、DI加工後の加熱処理時間をt(sec)
として、次式 ε3 ×D×ln(t)/(Mg%)4 >1 が満たされるように最終再結晶時から仕上板厚までの冷
間加工率、DI加工後の加熱処理の温度および時間を制
御して、塗装焼付処理後の缶胴縁部が10%以上の亜結
晶粒を有するDI缶胴を得ることを特徴とするものであ
る。
Specifically, the present invention provides Mg0.1
1.5%, Mn 0.5 to 1.8%, Fe 0.1 to 0.8
%, Si 0.05 to 0.5%, Cu 0.05 to 0.7%
An alloy containing Al and the balance consisting of Al and unavoidable impurities is cast, and soaking, hot rolling, and cold rolling are performed to finish to a predetermined plate thickness, and moreover, from hot rolling to the middle of cold rolling. In the method for producing an aluminum alloy DI can body, in which the can body material having a finished thickness after cold rolling is subjected to DI processing and heat treatment including paint baking, during the final recrystallization. the thickness of the t 2 the thickness finish with a t 1, a cold-rolled sheet Atsuma strain epsilon up thickness finish from the time the final recrystallization is defined as ε = ln (t 1 / t 2), and Assuming that the heat treatment temperature after DI processing is T (K), the activation energy of aluminum self-diffusion is Q, and the gas constant is R, the self-diffusion D of aluminum is D = exp.
(−Q / R · T), the amount of Mg (% by weight) is Mg%, and the heat treatment time after DI processing is t (sec).
As the following equation ε 3 × D × ln (t ) / (Mg%) 4> 1 is cold working ratio of up to thickness finish from the time the final recrystallization to be filled, the temperature of the heat treatment after DI working and The present invention is characterized in that the time is controlled to obtain a DI can barrel having 10% or more of sub-crystal grains in the can barrel edge portion after paint baking.

【0010】[0010]

【作用】この発明の製造方法においては、基本的には、
最終再結晶後の冷間加工度と塗装焼付処理時における温
度、時間との関係が重要であるが、その前提として、素
材の合金成分組成も重要であり、その成分組成が所定の
範囲内であることによってはじめて所期の目的を達成で
きる。そこで先ず素材合金の成分組成の限定理由につい
て説明する。
In the manufacturing method of the present invention, basically,
The relationship between the cold workability after final recrystallization and the temperature and time during coating baking is important, but as a prerequisite, the alloy composition of the material is also important, and the composition of the composition within the prescribed range Only then can the intended purpose be achieved. Therefore, the reasons for limiting the component composition of the material alloy will be described first.

【0011】Mg:Mgは単独でも固溶強化に効果があ
る元素であり、強度向上に不可欠な元素である。さらに
Mgの添加は、SiやCuとの共存によってMg2 Si
あるいはAl−Cu−Mg相の析出による時効硬化を期
待することができる。そして特にこの発明では、Mg量
は、後述する最終再結晶後の冷間加工度と、塗装焼付処
理等のDI加工後の加熱条件とに相関してサブグレイン
化(亜結晶化)に大きな影響を与える。Mg量が0.1
%未満では所要の強度が得られず、一方1.5%を越え
て添加した場合には充分な強度は得られるもののサブグ
レイン化(亜結晶粒化)が著しく遅延して、缶胴縁部の
亜結晶粒の占有率10%以上を安定して確保することが
困難となり、そのため缶胴縁部の成形性とりわけフラン
ジ加工性を劣化させる。そこでMgの範囲は0.1〜
1.5%とした。
Mg: Mg is an element which is effective for solid solution strengthening by itself, and is an essential element for improving strength. Furthermore, the addition of Mg is due to the coexistence of Si and Cu with Mg 2 Si.
Alternatively, age hardening due to precipitation of Al-Cu-Mg phase can be expected. In particular, in the present invention, the amount of Mg has a great influence on subgraining (subcrystallization) in correlation with the cold working degree after the final recrystallization described later and the heating condition after DI processing such as coating baking treatment. give. Mg amount is 0.1
If less than 1.5%, the required strength cannot be obtained. On the other hand, if more than 1.5% is added, sufficient strength is obtained, but subgraining (sub-graining) is significantly delayed and It becomes difficult to stably secure the occupancy rate of the sub-crystal grains of 10% or more, and therefore, the formability of the can edge portion, especially the flange formability is deteriorated. Therefore, the range of Mg is 0.1
It was set to 1.5%.

【0012】Mn:Mnは強度、成形性の向上に寄与す
るに有効な元素である。特にこの発明で対象としている
缶胴の製造過程では、DI成形時に苛酷なしごき加工が
施されるため、Mnは重要となる。アルミニウム板のし
ごき加工においては通常エマルジョンタイプの潤滑剤が
用いられているが、Mn系晶出物が少ない場合には同程
度の強度を有していてもエマルジョンタイプ潤滑剤だけ
では潤滑能が不足し、ゴーリングと呼ばれる擦り疵や焼
付きなどの外観不良が発生するおそれがある。この現象
は晶出物の大きさ、量、種類に影響されることが知られ
ており、適切なMn系晶出物を形成して、しごき加工に
おける潤滑能を向上させるためにMnは不可欠な元素で
ある。Mn量が1.8%を越えればMnAl6 の初晶巨
大金属間化合物が発生して、逆に著しく成形性を損って
しまう。またMn量が0.5%未満ではMn系化合物に
よる固体潤滑的な効果が得られない。そこでMnの範囲
は0.5〜1.8%とした。
Mn: Mn is an element effective in contributing to improvement in strength and formability. In particular, in the manufacturing process of the can body that is the subject of this invention, Mn is important because severe ironing is performed during DI molding. Emulsion type lubricants are usually used in ironing of aluminum plates, but when Mn-based crystallized substances are small, even if they have similar strength, the emulsion type lubricants alone lack lubrication ability. However, there is a possibility that appearance defects such as scratches and seizure called "goring" may occur. It is known that this phenomenon is affected by the size, amount, and type of crystallized substances, and Mn is indispensable for forming an appropriate Mn-based crystallized substance and improving the lubricating ability in ironing. It is an element. If the Mn content exceeds 1.8%, primary crystal giant intermetallic compounds of MnAl 6 are generated, and conversely the formability is significantly impaired. If the Mn content is less than 0.5%, the solid lubricating effect of the Mn-based compound cannot be obtained. Therefore, the range of Mn is set to 0.5 to 1.8%.

【0013】Fe:FeはMnの晶出や析出を促進し、
アルミニウム基地中のMn固溶量やMn系不溶性化合物
の分散状態を制御するために必要な元素である。適正な
化合物分散状態を得るためには、Mn添加量に応じてF
eを添加することが必要である。Fe量が0.1%未満
では適正な化合物分散状態を得ることが困難であり、一
方Fe量が0.8%以上では、Mn添加に伴なって初晶
巨大化合物が発生しやすくなり、成形性を著しく損う。
そこでFeの範囲は0.1〜0.8%とした。
Fe: Fe promotes crystallization and precipitation of Mn,
It is an element necessary for controlling the amount of Mn solid solution in the aluminum matrix and the dispersed state of the Mn-based insoluble compound. In order to obtain a proper compound dispersion state, F may be changed according to the amount of Mn added.
It is necessary to add e. When the Fe content is less than 0.1%, it is difficult to obtain a proper compound dispersion state, while when the Fe content is 0.8% or more, a primary crystal giant compound is likely to be generated due to the addition of Mn. Remarkably impairs sex.
Therefore, the range of Fe is set to 0.1 to 0.8%.

【0014】Si:Siの添加は、Mg2 Si系化合物
の析出による時効硬化に寄与する。Si量が0.05%
未満ではその効果が得られず、0.5%を越えれば時効
硬化は容易に得られるものの、材料が硬くなりすぎて成
形性を阻害する。そこでSiの範囲は0.05〜0.5
%とした。
Si: Addition of Si contributes to age hardening by precipitation of Mg 2 Si-based compound. Si amount is 0.05%
If it is less than 0.5%, the effect cannot be obtained, and if it exceeds 0.5%, age hardening is easily obtained, but the material becomes too hard and hinders moldability. Therefore, the range of Si is 0.05 to 0.5
%.

【0015】Cu:Cuの添加は、Al−Cu−Mg系
析出物の生成による時効硬化に寄与する。Cu量が0.
05%未満ではその効果が得られず、一方Cuを0.7
%を越えて添加した場合には、時効硬化は容易に得られ
るものの硬くなりすぎて成形性を阻害するとともに、耐
食性が劣化する。そこでCuの範囲は0.05〜0.7
%とした。
Cu: The addition of Cu contributes to age hardening due to the formation of Al-Cu-Mg type precipitates. Cu content is 0.
If less than 05%, the effect cannot be obtained, while Cu is 0.7
If it is added in excess of%, age-hardening can be easily obtained, but it becomes too hard, which hinders moldability and deteriorates corrosion resistance. Therefore, the range of Cu is 0.05 to 0.7
%.

【0016】そのほか、通常のアルミニウム合金におい
ては鋳塊結晶粒微細化のためにTiを単独で、あるいは
Bと組合せて微量添加することが一般的である。この発
明においても微量のTi、もしくはTiおよびBを添加
することができる。但しTi量が0.005%未満では
その効果が得られず、0.20%を越えれば初晶TiA
3 が晶出して成形性を阻害するから、Ti量は0.0
05〜0.20%とすることが望ましい。またTiと併
せてBを添加する場合、B量が0.0001%未満では
その効果がなく、0.05%を越えればTiB2 の粗大
粒子が混入して成形性を害するから、B量は0.000
1〜0.05%の範囲が望ましい。
In addition, in ordinary aluminum alloys, it is common to add a small amount of Ti alone or in combination with B in order to refine ingot crystal grains. Also in this invention, a trace amount of Ti, or Ti and B can be added. However, if the Ti content is less than 0.005%, the effect cannot be obtained, and if it exceeds 0.20%, the primary crystal TiA is
Since l 3 crystallizes and hinders formability, the Ti content is 0.0
It is desirable to set it to 05 to 0.20%. When B is added together with Ti, if the B content is less than 0.0001%, there is no effect, and if it exceeds 0.05%, coarse particles of TiB 2 are mixed and the formability is impaired. 0.000
The range of 1-0.05% is desirable.

【0017】さらに、上記各元素のほか、強度向上のた
めに必要に応じて0.3%以下のCr、0.5%以下の
Znを添加することが許容される。すなわちCrは強度
向上に効果的な元素であるが、Cr量が0.3%を越え
れば巨大晶出物生成によって成形性の低下を招くから、
Crは0.3%以下とする。またZnの添加はMg2
3 Al2 の時効析出による強度向上に寄与するが、Z
n量が0.5%を越えれば耐食性を劣化させる。
Further, in addition to the above elements, it is allowed to add 0.3% or less of Cr and 0.5% or less of Zn as necessary for improving strength. That is, Cr is an element effective for improving strength, but if the Cr content exceeds 0.3%, the formation of giant crystallized substances causes a decrease in formability.
Cr is 0.3% or less. The addition of Zn is Mg 2 Z
Contributes to the strength improvement by aging precipitation of n 3 Al 2 , but Z
If the amount of n exceeds 0.5%, the corrosion resistance deteriorates.

【0018】以上の各元素の残部はAlおよび不可避的
不純物とすれば良い。
The balance of each of the above elements may be Al and inevitable impurities.

【0019】次にこの発明の方法における製造プロセス
について説明する。
Next, the manufacturing process in the method of the present invention will be described.

【0020】先ず前述のような成分組成の合金溶湯を常
法に従って溶製し、DC鋳造法(半連続鋳造法)等の通
常の鋳造法によって鋳造する。得られた鋳塊に対しては
均質化処理(均熱処理)を施す。この均質化処理は通常
の条件、例えば500〜620℃×1時間以上の条件で
行なえば良い。さらに均質化処理後の鋳塊に対して熱間
圧延を行なって、所要の板厚の熱延板とする。この熱間
圧延の条件は特に限定しないが、熱間圧延性、表面品質
を考慮すれば、580〜200℃の温度域で圧延するこ
とが望ましい。熱間圧延温度が580℃を越えれば熱間
圧延時の表面の酸化皮膜により表面品質が劣化するおそ
れがあり、200℃未満では変形抵抗が大き過ぎて圧延
性が悪くなる。
First, a molten alloy having the above-described composition is melted by a conventional method and cast by a usual casting method such as a DC casting method (semi-continuous casting method). The obtained ingot is subjected to homogenization treatment (soaking treatment). This homogenization treatment may be performed under normal conditions, for example, 500 to 620 ° C. × 1 hour or more. Further, the ingot after the homogenization treatment is hot-rolled to obtain a hot-rolled plate having a required plate thickness. The conditions of this hot rolling are not particularly limited, but considering hot rolling property and surface quality, it is desirable to carry out rolling in the temperature range of 580 to 200 ° C. If the hot rolling temperature exceeds 580 ° C, the surface quality may be deteriorated due to the oxide film on the surface during hot rolling, and if it is less than 200 ° C, the deformation resistance is too large and the rolling property deteriorates.

【0021】上述のようにして熱間圧延した後には冷間
圧延により所定の缶胴素材板厚に仕上げる。このような
熱間圧延後、仕上板厚までの間の工程においては、少な
くとも一回は板内の組織を再結晶させる。そのために
は、通常は、熱間圧延後に直ちに再結晶焼鈍を施して再
結晶させ、その後仕上板厚まで冷間圧延(最終冷間圧
延)を施すか、あるいは熱間圧延後に一次冷間圧延を行
なって中間板厚まで圧延し、その後再結晶焼鈍を行なっ
て再結晶させ、さらに仕上板厚まで冷間圧延(最終冷間
圧延)を行なうのが一般的であるが、場合によっては熱
間圧延コイルの巻取中からそれに続く冷却過程で熱延板
コイルの保有熱により再結晶(自己焼鈍による再結晶)
させ、その後は特に積極的に再結晶焼鈍は施さずに仕上
板厚まで冷間圧延(最終冷間圧延)を施しても良い。
After hot rolling as described above, cold rolling is applied to finish the can body material to a predetermined thickness. After such hot rolling, in the process up to the finished plate thickness, the structure in the plate is recrystallized at least once. For that purpose, usually, after hot rolling, recrystallization annealing is immediately performed to recrystallize, and then cold rolling (final cold rolling) is performed up to the finished sheet thickness, or primary cold rolling is performed after hot rolling. It is common practice to carry out rolling to an intermediate plate thickness, then recrystallize annealing to recrystallize, and then cold rolling (final cold rolling) to a finished plate thickness, but in some cases hot rolling Recrystallization (recrystallization by self-annealing) due to the heat of the hot-rolled sheet coil during the coil winding process and the subsequent cooling process
After that, the cold rolling (final cold rolling) may be performed to the finished sheet thickness without particularly positively performing the recrystallization annealing.

【0022】熱間圧延後、あるいはさらに一次冷間圧延
を行なった後に再結晶焼鈍を施す場合、その再結晶焼鈍
は、常法に従って行なえば良いが、連続焼鈍を適用する
場合には450〜600℃×10分以内の条件が好まし
く、バッチ焼鈍を適用する場合には300〜450℃×
1〜10時間の条件が望ましい。連続焼鈍の場合におい
て、温度が450℃未満では再結晶が不完全となり、一
方600℃を越えれば共晶融解のおそれが生じるととも
に、表面に強固な酸化皮膜が生成されて、冷間圧延性、
外観を損ない、さらに保持時間が10分を越えた場合
も、表面に強固な酸化皮膜が生成されて、冷間圧延性、
外観を損なうおそれがある。一方バッチ焼鈍の場合にお
いて、温度が300℃未満または保持時間が1時間未満
では再結晶が不充分となり、温度が450℃を越えれば
表面に強固な酸化皮膜が生成されて冷間圧延性、外観を
損ない、さらに保持時間が10時間を越えれば再結晶の
効果が飽和し、経済性を悪化させるだけである。
When performing recrystallization annealing after hot rolling or after further performing primary cold rolling, the recrystallization annealing may be carried out according to a conventional method, but when continuous annealing is applied, it is 450 to 600. C. × 10 minutes or less is preferable, and 300 to 450 ° C. × when batch annealing is applied.
The condition of 1 to 10 hours is desirable. In the case of continuous annealing, if the temperature is lower than 450 ° C., recrystallization becomes incomplete, while if it exceeds 600 ° C., eutectic melting may occur, and a strong oxide film may be formed on the surface, resulting in cold rollability,
Even if the appearance is impaired and the holding time exceeds 10 minutes, a strong oxide film is formed on the surface, and cold rolling property,
The appearance may be impaired. On the other hand, in the case of batch annealing, if the temperature is less than 300 ° C or the holding time is less than 1 hour, recrystallization becomes insufficient, and if the temperature exceeds 450 ° C, a strong oxide film is formed on the surface, and cold rolling property and appearance If the holding time exceeds 10 hours, the effect of recrystallization is saturated and the economic efficiency is deteriorated.

【0023】なお再結晶焼鈍前に一次冷間圧延を行なう
場合、その冷間圧延圧下率は特に限定されない。
When primary cold rolling is performed before recrystallization annealing, the cold rolling reduction ratio is not particularly limited.

【0024】再結晶焼鈍あるいは熱間圧延に引続く自己
焼鈍により再結晶させた後には、仕上板厚まで冷間圧延
を行なう。この最終冷間圧延は、後述するようにMg量
とDI加工後の塗装焼付処理等の加熱条件との関係で塗
装焼付処理後のサブグレイン化率に大きな影響を及ぼ
す。したがって最終冷間圧延の加工率は単独では規定で
きないが、一般的に言えば加工率が大きいほどサブグレ
イン化率を高めることが容易となり、通常は圧延率50
%以上が好ましい。
After recrystallization is performed by recrystallization annealing or self-annealing subsequent to hot rolling, cold rolling is performed to a finished sheet thickness. This final cold rolling has a great influence on the sub-graining rate after the coating baking treatment due to the relationship between the amount of Mg and the heating conditions such as the coating baking treatment after the DI processing as described later. Therefore, the working ratio of the final cold rolling cannot be specified alone, but generally speaking, the higher the working ratio is, the easier it is to increase the subgrain conversion ratio.
% Or more is preferable.

【0025】上述のようにして最終冷間圧延により仕上
板厚とした後には、その板をそのまま缶胴素材としてD
I加工に供することができるが、場合によっては最終冷
間圧延後、延性を確保するために回復焼鈍を行なっても
良い。但しこの場合の回復焼鈍は、再結晶が生じないよ
うに定める必要があり、通常は80〜160℃×1〜1
0時間程度の条件で行なうことが好ましい。
After the final plate thickness is obtained by the final cold rolling as described above, the plate is directly used as a can body material D
Although it can be subjected to I working, recovery annealing may be performed after the final cold rolling to secure ductility in some cases. However, the recovery annealing in this case needs to be determined so that recrystallization does not occur, and is usually 80 to 160 ° C x 1 to 1
It is preferable to carry out the conditions for about 0 hours.

【0026】最終冷間圧延の板あるいはさらに回復焼鈍
を行なった板は、これを缶胴素材として、深絞り成形、
しごき成形によるDI加工を施し、所定のトリミングを
施して缶胴形状とし、さらに洗浄、乾燥、缶の内面塗装
および塗装焼付処理、缶の外面塗装および塗装焼付処理
を施す。そしてさらにネッキング加工、フランジ加工を
行なった後、内容物を充填し、缶蓋(キャンエンド)を
取付けてシーミング加工を行なう。
The final cold-rolled plate or the plate that has been subjected to recovery annealing is used as a can body material for deep drawing,
DI processing by ironing is performed, predetermined trimming is performed to form a can body, and further cleaning, drying, can inner coating and paint baking, and can outer coating and paint baking are performed. Then, after necking and flange processing are further performed, the contents are filled, a can lid is attached, and seaming processing is performed.

【0027】DI加工、トリミング、洗浄の後の乾燥処
理と、内面塗装、外面塗装における各塗装焼付処理にお
いては、一般には180〜250℃の範囲内の温度で合
計2〜30分程度の加熱が行なわれる。このような乾
燥、塗装焼付処理における加熱によって材料は軟化し、
この際の組織変化として亜結晶粒が形成される。
In the drying treatment after DI processing, trimming and washing, and the coating baking treatment in the inner surface coating and the outer surface coating, generally, heating at a temperature in the range of 180 to 250 ° C. for a total of about 2 to 30 minutes is required. Done. The material is softened by such heating in the drying and painting baking process,
Subcrystalline grains are formed as a structural change at this time.

【0028】すなわち、一般に冷間加工によって歪(転
位の蓄積)が導入されたアルミニウム合金材に対して熱
処理を行なえば、転位密度の減少とともに、方位差の小
さいセル壁が小角粒界(亜粒界)へと変化し、亜結晶粒
(サブグレイン)が生じる。ここで、上記の熱処理の温
度がある程度以上高ければ、さらに亜結晶粒の粗大化が
生じ、この過程における亜結晶粒の成長粒が核となって
再結晶が生じ、再結晶組織が生成されるが、DI加工後
の乾燥、塗装焼付処理程度の温度では、再結晶までは進
行しないのが通常である。そして、DI缶胴の場合、板
の製造過程中における最終の再結晶後の最終冷間圧延お
よびその後のDI成形におけるしごき加工によって冷間
加工がなされて、冷間加工歪(転位)が導入されるか
ら、適切なMg含有量の下において冷間加工歪を適切に
調整するとともに、その後の缶胴成形後の乾燥や塗装焼
付け処理等の加熱条件を適切に選択することによって、
その乾燥、塗装焼付け処理等の加熱処理により適切に亜
結晶粒を生成させることが可能となる。そして本発明者
等は缶胴縁部の成形性に関して多数の実験を重ねた結
果、缶胴縁部における亜結晶粒の存在が、その成形性、
特にフランジ加工性に大きな影響を与え、缶胴縁部の金
属組織中の亜結晶粒の占める割合が面積率にして10%
以上であること、すなわちサブグレイン化率が10%以
上であることが、缶胴縁部の成形性、すなわちネッキン
グ加工性、フランジ加工性、シーミング加工性向上に有
効であることを見出した。
That is, when heat treatment is generally performed on an aluminum alloy material to which strain (accumulation of dislocations) has been introduced by cold working, the dislocation density decreases and the cell wall with a small misorientation has small-angle grain boundaries (subgrains). Change to the boundary, and subgrains (subgrains) are generated. Here, if the temperature of the heat treatment is higher than a certain level, coarsening of the sub-crystal grains occurs further, re-crystallized by growing grains of the sub-crystal grains in this process as nuclei, and a re-crystallized structure is generated. However, at a temperature such as drying after the DI processing and coating baking treatment, recrystallization does not usually proceed. In the case of a DI can body, cold working is performed by final cold rolling after final recrystallization during the plate manufacturing process and subsequent ironing in DI molding, and cold working strain (dislocation) is introduced. Therefore, by appropriately adjusting the cold working strain under an appropriate Mg content, and by appropriately selecting the heating conditions such as the drying after the can body forming and the coating baking treatment,
By the heat treatment such as the drying and baking treatment, it becomes possible to appropriately generate the sub-crystal grains. And the present inventors have repeated a number of experiments on the moldability of the can edge, the presence of sub-crystal grains in the can edge, its formability,
In particular, it greatly affects the flange formability, and the proportion of sub-crystal grains in the metal structure of the can edge is 10% in area ratio.
It has been found that the above, that is, the subgrain conversion rate of 10% or more is effective for improving the formability of the can edge portion, that is, necking workability, flange workability, and seaming workability.

【0029】缶胴縁部に10%以上の亜結晶粒が存在す
れば、好ましくは20%以上の亜結晶粒が存在すれば、
ネッキング加工、フランジ加工、シーミング加工で与え
られる転位(加工歪)は、亜結晶粒界に吸収される転位
の蓄積が少ないから、これらの加工中にほとんど加工硬
化を生じることなく、良好な成形性が得られる。なお多
数の観察の結果、塗装焼付け処理によって生じた亜結晶
粒は、その後にネッキング加工等の加工が加えられて
も、若干の転位密度の増加はあるものの、そのまま存在
し続けることを確認している。サブグレイン化率が10
%未満では、ネッキング加工、フランジ加工、シーミン
グ加工によって転位が蓄積されるため、著しい加工硬化
が生じて缶胴部の成形性が劣化してしまう。
If 10% or more of the sub-crystal grains are present in the can edge, preferably 20% or more of the sub-crystal grains are present.
The dislocations (working strains) given by necking, flanging, and seaming processes have little accumulation of dislocations absorbed in sub-grain boundaries, so work hardening hardly occurs during these processes and good formability is achieved. Is obtained. As a result of numerous observations, it was confirmed that the sub-crystal grains generated by the paint baking treatment continue to exist even if a processing such as a necking processing is added thereafter, although the dislocation density slightly increases. There is. Subgrain conversion rate is 10
If it is less than%, dislocations are accumulated by necking, flanging, and seaming, so that remarkable work hardening occurs and the formability of the can body part deteriorates.

【0030】前述のようにDI加工後の加熱処理によっ
て10%以上、好ましくは20%以上のサブグレイン化
率を達成するためには、缶胴素材の成分のうち特にMg
量、最終再結晶後の冷間加工度、DI加工後の加熱処理
条件の3者を適切に組合せる必要がある。ここで、最終
再結晶後の冷間加工度は、厳密には最終冷間圧延におけ
る冷間加工度(冷間圧延率)と、DI加工時、特にしご
き加工時における缶胴縁部の加工度(板厚変化)とが関
係するが、実際には最終再結晶後のトータルの冷間加工
度に占めるしごき加工時における加工度の割合は少な
く、したがって前記3者の関係を定めるにあたっては、
最終再結晶後の冷間加工度として最終冷間圧延の加工度
で代表させることができる。すなわちこの場合、10%
以上のサブグレイン化率を得るためには、Mg量と、最
終再結晶後の最終冷間圧延の加工度、DI加工後の加熱
処理条件の3者を次の(1)式を満たすように相対的に
定めれば良い。 ε3 ×D×ln(t)/Mg4 >1×10-8 … (1)
As described above, in order to achieve a subgrain conversion rate of 10% or more, preferably 20% or more by heat treatment after DI processing, among the components of the can body material, Mg is particularly preferable.
It is necessary to appropriately combine the three factors of the amount, the cold working degree after the final recrystallization, and the heat treatment condition after the DI processing. Strictly speaking, the cold workability after the final recrystallization is, strictly speaking, the cold workability (cold rolling rate) in the final cold rolling and the workability of the can edge portion during DI processing, especially during ironing. Although it is related to (plate thickness change), actually, the ratio of the workability during ironing to the total cold workability after final recrystallization is small. Therefore, in determining the relationship between the three,
The cold workability after the final recrystallization can be represented by the workability of the final cold rolling. That is, in this case, 10%
In order to obtain the above-described sub-graining rate, the amount of Mg, the workability of the final cold rolling after the final recrystallization, and the heat treatment condition after the DI processing should be set so that the following expression (1) is satisfied. You can set it relatively. ε 3 × D × ln (t) / Mg 4 > 1 × 10 -8 (1)

【0031】ここで、εは最終再結晶後の最終冷間圧延
における加工度に対応する冷間圧延板厚真歪、すなわち
最終再結晶時の板厚をt1 、最終冷間圧延後の仕上板厚
をt2 として、 ε=ln(t1 /t2 ) … (2) で表わされる値である。またDはアルミニウムの自己拡
散であって、 D=exp(−Q/RT) … (3) で表わされる。但しQはアルミニウムの自己拡散の活性
化エネルギ、Rは気体定数、TはDI加工後の加熱処理
の温度(K)、tはDI加工後の加熱処理の時間(se
c)である。さらにMgは素材合金中のMg量(重量
比)である。
Here, ε is the true strain of the cold-rolled plate thickness corresponding to the workability in the final cold rolling after the final recrystallization, that is, the plate thickness at the final recrystallization is t 1 , and the finished plate after the final cold rolling. It is a value represented by ε = ln (t 1 / t 2 ) ... (2) where t 2 is the thickness. Further, D is the self-diffusion of aluminum and is represented by D = exp (-Q / RT) (3). Where Q is the activation energy of self-diffusion of aluminum, R is a gas constant, T is the temperature (K) of the heat treatment after DI processing, and t is the time (se) of heat treatment after DI processing.
c). Further, Mg is the amount of Mg (weight ratio) in the material alloy.

【0032】このような(1)式は次のようにして得ら
れた。すなわちサブグレインは、熱力学上転位が運動し
やすい環境にあるときに形成される。したがって定性的
には、DI加工までの冷間加工度が大きいほど、またD
I加工後の乾燥、塗装焼付時の入熱が大きいほど、さら
に転位の回復を遅延させる効果のあるMgの量が少ない
ほどサブグレイン化が促進される。そこでサブグレイン
化に寄与する各因子をそれぞれ具体的に検討した。
The equation (1) is obtained as follows. That is, the subgrains are formed when the dislocations are thermodynamically liable to move. Therefore, qualitatively, the greater the cold workability up to DI processing, the more D
Sub-graining is promoted as the heat input during drying after I-working and baking is large and the amount of Mg that has the effect of delaying the recovery of dislocations is small. Therefore, each factor that contributes to subgraining was specifically examined.

【0033】最終再結晶板厚からの冷間圧延率に対応す
る真歪εは重要な因子であって、サブグレイン化への寄
与が大きい。またDI加工後の乾燥、焼付処理における
入熱量にはその加熱の温度、時間が関係するが、特に加
熱温度Tはサブグレイン化による転位の再配列速度、す
なわち原子の移動速度に影響を与えるから、アルミニウ
ムの拡散に基いた活性化エネルギと気体定数R、加熱温
度Tの指数関数での整理が必要となる。そして加熱時間
tに関しては、時間が長いほどサブグレイン形成が進行
することになるが、直線的な関係ではなく、対数関係が
適切である。さらにMgはサブグレイン化を抑制する元
素であって、Mg量が多ければ著しくサブグレイン化が
遅れる。そして本発明者等が数多くの実験を重ねた結
果、サブグレイン化率を支配する最終冷間圧延板厚真歪
ε、DI加工後の加熱温度T、加熱時間t、Mg添加量
(重量比)はそれぞれ3乗、1乗、自然対数、4乗で整
理できることを見出した。そして缶胴縁部の成形性を向
上させるためにサブグレイン化率を10%以上安定して
確保するためには、(1)式の左辺が1×10-8を越え
る必要があることを見出した。
The true strain ε corresponding to the cold rolling rate from the final recrystallized plate thickness is an important factor and has a large contribution to subgrain formation. In addition, the heating temperature and time are related to the heat input amount in the drying and baking treatment after DI processing, but especially since the heating temperature T affects the rearrangement speed of dislocations due to subgraining, that is, the moving speed of atoms. , The activation energy based on the diffusion of aluminum, the gas constant R, and the heating temperature T need to be organized by an exponential function. Regarding the heating time t, the longer the time, the more the subgrain formation proceeds, but a logarithmic relationship is appropriate rather than a linear relationship. Further, Mg is an element that suppresses subgrain formation, and if the amount of Mg is large, subgrain formation is significantly delayed. As a result of many experiments conducted by the present inventors, the final cold rolled sheet thickness true strain ε, which governs the subgraining rate, the heating temperature T after DI processing, the heating time t, and the Mg addition amount (weight ratio) are It was found that they can be arranged by the third power, the first power, the natural logarithm, and the fourth power, respectively. It was found that the left side of equation (1) needs to exceed 1 × 10 -8 in order to stably secure a subgrain conversion rate of 10% or more in order to improve the moldability of the can edge. It was

【0034】なお(1)式においてはMg量を重量比で
表わしたが、重量百分率(Mg%)で表わせば、(1)
式は次の(4)式のように書き改められる。 ε3 ×D×ln(t)/(Mg%)4 >1 … (4)
In the formula (1), the amount of Mg is represented by a weight ratio, but if expressed by a weight percentage (Mg%),
The formula is rewritten as the following formula (4). ε 3 × D × ln (t) / (Mg%) 4 > 1 (4)

【0035】したがって(4)式の左辺が1を越えるこ
とが、サブグレイン化率10%以上を確保するために必
要であり、これをこの発明の請求項1において規定し
た。
Therefore, it is necessary that the left side of the equation (4) exceeds 1 in order to secure the subgraining rate of 10% or more, which is defined in claim 1 of the present invention.

【0036】なお前述のように実際の缶製造工程におい
ては、DI加工後の加熱処理として、DI加工、洗浄後
の乾燥、内面塗装後の塗装焼付、外面塗装後の塗装焼付
など、いくつかの加熱冷却を繰返している。したがって
前記(1)式、(4)式のD×ln(t)は、これらの
各加熱工程での合計として表わされるべきである。すな
わち、DI加工後の加熱工程として、乾燥、内面塗装焼
付処理、外面塗装焼付処理を行なう場合、(1)式、
(4)式のD×ln(t)は、[乾燥工程でのD×ln
(t)]+[内面塗装焼付処理時のD×ln(t)]+
[外面塗装焼付処理時のD×ln(t)]の総和として
あらわされる。
As described above, in the actual can manufacturing process, there are some heat treatments after DI processing, such as DI processing, drying after washing, coating baking after inner surface coating, and coating baking after outer surface coating. Repeated heating and cooling. Therefore, D × ln (t) in the equations (1) and (4) should be expressed as the sum of these heating steps. That is, in the case where drying, inner surface coating baking treatment, and outer surface coating baking treatment are performed as the heating process after DI processing, the formula (1)
D × ln (t) in the equation (4) is [D × ln in the drying step]
(T)] + [D × ln (t)] + during internal coating baking process +
It is expressed as the sum of [D × ln (t) at the time of external coating baking processing].

【0037】なおまた、前記(1)式、(4)式を導く
にあたっては、最終再結晶後の冷間加工度の影響につい
ては、(2)式に示すように最終再結晶後の最終冷間圧
延における加工度(圧延率)のみを考慮している。ここ
で、厳密に考えれば、既に述べたようにDI加工(深絞
り加工およびしごき加工)においても冷間加工が施され
て板厚が若干減少するから、DI加工もサブグレイン化
に若干の影響を与えることになる。しかしながら冷間圧
延→深絞り加工→しごき加工においては、それぞれの加
工様式が異なるため、転位の蓄積形態が異なり、単純に
すべての加工率の総和で考えることはできない。本発明
者等はこの点も充分に踏まえて、実際の工業的な缶胴製
造においてサブグレイン化率の変化に大きな影響を与え
かつ容易に調整可能な因子としての加工歪の定義につい
て検討した結果、最終再結晶板厚から最終冷間圧延板板
厚までの加工歪がサブグレイン化率に最も大きく寄与し
かつ実際に調整可能であって、その最終再結晶板厚から
最終冷間圧延板板厚までの加工歪を制御因子として用い
た(4)式が、最も実際的であることを見出したのであ
る。
Further, in deriving the equations (1) and (4), regarding the influence of the cold working degree after the final recrystallization, as shown in the equation (2), the final cold state after the final recrystallization is performed. Only the workability (rolling rate) in hot rolling is considered. Strictly considering here, as already mentioned, even in the DI processing (deep drawing and ironing), the cold working gives a slight reduction in the plate thickness, so that the DI processing also has a slight effect on the sub-graining. Will be given. However, in cold rolling → deep drawing → ironing, since the processing modes are different, dislocation accumulation forms are different, and it is not possible to simply consider the sum of all processing rates. The present inventors have sufficiently considered this point, and as a result of studying the definition of processing strain as a factor that has a great influence on the change in the subgraining rate in the actual industrial can body manufacturing and can be easily adjusted. , The processing strain from the final recrystallized plate thickness to the final cold-rolled plate thickness contributes the most to the subgrain conversion rate and is actually adjustable, and the final recrystallized plate thickness to the final cold-rolled plate plate It was found that the equation (4) using the processing strain up to the thickness as a control factor is the most practical.

【0038】以上のようにして、(4)式を満たすよう
にMg量、最終再結晶後の冷間加工度、DI加工後の加
熱処理の温度、時間を適切に設定することによって、缶
胴縁部のサブグレイン化率が10%以上の缶胴を確実か
つ安定して得ることができる。そしてこのように缶胴縁
部のサブグレイン化率を10%以上(好ましくは20%
以上)とすることによって、強度、DI加工性に優れる
ばかりでなく、缶胴縁部の成形性(ネッキング加工性、
フランジ加工性、シーミング加工性)の優れたDI缶胴
を得ることができる。
As described above, by appropriately setting the amount of Mg, the degree of cold working after the final recrystallization, the temperature of the heat treatment after DI processing, and the time so as to satisfy the formula (4), the can body It is possible to reliably and stably obtain a can body having a subgrain conversion rate of 10% or more at the edge. Thus, the sub-graining rate of the can edge is 10% or more (preferably 20%).
By the above, not only the strength and DI processability are excellent, but also the moldability of the can edge (necking processability,
It is possible to obtain a DI can body having excellent flange processability and seaming processability.

【0039】[0039]

【実施例】表1の合金番号1〜7に示す成分組成の各合
金について、常法に従ってDC鋳造し、得られた鋳塊に
均熱処理を施してから熱間圧延を行ない、種々の厚みの
熱延板とした。得られた熱延板に、表2中に示すような
条件で再結晶焼鈍を施した後、冷間圧延を施して最終的
に板厚0.3mmとした。なお一部については、熱延板
に対して一次冷間圧延を施して中間板厚としてから再結
晶焼鈍を施し、その後最終冷間圧延を施して前記同様に
最終的に板厚0.3mmとした。さらに各冷延板を用い
て常法に従ってDI成形を行ない、その後種々の温度・
時間で塗装焼付処理を想定した加熱処理を表2中に示す
ような条件で施した。
EXAMPLES For each alloy having the composition shown in alloy Nos. 1 to 7 in Table 1, DC casting was performed according to a conventional method, and the obtained ingot was subjected to soaking treatment and hot rolling to obtain various thicknesses. It was a hot rolled plate. The obtained hot-rolled sheet was subjected to recrystallization annealing under the conditions shown in Table 2 and then cold-rolled to finally have a sheet thickness of 0.3 mm. For some of the hot-rolled sheets, primary cold rolling was performed to obtain an intermediate sheet thickness, then recrystallization annealing was performed, and then final cold rolling was performed to finally obtain a sheet thickness of 0.3 mm as described above. did. Furthermore, DI molding is performed using each cold-rolled sheet according to a conventional method, and then various temperatures and
Heat treatment was performed under the conditions shown in Table 2 assuming coating baking treatment for a certain period of time.

【0040】上述のようにして得られた塗装焼付け処理
相当加熱処理後のDI缶胴について、縁部のサブグレイ
ン化率を透過電子顕微鏡で測定したので、その結果を表
3中に示す。さらに常法に従ってネッキング加工を行な
った後の口拡げ性を調べた。この口拡げ性は、缶胴壁に
対して30°の傾斜角を有するテーパーポンチをネッキ
ング加工後の開口端に押し込み、縁部に破断が生じるま
での缶端部の半径増加量で評価した。なおこのような口
拡げ性評価では、その評価値(半径増加量)が大きいほ
どフランジ加工性が良好であり、その評価値が2.0
(mm)未満ではフランジ性が劣ると言えることが、経
験的に知られている。さらに、塗装焼付け処理後の強度
について調べるとともに、ネッキング加工、フランジ加
工後のシーミング加工性を調べたので、これらの結果も
表3中に示す。なおここで、塗装焼付け処理後の強度
は、DI缶胴において最も問題となるボトム耐圧強度を
想定し、元板に対して前述のような塗装焼付け処理を施
した後の強度を調べた。この塗装焼付け処理後の強度が
260N/mm2 以下では、耐圧強度の必要な缶胴とし
ては不適切と評価される。またシーミング加工性は、実
際に缶蓋を取付けてのシーミング加工を各20缶につい
て行ない、1缶でも缶胴縁部に割れが生じた場合に×印
を、1缶にも割れが生じなかった場合に○印を付した。
With respect to the DI can body after the heating treatment equivalent to the coating baking treatment obtained as described above, the subgrain conversion rate of the edge portion was measured by a transmission electron microscope. The results are shown in Table 3. Further, the mouth widening property after the necking process was performed according to a conventional method was examined. The mouth spreadability was evaluated by increasing the radius of the can end until a rupture occurred at the edge by pushing a tapered punch having an inclination angle of 30 ° with respect to the can body wall into the opening end after necking. In the evaluation of the mouth spreadability, the larger the evaluation value (radius increase amount), the better the flange formability, and the evaluation value is 2.0.
It is empirically known that if it is less than (mm), the flange property is inferior. Further, the strength after the paint baking treatment was investigated, and the seaming workability after the necking processing and the flange processing was also investigated. The results are also shown in Table 3. Here, assuming that the strength after the coating baking treatment is the bottom pressure resistance strength which is the most problematic in the DI can body, the strength after the above-mentioned coating baking treatment was applied to the original plate was examined. If the strength after this baking treatment is 260 N / mm 2 or less, it is evaluated as unsuitable as a can body requiring pressure resistance. As for the seaming workability, seaming with the can lid actually attached was carried out for each 20 cans. When even one can cracked in the can edge of the can, an X mark was given and no crack occurred in one can. The case is marked with a circle.

【0041】なおまた表3中には、最終再結晶後の冷間
圧延板厚真歪εの値と、式(4)の左辺の値も示した。
ここで、式(4)の左辺の値の計算においては、アルミ
ニウムの活性化エネルギQ=37kcal/mol、気
体定数R=1.986cal/mol/Kを用いた。
Table 3 also shows the value of the true strain ε of cold-rolled sheet after final recrystallization and the value on the left side of the equation (4).
Here, in the calculation of the value on the left side of the equation (4), the activation energy Q of aluminum is 37 kcal / mol and the gas constant R is 1.986 cal / mol / K.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】表2、表3において、製造番号5,7,1
1,14の場合はいずれも式(4)の左辺の値が1より
小さく、そのためサブグレイン化率が10%未満となっ
た。そしてこれらの場合、いずれも缶胴縁部の成形性が
劣り、シーミング加工時に割れが発生した。なおこれら
のうち、製造番号5は合金の成分組成は本発明範囲内で
あるが、塗装焼付相当加熱処理の温度が低かったためサ
ブグレイン化が充分に進行しなかった例であり、また製
造番号7の場合は合金のMg量が多いためサブグレイン
化が遅れた例である。また製造番号10〜15は、この
発明で規定する成分組成範囲内の同一の合金(但しMg
量は上限近い)について、缶胴素材製造条件、塗装焼付
相当加熱処理条件を異ならしめた例であるが、製造番号
10の場合は最終冷間圧延圧下率を高くすることによっ
て、また製造番号12,13,15の場合は塗装焼付相
当加熱処理の温度を高くするかまたは時間を長くする等
の適切な組合せを適用することによって、10%以上の
サブグレイン化率を充分に達成し、これによって良好な
缶胴縁部成形性を確保することができた。一方製造番号
11は最終冷間圧延圧下率が低いと同時に塗装焼付相当
加熱処理の時間が比較的短かいため、同一の合金を用い
てもサブグレイン化率が低く、良好な缶胴縁部成形性が
得られなかった。また製造番号14は、製造番号11の
場合よりもさらに塗装焼付相当加熱処理の温度を低くし
た例であるが、この場合もサブグレイン化率が低く、缶
胴縁部の成形性が劣っていた。これらの例から、合金の
Mg量、最終冷間圧延の圧下率、DI加工後の加熱処理
の温度、時間を前記(4)式を満たすように適切に設定
することが、サブグレイン化率10%以上を達成して、
良好な缶胴縁部成形性を得るために必要であることが分
る。
In Tables 2 and 3, serial numbers 5, 7, 1
In each of the cases of 1 and 14, the value on the left side of the equation (4) was smaller than 1, so that the subgrain conversion rate was less than 10%. In all of these cases, the moldability of the can edge was poor, and cracking occurred during seaming. Among these, the production number 5 is an example in which the composition of the alloy is within the range of the present invention, but the sub-graining did not proceed sufficiently due to the low temperature of the heat treatment equivalent to coating baking, and the production number 7 In the case of (3), the amount of Mg in the alloy was large, so that the subgrain formation was delayed. Manufacturing numbers 10 to 15 are the same alloys within the composition range defined by the present invention (however, Mg
(The amount is close to the upper limit), the can barrel material manufacturing conditions and the coating baking equivalent heat treatment conditions are different, but in the case of manufacturing number 10, by increasing the final cold rolling reduction ratio, manufacturing number 12 , 13 and 15 by applying an appropriate combination such as increasing the temperature of the baking baking equivalent heat treatment or prolonging the time, a sub-graining rate of 10% or more is sufficiently achieved. It was possible to secure good moldability on the can edge portion. On the other hand, production number 11 has a low final cold rolling reduction rate and at the same time has a relatively short coating baking time, so that even if the same alloy is used, the subgrain conversion rate is low, and good can edge forming The sex was not obtained. Further, the production number 14 is an example in which the temperature of the coating baking-equivalent heat treatment is lower than that of the production number 11, but in this case as well, the subgrain conversion rate is low and the formability of the can edge portion is poor. . From these examples, it is necessary to appropriately set the amount of Mg of the alloy, the reduction rate of the final cold rolling, the temperature of the heat treatment after DI processing, and the time so as to satisfy the above expression (4). % Or more,
It can be seen that this is necessary to obtain good moldability on the can edge.

【0046】さらに製造番号1の場合は、サブグレイ化
率は充分であるものの、Mgを実質的に添加していない
ため、缶胴材としての所定の強度が得られなかった。ま
た製造番号9の場合は、サブグレイン化率は達成した
が、Mn添加量が過剰であるため、フランジ加工時の割
れの起点となりやすいMn系化合物が多く、さらにMn
系の初晶巨大金属間化合物が生じて缶胴縁部の成形性を
劣化させた。また製造番号8の場合は、缶胴縁部の成形
性、強度は充分であったが、Mn添加量が少な過ぎるた
め、Mn系化合物による固体潤滑的な効果が得られず、
そのためDI加工時に激しいゴーリングが発生し、缶外
観を著しく損ねるとともに、ダイスに著しいアルミの凝
着が生じた。
Further, in the case of Production No. 1, although the sub-grayization ratio was sufficient, Mg was not substantially added, so that the predetermined strength as the can body material was not obtained. Further, in the case of manufacturing number 9, although the subgrain conversion rate was achieved, since the amount of Mn added was excessive, there were many Mn-based compounds that tended to be the starting points of cracks during flange processing.
The primary crystal giant intermetallic compound of the system was generated and deteriorated the formability of the can edge. Further, in the case of production number 8, the moldability and strength of the can edge portion were sufficient, but since the amount of Mn added was too small, the solid lubricating effect of the Mn-based compound was not obtained,
As a result, severe galling occurred during DI processing, which markedly impaired the appearance of the can and resulted in significant aluminum adhesion to the die.

【0047】これに対し合金成分組成がこの発明で規定
する範囲を満たすと同時に、Mg量、素材製造条件、塗
装焼付相当加熱処理条件の適切な組合せにより(4)式
の左辺の値が1を越えてサブグレイン化率10%以上を
達成した場合(本発明例)では、強度、DI加工性、缶
胴縁部成形性のいずれもが優れている。
On the other hand, while the alloy component composition satisfies the range specified by the present invention, the value on the left side of the equation (4) is set to 1 by appropriately combining the Mg content, the material manufacturing conditions, and the coating baking equivalent heat treatment conditions. When the sub-graining rate of 10% or more is exceeded (inventive example), the strength, the DI processability, and the can edge portion formability are excellent.

【0048】なお本発明例のうち、製造番号3,4,
6,12,13,15は強度と缶胴縁部成形性とを適切
にバランスさせたものである。また製造番号2は、Mg
添加量を低目にして、ある程度の強度は確保しつつも特
に缶胴縁部成形性を重視した例であり、さらに製造番号
10はある程度の缶胴縁部成形性は確保しつつも特に強
度を重視した例である。したがってこれらから、合金成
分、製造条件を適切に制御することによって、必要に応
じた強度、缶胴縁部成形性を有するDI缶胴を大きな自
由度で製造し得ることが明らかである。
Among the examples of the present invention, serial numbers 3, 4,
Nos. 6, 12, 13, and 15 are obtained by appropriately balancing the strength and the formability of the can edge portion. Manufacturing number 2 is Mg
This is an example in which the amount of addition is made low and strength to some extent is ensured, while the formability of the can rim portion is emphasized. Further, manufacturing number 10 is particularly strong while securing some formability of the can rim portion. This is an example that emphasizes. Therefore, it is clear from these that by appropriately controlling the alloying components and the production conditions, a DI can body having the required strength and moldability of the can body edge portion can be manufactured with a large degree of freedom.

【0049】[0049]

【発明の効果】この発明によれば、素材合金の成分組成
を適切に調整するとともに、特に素材合金中のMg量
と、最終再結晶後の冷間加工度と、DI加工後の加熱処
理の温度、時間を適切に組合せることによって、DI加
工および塗装焼付け処理が施されたDI缶胴として、缶
胴縁部の金属組織状態を、特に亜結晶粒(サブグレイ
ン)が10%以上を占めるような組織とすることがで
き、これによって強度およびDI加工性を損なうことな
く、缶胴縁部の成形性、すなわちネッキング加工、フラ
ンジ加工、シーミング加工等における成形性に優れたD
I缶胴を得ることができる。したがってこの発明のDI
缶胴の製造方法によれば、ネッキング加工、フランジ加
工、シーミング加工における加工硬化による缶端の破断
等の成形不良が発生することを有効に防止できるととも
に、加工荷重を小さくして、これらの加工時に缶胴に座
屈等が生じることを有効に防止でき、さらには缶胴ネッ
ク径の小径化を図って缶蓋の小径化を図ることにより缶
のより一層の軽量化を図ることが可能となる。
EFFECTS OF THE INVENTION According to the present invention, the component composition of the material alloy is appropriately adjusted, and in particular, the amount of Mg in the material alloy, the cold working degree after the final recrystallization, and the heat treatment after the DI processing are performed. By appropriately combining the temperature and the time, as a DI can body that has been subjected to DI processing and paint baking, the metal structure state of the can body edge portion, especially sub-grains (subgrains) occupy 10% or more. It is possible to obtain a D-like structure which has an excellent formability in the can edge portion, that is, necking, flanging, seaming, etc. without impairing the strength and DI processability.
I can obtain a can body. Therefore, the DI of this invention
According to the method for manufacturing a can body, it is possible to effectively prevent the occurrence of molding defects such as breakage of the can end due to work hardening in necking processing, flanging processing, and seaming processing, and to reduce the processing load to reduce these processing loads. At the same time, it is possible to effectively prevent buckling of the can body, and to further reduce the weight of the can by reducing the neck diameter of the can body and the can lid. Become.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.1〜1.5%(重量%、以下同
じ)、Mn0.5〜1.8%、Fe0.1〜0.8%、
Si0.05〜0.5%、Cu0.05〜0.7%を含
有し、残部がAlおよび不可避的不純物よりなる合金を
鋳造し、均熱処理、熱間圧延および冷間圧延を行なって
所定の板厚に仕上げ、しかも熱間圧延から冷間圧延中途
までの間に再結晶させ、さらに冷間圧延後の仕上板厚の
缶胴素材に対して、DI加工と塗装焼付処理を含む加熱
処理とを行なうアルミニウム合金製DI缶胴の製造方法
において、 最終再結晶時の板厚をt1 とするとともに仕上板厚をt
2 として、最終再結晶時から仕上板厚までの冷間圧延板
厚真歪εをε=ln(t1 /t2 )と定義し、かつDI
加工後の加熱処理温度をT(K)、アルミニウムの自己
拡散の活性化エネルギをQ、気体定数をRとして、アル
ミニウムの自己拡散Dを、D=exp(−Q/R・T)
と定義し、さらにMg量(重量%)をMg%とし、DI
加工後の加熱処理時間をt(sec)として、次式 ε3 ×D×ln(t)/(Mg%)4 >1 が満たされるように最終再結晶時から仕上板厚までの冷
間加工率、DI加工後の加熱処理の温度および時間を制
御して、塗装焼付処理後の缶胴縁部が10%以上の亜結
晶粒を有するDI缶胴を得ることを特徴とする、缶胴縁
部の成形性に優れたアルミニウム合金製DI缶胴の製造
方法。
1. Mg 0.1-1.5% (weight%, the same hereinafter), Mn 0.5-1.8%, Fe 0.1-0.8%,
An alloy containing 0.05 to 0.5% of Si and 0.05 to 0.7% of Cu and the balance of Al and unavoidable impurities is cast and subjected to soaking, hot rolling and cold rolling to obtain a predetermined amount. Finished to a plate thickness, recrystallized between hot rolling and the middle of cold rolling, and a can body material having a finished plate thickness after cold rolling is subjected to heat treatment including DI processing and paint baking treatment. In the method for producing a DI can body made of an aluminum alloy, the plate thickness at the time of final recrystallization is set to t 1, and the finish plate thickness is set to t.
2 , the true strain ε of the cold rolled sheet thickness from the final recrystallization to the finished sheet thickness is defined as ε = ln (t 1 / t 2 ), and DI
Assuming that the heat treatment temperature after processing is T (K), the activation energy of self-diffusion of aluminum is Q, and the gas constant is R, the self-diffusion D of aluminum is D = exp (-Q / R · T).
And the amount of Mg (% by weight) is Mg%
Cold processing from the time of final recrystallization to the finished plate thickness so that the following equation ε 3 × D × ln (t) / (Mg%) 4 > 1 is satisfied, where the heat treatment time after processing is t (sec). Rate, the temperature and time of the heat treatment after DI processing are controlled to obtain a DI can barrel having 10% or more of sub-crystal grains in the can barrel edge after paint baking. Method for producing a DI can body made of an aluminum alloy having excellent moldability of a part.
JP6190965A 1994-07-21 1994-07-21 Method for manufacturing aluminum alloy DI can body Expired - Fee Related JP3069008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190965A JP3069008B2 (en) 1994-07-21 1994-07-21 Method for manufacturing aluminum alloy DI can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190965A JP3069008B2 (en) 1994-07-21 1994-07-21 Method for manufacturing aluminum alloy DI can body

Publications (2)

Publication Number Publication Date
JPH0835045A true JPH0835045A (en) 1996-02-06
JP3069008B2 JP3069008B2 (en) 2000-07-24

Family

ID=16266629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190965A Expired - Fee Related JP3069008B2 (en) 1994-07-21 1994-07-21 Method for manufacturing aluminum alloy DI can body

Country Status (1)

Country Link
JP (1) JP3069008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514139A (en) * 1996-07-08 2000-10-24 アルキャン・インターナショナル・リミテッド Manufacturing process of aluminum alloy can structure stock
US10889882B2 (en) 2016-05-27 2021-01-12 Novelis Inc. High strength and corrosion resistant alloy for use in HVAC and R systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514139A (en) * 1996-07-08 2000-10-24 アルキャン・インターナショナル・リミテッド Manufacturing process of aluminum alloy can structure stock
US10889882B2 (en) 2016-05-27 2021-01-12 Novelis Inc. High strength and corrosion resistant alloy for use in HVAC and R systems

Also Published As

Publication number Publication date
JP3069008B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
JPH0127146B2 (en)
JPH0797667A (en) Production of aluminum alloy sheet excellent in formability and hardenability in coating/baking and having delayed aging characteristic at ordinary temperature
EP0616044A2 (en) Method of manufacturing natural aging retardated aluminum alloy sheet
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JP2862198B2 (en) Aluminum alloy plate for DI can body
JPH09268341A (en) Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP2000234158A (en) Production of aluminum alloy sheet for can barrel
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same
JP3069003B2 (en) Aluminum alloy DI can body
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production
JPH0813109A (en) Production of aluminum alloy sheet for forming

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090519

LAPS Cancellation because of no payment of annual fees