JPH08338664A - Freezing cycle device - Google Patents
Freezing cycle deviceInfo
- Publication number
- JPH08338664A JPH08338664A JP7148833A JP14883395A JPH08338664A JP H08338664 A JPH08338664 A JP H08338664A JP 7148833 A JP7148833 A JP 7148833A JP 14883395 A JP14883395 A JP 14883395A JP H08338664 A JPH08338664 A JP H08338664A
- Authority
- JP
- Japan
- Prior art keywords
- refrigeration cycle
- amount
- refrigerant
- degree
- operating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、空気調和機等に用い
る冷凍サイクル装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle device used in an air conditioner or the like.
【0002】[0002]
【従来の技術】空気調和機等の冷凍サイクルは、圧縮
機、凝縮器、膨脹機構、蒸発器を順次に配管接続して冷
媒を循環させるようにしており、とくに膨脹機構として
電動膨張弁を用い、その電動膨張弁の開度を蒸発器での
冷媒の過熱度(被制御要素)が目標値(一定値)となる
よう制御することで、運転の安定化を図るものがある。2. Description of the Related Art In a refrigeration cycle of an air conditioner or the like, a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected by piping to circulate a refrigerant, and in particular, an electric expansion valve is used as the expansion mechanism. In some cases, the operation is stabilized by controlling the opening degree of the electric expansion valve so that the degree of superheat of the refrigerant (controlled element) in the evaporator reaches a target value (constant value).
【0003】このような過熱度制御には、フィードバッ
ク制御が用いられる。また、フィードバック制御では、
多くの場合、制御定数のチューニングをあらかじめ行な
っておき、それを搭載するという方法がとられている。Feedback control is used for such superheat control. In feedback control,
In many cases, the tuning of control constants is performed in advance and then mounted.
【0004】[0004]
【発明が解決しようとする課題】フィードバック制御の
場合、制御ループの時間間隔が短いことが好ましいと考
えられるが、運転条件によっては過度な制御が繰返され
て被制御要素の妥当な検出が困難となり、被制御要素が
大きく変動してしまういわゆるハンチングに至るおそれ
がある。逆に、制御ループの時間間隔が長い場合、過度
な制御が減り、サイクルの無駄時間に対応することがで
きるものの、操作の回数が少なくなるため、外乱の影響
への強さというフィードバック制御の利点が損なわれて
しまう。In the case of feedback control, it is considered preferable that the time interval of the control loop is short, but depending on the operating conditions, excessive control is repeated and it becomes difficult to properly detect the controlled element. However, there is a possibility that so-called hunting may occur in which the controlled element greatly changes. On the contrary, when the time interval of the control loop is long, excessive control is reduced and the dead time of the cycle can be dealt with, but since the number of operations is reduced, the advantage of feedback control of the strength against the influence of disturbance Will be damaged.
【0005】フィードバック制御での過渡特性の改善に
効果があると思われる制御の例として、特公昭63-53454
号に示されるように、二つのタイマを用い、制御ループ
の時間間隔として二種類のものを設定できるものがあ
る。As an example of control that is considered to be effective in improving transient characteristics in feedback control, Japanese Patent Publication No. 63-53454
As shown in No. 2, some timers can use two types of time intervals for the control loop.
【0006】しかしながら、この場合、過渡特性の改善
には効果があるものの、被制御要素と目標値との偏差の
みに応じて操作量が決定されており、被制御要素の時間
的変化量つまり冷凍サイクルの動特性については何も考
慮されない。空気調和機はその設置方法や使用環境によ
って、使用条件が多岐にわたることが多く、そうした各
条件下では、制御に大きく影響する冷凍サイクルの動特
性がかなり違ったものになってくる。このため、どのよ
うな条件下でも操作量が一様となるような上記の制御例
では、被制御要素が目標値へ到達するまでに時間がかか
り、応答性が悪いという問題がある。However, in this case, although the transient characteristic is improved, the manipulated variable is determined only in accordance with the deviation between the controlled element and the target value, and the temporal change amount of the controlled element, that is, the refrigeration No consideration is given to the dynamics of the cycle. Air conditioners often have a wide variety of operating conditions depending on the installation method and operating environment, and under each of these conditions, the dynamic characteristics of the refrigeration cycle, which greatly affects the control, will be quite different. Therefore, in the above control example in which the manipulated variable is uniform under any condition, it takes time for the controlled element to reach the target value, and there is a problem that the responsiveness is poor.
【0007】冷凍サイクルの動特性の捕捉に関しては、
特開平6-159819号に示されるものがあるが、これは配管
長の推定のみを目的としており、上記同様、制御の応答
性が悪いという問題が残されている。Regarding capture of the dynamic characteristics of the refrigeration cycle,
There is one disclosed in Japanese Patent Laid-Open No. 6-159819, but this is only for the purpose of estimating the pipe length, and similarly to the above, the problem of poor control response remains.
【0008】この発明は上記の事情を考慮したもので、
その目的とするところは、冷凍サイクルの被制御要素を
目標値へと迅速に到達させることができる応答性にすぐ
れた冷凍サイクル装置を提供することにある。The present invention takes the above circumstances into consideration,
It is an object of the invention to provide a refrigeration cycle device having excellent responsiveness that allows controlled elements of the refrigeration cycle to quickly reach a target value.
【0009】[0009]
【課題を解決するための手段】第1の発明の冷凍サイク
ル装置は、圧縮機、凝縮器、膨脹機構、蒸発器を順次に
配管接続し、冷媒を循環させる冷凍サイクルと、この冷
凍サイクルの被制御要素を検知する検知手段と、この検
知手段で検知される被制御要素が所定の状態となるよ
う、冷凍サイクルを操作する操作手段と、この操作手段
の操作量の変化方向および被制御要素が受ける制御量の
変化方向に変更がないまま操作手段の操作回数が所定値
に達したとき、その操作回数分の操作量変化の合計値と
制御量変化の合計値との比を検出する検出手段と、この
検出手段の検出結果に応じて前記操作手段の操作量を補
正する補正手段とを備える。A refrigeration cycle apparatus of the first invention is a refrigeration cycle in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected by piping to circulate a refrigerant, and a refrigeration cycle of the refrigeration cycle. The detecting means for detecting the control element, the operating means for operating the refrigeration cycle so that the controlled element detected by the detecting means is in a predetermined state, the changing direction of the operation amount of the operating means and the controlled element are When the number of operations of the operating means reaches a predetermined value without changing the direction of change of the received control amount, a detecting means for detecting a ratio between the total value of the changes in the operation amount and the total value of the changes in the control amount for the number of operations. And correction means for correcting the operation amount of the operation means according to the detection result of the detection means.
【0010】第2の発明の冷凍サイクル装置は、第1の
発明において、膨脹機構が電動膨張弁であって、操作手
段の操作の対象がその電動膨張弁の開度であって、被制
御要素が冷媒の過熱度または圧縮機の吐出冷媒温度であ
る。In the refrigeration cycle apparatus of the second invention, in the first invention, the expansion mechanism is an electric expansion valve, and the operation target of the operation means is the opening degree of the electric expansion valve. Is the degree of superheat of the refrigerant or the temperature of the refrigerant discharged from the compressor.
【0011】第3の発明の冷凍サイクル装置は、第1ま
たは第2の発明の構成に加え、検出手段の検出結果とあ
らかじめ記憶されている基準値との比較により、冷凍サ
イクルの配管長を推定する推定手段、を設けた。The refrigeration cycle apparatus of the third invention, in addition to the configuration of the first or second invention, estimates the pipe length of the refrigeration cycle by comparing the detection result of the detection means with a reference value stored in advance. The estimation means to do so is provided.
【0012】[0012]
【作用】第1の発明の冷凍サイクル装置では、冷凍サイ
クルの被制御要素が検知され、その被制御要素が所定の
状態となるよう、冷凍サイクルが操作される。この操作
量の変化方向および被制御要素が受ける制御量の変化方
向に変更がないまま操作手段の操作回数が所定値に達し
たとき、その操作回数分の操作量変化の合計値と制御量
変化の合計値との比が検出される。この検出結果に応じ
て冷凍サイクルに対する操作量が補正される。In the refrigeration cycle apparatus of the first invention, the controlled element of the refrigeration cycle is detected, and the refrigerating cycle is operated so that the controlled element is in a predetermined state. When the number of operations of the operating means reaches a predetermined value without any change in the change direction of the operation amount and the change direction of the control amount received by the controlled element, the total value of the change in the operation amount and the change in the control amount for the operation number. The ratio with the total value of is detected. The manipulated variable for the refrigeration cycle is corrected according to the detection result.
【0013】第2の発明の冷凍サイクル装置では、第1
の発明において、膨脹機構として電動膨張弁が用いら
れ、その電動膨張弁の開度が操作の対象となる。この操
作により、被制御要素である冷媒の過熱度または圧縮機
の吐出冷媒温度が変化する。In the refrigeration cycle apparatus of the second invention, the first
In the invention, the electric expansion valve is used as the expansion mechanism, and the opening degree of the electric expansion valve is the operation target. By this operation, the degree of superheat of the refrigerant that is the controlled element or the temperature of the refrigerant discharged from the compressor changes.
【0014】第3の発明の冷凍サイクル装置では、第1
または第2の発明において、検出される比とあらかじめ
記憶されている基準値との比較により、冷凍サイクルの
配管長が推定される。In the refrigeration cycle apparatus of the third invention, the first
Alternatively, in the second aspect of the invention, the pipe length of the refrigeration cycle is estimated by comparing the detected ratio with a reference value stored in advance.
【0015】[0015]
【実施例】以下、この発明の一実施例について図面を参
照して説明する。能力可変圧縮機1の吐出口に逆止弁2
および四方弁3を介して室外熱交換器4が配管接続さ
れ、その室外熱交換器4に膨脹機構たとえば電動膨張弁
5を介して室内熱交換器6が配管接続される。そして、
室内熱交換器6が上記四方弁3を介して圧縮機1の吸込
口に配管接続される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Check valve 2 at the discharge port of variable capacity compressor 1
The outdoor heat exchanger 4 is pipe-connected via the four-way valve 3, and the indoor heat exchanger 6 is pipe-connected to the outdoor heat exchanger 4 via an expansion mechanism such as an electric expansion valve 5. And
The indoor heat exchanger 6 is pipe-connected to the suction port of the compressor 1 via the four-way valve 3.
【0016】電動膨張弁5は、入力される駆動パルスの
数に応じて開度が連続的に変化するパルスモータバルブ
(PMV)である。冷房運転時は、圧縮機1の吐出冷媒
が図示実線矢印の方向に流れる冷房サイクルが形成さ
れ、室外熱交換器4が凝縮器、室内熱交換器6が蒸発器
として機能する。The electric expansion valve 5 is a pulse motor valve (PMV) whose opening continuously changes according to the number of input drive pulses. During the cooling operation, a cooling cycle in which the refrigerant discharged from the compressor 1 flows in the direction indicated by the solid line arrow is formed, and the outdoor heat exchanger 4 functions as a condenser and the indoor heat exchanger 6 functions as an evaporator.
【0017】暖房運転時は、四方弁3の切換作動によ
り、圧縮機1の吐出冷媒が図示破線矢印の方向に流れる
暖房サイクルが形成され、室内熱交換器6が凝縮器、室
外熱交換器4が蒸発器として機能する。During the heating operation, the switching operation of the four-way valve 3 forms a heating cycle in which the refrigerant discharged from the compressor 1 flows in the direction of the dashed arrow in the figure, and the indoor heat exchanger 6 is the condenser and the outdoor heat exchanger 4 Functions as an evaporator.
【0018】室外熱交換器4と電動膨張弁5との間の配
管にキャピラリチューブ7を有するバイパス管8の一端
が接続され、バイパス管8の他端が圧縮機1の吸込口に
配管接続される。One end of a bypass pipe 8 having a capillary tube 7 is connected to a pipe between the outdoor heat exchanger 4 and the electric expansion valve 5, and the other end of the bypass pipe 8 is connected to a suction port of the compressor 1. It
【0019】室外熱交換器4において、冷房時に冷媒出
口側となる箇所に、熱交換器温度センサ(Tc)11が
取付けられる。四方弁3と圧縮機1の吸込口との間の冷
媒吸込側配管に、冷媒温度センサ(Tsu)12が取付け
られる。バイパス管8において、キャピラリチューブ7
の下流側に冷媒温度センサ(Tx)13が取付けられ
る。In the outdoor heat exchanger 4, a heat exchanger temperature sensor (Tc) 11 is attached to a portion on the refrigerant outlet side during cooling. A refrigerant temperature sensor (Tsu) 12 is attached to the refrigerant suction side pipe between the four-way valve 3 and the suction port of the compressor 1. In the bypass pipe 8, the capillary tube 7
A refrigerant temperature sensor (Tx) 13 is attached on the downstream side of.
【0020】一方、商用交流電源20に、インバータ回
路21および制御部30が接続される。そして、制御部
30に、四方弁3、電動膨張弁5、熱交換器温度センサ
11、冷媒温度センサ12,13、インバータ回路2
1、操作部31、および室内温度センサ32が接続され
る。On the other hand, an inverter circuit 21 and a control unit 30 are connected to the commercial AC power supply 20. Then, the control unit 30 includes the four-way valve 3, the electric expansion valve 5, the heat exchanger temperature sensor 11, the refrigerant temperature sensors 12 and 13, and the inverter circuit 2.
1, the operation unit 31, and the room temperature sensor 32 are connected.
【0021】インバータ回路21は、電源電圧を整流
し、それを制御部30の指令に応じた周波数(および電
圧)の交流に変換し、出力する。この出力は、圧縮機1
のモータに駆動電力として供給される。The inverter circuit 21 rectifies the power supply voltage, converts it into an alternating current of a frequency (and voltage) according to a command from the control unit 30, and outputs it. This output is the compressor 1
Is supplied as driving power to the motor.
【0022】制御部30は、当該空気調和機の全般にわ
たる制御を行なうもので、図2に示すように、主要な機
能手段として、SH演算手段、安定化制御手段、動特性
検出手段、開度制御手段、動特性比較手段、動特性基準
値記憶手段、および配管長推定手段を有する。The control unit 30 controls the entire air conditioner, and as shown in FIG. 2, the SH calculation means, the stabilization control means, the dynamic characteristic detection means, and the opening degree are the main functional means. It has a control means, a dynamic characteristic comparison means, a dynamic characteristic reference value storage means, and a pipe length estimation means.
【0023】SH演算手段は、冷凍サイクルの被制御要
素として冷媒の過熱度SHを検知する検知手段であり、
冷房時は冷媒温度センサ12の検知温度Tsuと冷媒温度
センサ13の検知温度(飽和冷媒温度)Txとの差を室
内熱交換器6での冷媒の過熱度SHとして検知し、暖房
時は冷媒温度センサ12の検知温度Tsuと熱交換器温度
センサ11の検知温度(蒸発器温度)Teとの差を室外
熱交換器4での冷媒の過熱度SHとして検知する。The SH calculation means is a detection means for detecting the superheat degree SH of the refrigerant as a controlled element of the refrigeration cycle,
During cooling, the difference between the temperature Su detected by the refrigerant temperature sensor 12 and the temperature detected by the refrigerant temperature sensor 13 (saturated refrigerant temperature) Tx is detected as the superheat degree SH of the refrigerant in the indoor heat exchanger 6, and during heating the refrigerant temperature. The difference between the detection temperature Tsu of the sensor 12 and the detection temperature (evaporator temperature) Te of the heat exchanger temperature sensor 11 is detected as the superheat degree SH of the refrigerant in the outdoor heat exchanger 4.
【0024】安定化制御手段は、一定時間間隔Δtの制
御ループごとに、SH演算手段で検知される現時点の過
熱度SH(t) とあらかじめ定められている目標値(一定
値)SHsとの偏差E(t) =SH(t) −SHsを求め、
かつこの偏差E(t) と前回求めた偏差E(t-1) との間の
変化量ΔE(t) =E(t) −E(t-1) を求め、これらE
(t) およびΔE(t) を入力とするPID制御(フィード
バック制御の一種)により電動膨張弁5の現時点の開度
に対する操作量ΔPLSを求める。The stabilization control means, for each control loop of a constant time interval Δt, the deviation between the current superheat degree SH (t) detected by the SH calculation means and a predetermined target value (constant value) SHs. E (t) = SH (t) -SHs is calculated,
Moreover, the change amount ΔE (t) = E (t) -E (t-1) between this deviation E (t) and the previously obtained deviation E (t-1) is calculated, and these E
The manipulated variable ΔPLS with respect to the current opening degree of the electric expansion valve 5 is obtained by PID control (a type of feedback control) using (t) and ΔE (t) as inputs.
【0025】動特性検出手段は、安定化制御手段で求め
られる操作量ΔPLSと、その操作量ΔPLSが加えら
れることで過熱度SHが受ける制御量ΔSHとの間の動
特性を検出する。具体的には、操作量ΔPLSの変化方
向および過熱度SHが受ける制御量ΔSHの変化方向に
変更がないまま電動膨張弁5に対する操作回数Cが所定
値kに達したとき、その操作回数分の操作量変化の合計
値と制御量変化の合計値との比をゲインγとして検出す
る。The dynamic characteristic detecting means detects the dynamic characteristic between the operation amount ΔPLS obtained by the stabilization control means and the control amount ΔSH which the superheat degree SH receives by adding the operation amount ΔPLS. Specifically, when the number of times of operation C for the electric expansion valve 5 reaches a predetermined value k without changing the direction of change of the operation amount ΔPLS and the direction of change of the control amount ΔSH received by the superheat degree SH, the number of times of the operation is reduced. The ratio of the total value of the manipulated variable changes and the total value of the controlled variable changes is detected as a gain γ.
【0026】開度制御手段は、安定化制御手段で求めら
れる操作量ΔPLSを動特性検出手段で検出される動特
性(ゲインγ)に応じて補正する補正手段、およびこの
補正手段で補正される操作量ΔPLS´だけ電動膨張弁
5の開度を操作する操作手段を有する。The opening control means corrects the manipulated variable ΔPLS calculated by the stabilization control means according to the dynamic characteristic (gain γ) detected by the dynamic characteristic detecting means, and the correcting means. It has operation means for operating the opening degree of the electric expansion valve 5 by the operation amount ΔPLS ′.
【0027】動特性比較手段は、動特性検出手段で検出
される動特性(ゲインγ)と動特性基準値記憶手段にあ
らかじめ記憶されている動特性基準値とを比較する。配
管長推定手段は、動特性比較手段の比較結果に応じて冷
凍サイクルの配管長を推定する。The dynamic characteristic comparing means compares the dynamic characteristic (gain γ) detected by the dynamic characteristic detecting means with the dynamic characteristic reference value stored in advance in the dynamic characteristic reference value storage means. The pipe length estimation means estimates the pipe length of the refrigeration cycle according to the comparison result of the dynamic characteristic comparison means.
【0028】つぎに、上記の構成の作用を図3のフロー
チャートを参照して説明する。冷房運転時および暖房運
転時、室内温度センサ32で検知される室内温度Taと
操作部31で設定される設定室内温度Tsとの差が検出
され、その温度差(空調負荷)に応じて圧縮機1の運転
周波数Fが制御される。この運転周波数制御により、室
内温度Taが設定室内温度Tsに向かって収束する。Next, the operation of the above configuration will be described with reference to the flowchart of FIG. During the cooling operation and the heating operation, the difference between the indoor temperature Ta detected by the indoor temperature sensor 32 and the set indoor temperature Ts set by the operation unit 31 is detected, and the compressor is determined according to the temperature difference (air conditioning load). The operating frequency F of 1 is controlled. By this operating frequency control, the indoor temperature Ta converges toward the set indoor temperature Ts.
【0029】運転中、一定時間間隔Δtの制御ループが
繰返され、蒸発器(冷房時は室内熱交換器6、暖房時は
室外熱交換器4)での冷媒の過熱度SHが検知される。
そして、検知される現時点の過熱度SH(t) とあらかじ
め定められている目標値(一定値)SHsとの偏差E
(t) =SH(t) −SHsが求められ、かつ偏差E(t) と
前回求められた偏差E(t-1) との間の変化量ΔE(t) =
E(t) −E(t-1) が求められ、このE(t) およびΔE
(t) を入力とするPID制御(フィードバック制御)に
より電動膨張弁5の現時点の開度に対する操作量ΔPL
Sが求められる。During operation, the control loop of a constant time interval Δt is repeated, and the superheat degree SH of the refrigerant in the evaporator (indoor heat exchanger 6 during cooling, outdoor heat exchanger 4 during heating) is detected.
Then, the deviation E between the detected superheat degree SH (t) at the present time and a predetermined target value (constant value) SHs
(t) = SH (t) -SHs is obtained, and the amount of change ΔE (t) = between the deviation E (t) and the previously obtained deviation E (t-1).
E (t) -E (t-1) is obtained, and this E (t) and ΔE
The PID control (feedback control) with (t) as input controls the manipulated variable ΔPL with respect to the current opening of the electric expansion valve 5.
S is required.
【0030】操作量ΔPLSが求められると、その操作
量ΔPLSが後述するゲインγに応じて補正される。そ
して、補正後の操作量ΔPLS´だけ、実際に電動膨張
弁5の開度が操作される。When the manipulated variable ΔPLS is obtained, the manipulated variable ΔPLS is corrected according to a gain γ described later. Then, the opening degree of the electric expansion valve 5 is actually operated by the corrected operation amount ΔPLS ′.
【0031】電動膨張弁5の開度が操作されると、蒸発
器に流入する冷媒の量が変化し、過熱度SHが変化す
る。この変化量は、すなわち開度操作によって過熱度S
Hが受ける制御量ΔSHである。When the opening degree of the electric expansion valve 5 is manipulated, the amount of refrigerant flowing into the evaporator changes, and the superheat degree SH changes. This change amount is the superheat S
It is the control amount ΔSH that H receives.
【0032】電動膨張弁5の開度操作が繰返されるごと
に、操作量ΔPLSの変化方向および過熱度SHが受け
る制御量ΔSHの変化方向にそれぞれ変更があるか否か
判定される。両変化方向に変更がないとき、カウント値
Cが“1”カウントアップされる。両変化方向の少なく
とも一方に変更があった場合には、カウント値Cがクリ
アされる。Each time the opening operation of the electric expansion valve 5 is repeated, it is determined whether or not there is a change in the direction of change of the manipulated variable ΔPLS and in the direction of change of the controlled variable ΔSH that the superheat degree SH receives. When there is no change in both changing directions, the count value C is incremented by "1". When there is a change in at least one of the two changing directions, the count value C is cleared.
【0033】両変化方向に変更がないままカウントアッ
プが続いてカウント値Cが所定値kに達すると、下式に
より、操作回数k回分の操作量変化の合計値と制御量変
化の合計値との比がゲインγとして検出される。When the count value C continues to increase without any change in both changing directions and the count value C reaches the predetermined value k, the total value of the manipulated variable changes and the total value of the controlled variable changes for the number k of operations are calculated by the following equation. Is detected as the gain γ.
【0034】[0034]
【数1】 [Equation 1]
【0035】このゲインγに応じて操作量ΔPLSが補
正される。たとえば、ゲインγに対し、0.01未満の領
域、0.01以上で0.1 未満の領域、0.1 以上の領域という
3つの領域が定められており、これら領域ごとに操作量
ΔPLSに対する補正量α1 ,α2 ,α3 が定められて
いる。ゲインγが0.01未満の値であれば、操作量ΔPL
Sがα1 だけ補正されることになる。The manipulated variable ΔPLS is corrected according to the gain γ. For example, for the gain γ, three regions are defined: a region of less than 0.01, a region of 0.01 or more and less than 0.1, and a region of 0.1 or more. The correction amounts α 1 , α 2 , α 2 , α 2 , α 3 is defined. If the gain γ is less than 0.01, the manipulated variable ΔPL
S is corrected by α 1 .
【0036】そして、上記したように、補正後の操作量
ΔPLS´だけ実際に電動膨張弁5の開度が操作され
る。運転開始時、過熱度SHが目標値SHsから大きく
外れてたとえば液バック領域(蒸発器で蒸発しきれなか
った液冷媒が圧縮機に吸込まれること)にある場合、あ
るいは電動膨張弁5の開度が安定開度から大きく外れて
いる場合、開度操作が何回か繰返されても、操作量ΔP
LSの変化方向および過熱度SHが受ける制御量ΔSH
の変化方向はどちらも一方向を保つことになる。Then, as described above, the opening degree of the electric expansion valve 5 is actually manipulated by the corrected manipulated variable ΔPLS '. At the start of operation, when the superheat degree SH deviates largely from the target value SHs and is in, for example, the liquid back region (the liquid refrigerant that has not been evaporated in the evaporator is sucked into the compressor), or when the electric expansion valve 5 is opened. If the degree of opening deviates greatly from the stable opening, even if the opening operation is repeated several times, the operation amount ΔP
Control amount ΔSH that changes direction of LS and superheat degree SH receives
Both change directions will keep one direction.
【0037】過熱度SHが目標値SHsから大きく外れ
ていたり、あるいは電動膨張弁5の開度が安定開度から
大きく外れている場合、また被制御要素である過熱度S
Hのハンチングを防ぐことなどを目的にフィードバック
制御の制御ループの時間間隔Δtを長くしている場合な
ど、通常の安定化制御を続けるだけでは、過熱度SHが
目標値SHsへ到達するまでに時間がかかってしまう。When the superheat degree SH is largely deviated from the target value SHs or the opening degree of the electric expansion valve 5 is largely deviated from the stable opening degree, the superheat degree S which is a controlled element is
When the time interval Δt of the control loop of the feedback control is lengthened for the purpose of preventing H hunting, it is necessary to continue normal stabilization control until the superheat degree SH reaches the target value SHs. It will cost you.
【0038】そこで、冷凍サイクルの現状の動特性であ
るゲインγを捕らえ、そのゲインγに基づき、電動膨張
弁5の開度に対する操作量ΔPLSを補正するのであ
る。このような補正を行なうことにより、空気調和機の
設置方法や使用環境によって冷凍サイクルの動特性が変
わっても、それにかかわらず、過熱度SHを目標値SH
sへと迅速に到達させることができ、制御の応答性の向
上が図れる。Therefore, the current dynamic characteristic of the refrigeration cycle, that is, the gain γ is captured, and the manipulated variable ΔPLS with respect to the opening degree of the electric expansion valve 5 is corrected based on the gain γ. By performing such correction, even if the dynamic characteristics of the refrigeration cycle change depending on the installation method of the air conditioner and the usage environment, the superheat degree SH is set to the target value SH regardless of the change.
s can be quickly reached, and control responsiveness can be improved.
【0039】過熱度SHの変化および電動膨張弁5の開
度変化の例を図4に示しており、破線で示す従来の安定
化制御のみの場合に比べ、応答性が格段に向上する。と
ころで、冷凍サイクルの配管長が空気調和機の設置状況
に応じて様々に変化することを考慮し、検出されるゲイ
ンγとあらかじめ記憶されている動特性基準値とが比較
される。An example of changes in the superheat degree SH and changes in the opening degree of the electric expansion valve 5 is shown in FIG. 4, and the responsiveness is remarkably improved as compared with the case of only the conventional stabilization control shown by the broken line. By the way, in consideration of the fact that the pipe length of the refrigeration cycle changes variously depending on the installation condition of the air conditioner, the detected gain γ is compared with the previously stored dynamic characteristic reference value.
【0040】配管長がたとえば 3m〜30mの範囲で可変
の空気調和機の場合、配管長が 3mのときのゲインγ
1 、および配管長が30mのときのゲインγ2 がそれぞれ
実験により確かめられ、それが動特性基準値として記憶
されている。さらに、ゲインγ1 ,γ2 には冷房用と暖
房用のそれぞれ二種類が用意される。In the case of an air conditioner in which the pipe length is variable in the range of 3 m to 30 m, the gain γ when the pipe length is 3 m
1 and the gain γ 2 when the pipe length is 30 m are confirmed by experiments, and they are stored as the dynamic characteristic reference value. Further, two types of gains γ 1 and γ 2 are prepared for cooling and for heating, respectively.
【0041】ゲインγと配管長との間には、図5に示す
ように、配管長が長くなるほどゲインγが低くなるとい
う関係がある。検出されるゲインがγ2 であったとする
と、それが図5の線形補間の条件に当て嵌められ、配管
長の推定値Lが求められる。As shown in FIG. 5, there is a relationship between the gain γ and the pipe length that the longer the pipe length, the lower the gain γ. If the detected gain is γ 2 , it is applied to the condition of the linear interpolation in FIG. 5, and the estimated value L of the pipe length is obtained.
【0042】推定値Lは、安定化制御手段におけるフィ
ードバック制御の制御定数を自動チューニングするため
の調整値として利用される。冷凍サイクルの配管長は設
置状況に応じて様々に変化する状況にあり、そのような
状況において配管長を推定してフィードバック制御の制
御定数を自動チューニングすることにより、設置状況な
どに影響を受けることなく安定した運転が可能である。The estimated value L is used as an adjustment value for automatically tuning the control constant of the feedback control in the stabilization control means. The pipe length of the refrigeration cycle changes in various ways depending on the installation situation.In such a situation, the pipe length can be estimated and the feedback control constant can be automatically tuned to affect the installation situation. Stable operation is possible.
【0043】なお、上記実施例では、被制御要素が冷媒
の過熱度SHである場合を例に説明したが、被制御要素
が圧縮機1の吐出冷媒温度Tdである場合にも同様に実
施可能である。また、被制御要素が過熱度SHおよび吐
出冷媒温度Tdの両方である場合にも同様に実施可能で
ある。In the above embodiment, the case where the controlled element is the superheat degree SH of the refrigerant has been described as an example, but the same can be applied to the case where the controlled element is the discharge refrigerant temperature Td of the compressor 1. Is. Further, it is also possible to implement the case where the controlled element has both the superheat degree SH and the discharge refrigerant temperature Td.
【0044】空気調和機への適用について説明したが、
冷凍サイクルを搭載するものであれば、他の機器にも同
様に適用できる。その他、この発明は上記実施例に限定
されるものではなく、要旨を変えない範囲で種々変形実
施可能である。Although the application to the air conditioner has been described,
As long as it is equipped with a refrigeration cycle, it can be similarly applied to other devices. Besides, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
【0045】[0045]
【発明の効果】以上述べたように、この発明によれば、
冷凍サイクルの被制御要素を検知し、その被制御要素が
所定の状態となるよう冷凍サイクルを操作するととも
に、その操作量の変化方向および被制御要素が受ける制
御量の変化方向に変更がないまま操作手段の操作回数が
所定値に達したとき、その操作回数分の操作量変化の合
計値と制御量変化の合計値との比を検出し、その検出結
果に応じて冷凍サイクルに対する操作量を補正する構成
としたので、冷凍サイクルの被制御要素を目標値へと迅
速に到達させることができる応答性にすぐれた冷凍サイ
クル装置を提供できる。As described above, according to the present invention,
The controlled element of the refrigeration cycle is detected, the refrigeration cycle is operated so that the controlled element is in a predetermined state, and the direction of change of the manipulated variable and the direction of change of the controlled variable received by the controlled element remain unchanged. When the number of operations of the operating means reaches a predetermined value, the ratio between the total value of the operation amount changes and the total value of the control amount changes for the number of operations is detected, and the operation amount for the refrigeration cycle is determined according to the detection result. Since the correction is performed, it is possible to provide the refrigeration cycle device having excellent responsiveness that allows the controlled element of the refrigeration cycle to quickly reach the target value.
【図1】一実施例の冷凍サイクルおよび制御回路の構成
を示す図。FIG. 1 is a diagram showing a configuration of a refrigeration cycle and a control circuit according to an embodiment.
【図2】同実施例の制御部の主要な機能手段を示すブロ
ック図。FIG. 2 is a block diagram showing main functional means of a control unit of the embodiment.
【図3】同実施例の作用を説明するためのフローチャー
ト。FIG. 3 is a flowchart for explaining the operation of the embodiment.
【図4】同実施例における過熱度変化および電動膨張弁
の開度変化の例を示す図。FIG. 4 is a diagram showing an example of a change in superheat and a change in opening of the electric expansion valve in the embodiment.
【図5】同実施例における線形補間の条件を示す図。FIG. 5 is a diagram showing conditions for linear interpolation in the embodiment.
1…能力可変圧縮機、4…室外熱交換器、5…電動膨張
弁(PMV)、6…室内熱交換器、8…バイパス管、1
1…熱交換器温度センサ、12,13…冷媒温度セン
サ、21…インバータ回路、30…制御部。1 ... Variable capacity compressor, 4 ... Outdoor heat exchanger, 5 ... Electric expansion valve (PMV), 6 ... Indoor heat exchanger, 8 ... Bypass pipe, 1
1 ... Heat exchanger temperature sensor, 12, 13 ... Refrigerant temperature sensor, 21 ... Inverter circuit, 30 ... Control part.
Claims (3)
次に配管接続し、冷媒を循環させる冷凍サイクルと、 この冷凍サイクルの被制御要素を検知する検知手段と、 この検知手段で検知される被制御要素が所定の状態とな
るよう、前記冷凍サイクルを操作する操作手段と、 この操作手段の操作量の変化方向および前記被制御要素
が受ける制御量の変化方向に変更がないまま前記操作手
段の操作回数が所定値に達したとき、その操作回数分の
操作量変化の合計値と制御量変化の合計値との比を検出
する検出手段と、 この検出手段の検出結果に応じて前記操作手段の操作量
を補正する補正手段と、 を具備したことを特徴とする冷凍サイクル装置。1. A refrigeration cycle in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected by piping to circulate a refrigerant, detection means for detecting a controlled element of the refrigeration cycle, and detection by this detection means. The controlled means for operating the refrigeration cycle so that the controlled element is brought into a predetermined state, and the changing direction of the operation amount of the operating means and the changing direction of the control amount received by the controlled element remain unchanged. When the number of operations of the operating means reaches a predetermined value, a detecting means for detecting a ratio between the total value of the change in the operation amount and the total value of the change in the control amount for the number of operations; A refrigeration cycle apparatus comprising: a correction unit that corrects an operation amount of the operation unit.
いて、 膨脹機構は、電動膨張弁であり、 操作手段の操作の対象は、前記電動膨張弁の開度であ
り、 被制御要素は、冷媒の過熱度または圧縮機の吐出冷媒温
度である、 ことを特徴とする冷凍サイクル装置。2. The refrigeration cycle apparatus according to claim 1, wherein the expansion mechanism is an electric expansion valve, the operation target of the operation means is an opening of the electric expansion valve, and the controlled element is a refrigerant. The refrigeration cycle device is characterized in that it is the degree of superheat of the refrigerant or the temperature of the refrigerant discharged from the compressor.
イクル装置において、 検出手段の検出結果とあらかじめ記憶されている基準値
との比較により、冷凍サイクルの配管長を推定する推定
手段、 を設けたことを特徴とする冷凍サイクル装置。3. The refrigeration cycle apparatus according to claim 1, further comprising: an estimation unit that estimates a pipe length of the refrigeration cycle by comparing a detection result of the detection unit with a reference value stored in advance. A refrigeration cycle device characterized by being provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14883395A JP3375235B2 (en) | 1995-06-15 | 1995-06-15 | Refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14883395A JP3375235B2 (en) | 1995-06-15 | 1995-06-15 | Refrigeration cycle device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08338664A true JPH08338664A (en) | 1996-12-24 |
JP3375235B2 JP3375235B2 (en) | 2003-02-10 |
Family
ID=15461760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14883395A Expired - Fee Related JP3375235B2 (en) | 1995-06-15 | 1995-06-15 | Refrigeration cycle device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3375235B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005123229A (en) * | 2003-10-14 | 2005-05-12 | Nec Engineering Ltd | Optical fiber amplifying device and its controlling method |
JP2010242995A (en) * | 2009-04-02 | 2010-10-28 | Daikin Ind Ltd | Air conditioning system |
US20120167603A1 (en) * | 2008-07-29 | 2012-07-05 | John Michael Butorac | Dynamic superheat control for high efficiency refrigeration system |
-
1995
- 1995-06-15 JP JP14883395A patent/JP3375235B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005123229A (en) * | 2003-10-14 | 2005-05-12 | Nec Engineering Ltd | Optical fiber amplifying device and its controlling method |
US20120167603A1 (en) * | 2008-07-29 | 2012-07-05 | John Michael Butorac | Dynamic superheat control for high efficiency refrigeration system |
JP2010242995A (en) * | 2009-04-02 | 2010-10-28 | Daikin Ind Ltd | Air conditioning system |
Also Published As
Publication number | Publication date |
---|---|
JP3375235B2 (en) | 2003-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101106383B1 (en) | Freezing apparatus | |
JP3117339B2 (en) | Refrigeration cycle device | |
US8104299B2 (en) | Air conditioner | |
US20110023534A1 (en) | Refrigeration system | |
CN110691950B (en) | Air conditioner | |
US4962648A (en) | Refrigeration apparatus | |
JPH11108485A (en) | Method for controlling air conditioner and outlet temperature of refrigerant heater | |
WO2012027241A1 (en) | Electric expansion valve control for a refrigeration system | |
JPH109683A (en) | Air conditioner | |
JP3375235B2 (en) | Refrigeration cycle device | |
JP3443433B2 (en) | Air conditioner | |
JP2689599B2 (en) | Operation control device for air conditioner | |
US11585578B2 (en) | Refrigeration cycle apparatus | |
JP3213662B2 (en) | Air conditioner | |
JP2004225929A (en) | Air conditioner and control method of air conditioner | |
JP3253104B2 (en) | Refrigeration cycle device | |
JPH0328676B2 (en) | ||
JPH1038398A (en) | Controller of electric expansion valve | |
JPH08327122A (en) | Air conditioner | |
JP3347441B2 (en) | Control device for air conditioner | |
JP3436962B2 (en) | Refrigeration cycle device | |
JPH06100395B2 (en) | Refrigeration system operation controller | |
JP7571523B2 (en) | Heat pump cycle equipment | |
JP4273547B2 (en) | Operation control device for refrigerator | |
JPH1038388A (en) | Air conditioner and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |