JP3436962B2 - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JP3436962B2
JP3436962B2 JP31941593A JP31941593A JP3436962B2 JP 3436962 B2 JP3436962 B2 JP 3436962B2 JP 31941593 A JP31941593 A JP 31941593A JP 31941593 A JP31941593 A JP 31941593A JP 3436962 B2 JP3436962 B2 JP 3436962B2
Authority
JP
Japan
Prior art keywords
temperature
value
compressor
operating frequency
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31941593A
Other languages
Japanese (ja)
Other versions
JPH07174416A (en
Inventor
徹 久保
徹 村木
礼次 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP31941593A priority Critical patent/JP3436962B2/en
Publication of JPH07174416A publication Critical patent/JPH07174416A/en
Application granted granted Critical
Publication of JP3436962B2 publication Critical patent/JP3436962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、空気調和機などに用
いる冷凍サイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle device used in an air conditioner or the like.

【0002】[0002]

【従来の技術】能力可変の圧縮機を備えた冷凍サイクル
装置では、負荷の温度と目標温度との差に応じて圧縮機
の運転周波数Fを制御することにより、負荷に対応する
最適な能力を得るものがある。
2. Description of the Related Art In a refrigeration cycle apparatus having a variable capacity compressor, an optimum capacity corresponding to a load is obtained by controlling an operating frequency F of the compressor according to a difference between a load temperature and a target temperature. There is something to gain.

【0003】このような冷凍サイクル装置では、過負荷
運転などの影響により、圧縮機の吐出冷媒温度が異常上
昇することがある。この異常上昇のままで運転が続く
と、圧縮機内に充填されている潤滑油が分解や劣化を起
こし、圧縮機の寿命に悪影響を与える。
In such a refrigeration cycle apparatus, the temperature of refrigerant discharged from the compressor may rise abnormally due to the influence of overload operation. If the operation continues with this abnormal increase, the lubricating oil filled in the compressor will be decomposed or deteriorated, and the life of the compressor will be adversely affected.

【0004】このような不具合を防ぐため、圧縮機から
吐出される冷媒の温度Tdを検知し、その検知温度Td
に応じて運転周波数Fの制御パターンを切換えるものが
ある。一例を図7に示す。
In order to prevent such a problem, the temperature Td of the refrigerant discharged from the compressor is detected and the detected temperature Td is detected.
There is a method in which the control pattern of the operating frequency F is switched according to. An example is shown in FIG.

【0005】すなわち、吐出冷媒温度Tdに対し、複数
のゾーンを定めている。Tdが 113℃未満のAゾーンに
あるとき、負荷の温度と目標温度との差に応じて運転周
波数Fを制御する。つまり、通常の運転周波数制御を実
行する。
That is, a plurality of zones are defined for the discharge refrigerant temperature Td. When Td is in the A zone below 113 ° C, the operating frequency F is controlled according to the difference between the load temperature and the target temperature. That is, the normal operation frequency control is executed.

【0006】Tdが上昇して 113℃と同じまたはそれ以
上のBゾーンに入ると、先ず運転周波数Fを30Hz下げ
る。その後、3分毎に5Hzずつ運転周波数Fを下げる。
この制御をTdが 110℃未満のAゾーンに戻るまで継続
する。なお、運転周波数Fの低下に対し、許容最低運転
周波数Fmin (たとえば28Hz)の制限を設けている。
When Td rises and enters the B zone equal to or higher than 113 ° C., the operating frequency F is first lowered by 30 Hz. After that, the operating frequency F is lowered by 5 Hz every 3 minutes.
This control is continued until it returns to the A zone where Td is less than 110 ° C. In addition, with respect to the decrease of the operating frequency F, the minimum allowable operating frequency Fmin (for example, 28 Hz) is limited.

【0007】Bゾーンの制御の後、Tdが 110℃未満の
Aゾーンに戻ると、Bゾーンの制御に入る直前の運転周
波数Fから5Hzを減算し、この減算により得られる値を
許容最高運転周波数Fmax として定め、通常の運転周波
数制御に戻る。なお、Tdが100℃未満に下がったら、
許容最高運転周波数Fmax の制限を解除する。
After the control of the B zone, when returning to the A zone where Td is less than 110 ° C., 5 Hz is subtracted from the operating frequency F immediately before entering the control of the B zone, and the value obtained by this subtraction is the maximum allowable operating frequency. It is set as Fmax, and the normal operation frequency control is resumed. If Td drops below 100 ° C,
Remove the maximum allowable operating frequency Fmax.

【0008】この動作を繰り返すことでTdをAゾーン
に安定させるのであるが、場合によってはTdの上昇を
抑えきれずに、Tdが 122℃を超えることがある。この
場合は、即、圧縮機の運転を停止する。
By repeating this operation, Td is stabilized in the A zone. However, in some cases, the rise in Td cannot be suppressed and Td may exceed 122 ° C. In this case, immediately stop the operation of the compressor.

【0009】[0009]

【発明が解決しようとする課題】上記の制御パターンで
は、TdがAゾーンにあるとき、負荷の温度を目標温度
に至らせるための運転周波数制御がなされるだけで、T
dの上昇を抑えるための運転周波数制御はなされない。
In the above control pattern, when Td is in the A zone, the operation frequency control is only performed to bring the temperature of the load to the target temperature.
The operating frequency control for suppressing the increase of d is not performed.

【0010】このため、TdがAゾーンからBゾーンへ
とオーバーシュート気味に一気に上昇することがある。
しかも、TdがBゾーンへ入ると、その途端、運転周波
数Fが急激に低下されてしまう。
For this reason, Td may suddenly rise from A zone to B zone with a slight overshoot.
Moreover, when Td enters the B zone, the operating frequency F is suddenly lowered.

【0011】このようなTdの急上昇および運転周波数
Fの急低下は、結局、運転周波数Fの大きな変動を招
き、Tdを安定させるどころか大きく変動させてしま
う。この発明は上記の事情を考慮したもので、その目的
とするところは、圧縮機から吐出される冷媒の温度を、
運転周波数の大きな変動を生じることなく最適な状態に
安定化して圧縮機内の潤滑油の分解や劣化を防止し、圧
縮機の寿命向上が図れる冷凍サイクル装置を提供するこ
とにある。
Such a sudden increase in Td and a sudden decrease in operating frequency F eventually result in a large change in operating frequency F, which causes a large change rather than stabilizing Td. The present invention takes the above circumstances into consideration, and the purpose thereof is to determine the temperature of the refrigerant discharged from the compressor,
(EN) A refrigeration cycle device capable of stabilizing an optimal state without causing a large change in operating frequency, preventing decomposition and deterioration of lubricating oil in a compressor, and improving the life of the compressor.

【0012】[0012]

【課題を解決するための手段】第1の発明の冷凍サイク
ル装置は、圧縮機、凝縮器、減圧器、および蒸発器を配
管接続してなる冷凍サイクルと、負荷の温度Taを検知
する第1温度センサと、圧縮機から吐出される冷媒の温
Tdを検知する第2温度センサと、この第2温度セン
サの検知温度Tdが第1設定値未満のとき、第1温度セ
ンサの検知温度Taと目標温度Tsとの差に応じて圧縮
機の運転周波数を制御する第1制御手段と、第2温度
センサの検知温度Tdが第1設定値以上のとき、第1温
度センサの検知温度Taと目標温度Tsとの差に応じて
圧縮機の運転周波数Fに対する第1目標値F を設定す
るともに、第2温度センサの検知温度Tdと第2設定値
(>第1設定値)Tdsとの差Tddおよびその差Td
の変化量ΔTddから圧縮機の実際の運転周波数Fに
対する補正値ΔF を算出してその実際の運転周波数F
に補正値ΔF を加算した第2目標値F を設定し、こ
れら第1目標値F および第2目標値F のうち小さい
方に圧縮機の運転周波数Fを合わせる第2制御手段と、
この第2温度センサの検知温度Tdが第3設定値(>第
2設定値Tds)以上のときに圧縮機の運転を停止する
第3制御手段と、を備え、第2温度センサの検知温度T
dに対する第1設定値を低温度側に拡げてその第1設定
値と第2設定値Tdsとの間のゾーンを広く設定し、そ
のゾーンに検知温度Tdが入った途端、同ゾーンおける
検知温度Tdの大きさを第2設定値Tdsとの差Tdd
として検出するとともにその差Tddの変化量ΔTdd
を検出し、これら検出結果に応じて圧縮機の運転周波数
Fに対する第2目標値F を設定する
A refrigeration cycle apparatus of a first invention is a refrigeration cycle in which a compressor, a condenser, a pressure reducer, and an evaporator are connected by piping, and a first temperature Ta of a load is detected. A temperature sensor, a second temperature sensor for detecting the temperature Td of the refrigerant discharged from the compressor, and a detection temperature Ta of the first temperature sensor when the detection temperature Td of the second temperature sensor is less than the first set value. First control means for controlling the operating frequency F of the compressor according to the difference from the target temperature Ts, and the first temperature when the detected temperature Td of the second temperature sensor is equal to or higher than the first set value.
Depending on the difference between the temperature Ta detected by the temperature sensor and the target temperature Ts
Set the first target value F 1 for the operating frequency F of the compressor
In addition, the difference Tdd between the temperature Td detected by the second temperature sensor and the second set value (> the first set value) Tds and the difference Td thereof.
From the change amount ΔTdd of d to the actual operating frequency F of the compressor
Calculate the correction value ΔF 0 for the actual operating frequency F
Set the second target value F 2 by adding the correction value ΔF 0 to
The smaller of these first target value F 1 and second target value F 2
Second control means for adjusting the operating frequency F of the compressor to one side ,
The detected temperature Td of the second temperature sensor is the third set value (>
2 When the set value Tds) or more, stop the operation of the compressor
A third control means, and the detection temperature T of the second temperature sensor
The first set value for d is expanded to the low temperature side and the first set value is set.
Widely set the zone between the value and the second set value Tds,
As soon as the detected temperature Td enters the zone,
Difference between detected temperature Td and second set value Tds Tdd
And the change amount ΔTdd of the difference Tdd.
The operating frequency of the compressor according to these detection results.
A second target value F 2 for F is set .

【0013】第2の発明の冷凍サイクル装置は、第1の
発明における第2制御手段が、補正値ΔF を設定時間
tごとに算出するとともに、その設定時間tを第1目標
値F が高いほど短く設定する。
In the refrigeration cycle apparatus of the second invention, the second control means in the first invention sets the correction value ΔF 0 for the set time.
It is calculated for each t, and the set time t is the first target.
The higher the value F 1, the shorter the value is set.

【0014】[0014]

【0015】[0015]

【作用】第1の発明の冷凍サイクル装置では、圧縮機の
吐出冷媒温度Tdが第1設定値未満のとき、負荷の温度
Taと目標温度Tsとの差に応じて圧縮機の運転周波数
が制御される。吐出冷媒温度Tdが第1設定値以上の
ときには、負荷の温度Taと目標温度Tsとの差に応じ
て圧縮機の運転周波数Fに対する第1目標値F が設定
される。吐出冷媒温度Tdと第2設定値(>第1設定
値)Tdsとの差Tddおよびその差Tddの変化量Δ
Tddから圧縮機の実際の運転周波数Fに対する補正値
ΔF が算出されてその実際の運転周波数Fに補正値Δ
を加算した第2目標値F が設定される。そして、
これら第1目標値F および第2目標値F のうち小さ
い方に圧縮機の運転周波数Fが合わせられる。一方、吐
出冷媒温度Tdが第3設定値(>第2設定値Tds)以
上になると、圧縮機の運転が停止される。
In the refrigeration cycle apparatus of the first aspect of the invention, when the discharge refrigerant temperature Td of the compressor is less than the first set value, the load temperature is
The operating frequency of the compressor according to the difference between Ta and the target temperature Ts
F is controlled. When the discharge refrigerant temperature Td is equal to or higher than the first set value, it depends on the difference between the load temperature Ta and the target temperature Ts.
The first target value F 1 for the compressor operating frequency F is set.
To be done. Discharge refrigerant temperature Td and second set value (> first set
Value) Difference Tdd from Tds and variation Δ of the difference Tdd
Correction value for the actual operating frequency F of the compressor from Tdd
ΔF 0 is calculated and the correction value Δ is added to the actual operating frequency F.
A second target value F 2 that is obtained by adding F 0 is set. And
The smaller of the first target value F 1 and the second target value F 2
The operating frequency F of the compressor is adjusted to the other side. On the other hand, vomiting
The refrigerant outlet temperature Td is equal to or higher than the third set value (> second set value Tds).
At the top, compressor operation is stopped.

【0016】第2の発明の冷凍サイクル装置では、補正
値ΔF が設定時間tごとに算出されるとともに、その
設定時間tが第1目標値F が高いほど短く設定され
る。
In the refrigeration cycle apparatus of the second invention, the correction
The value ΔF 0 is calculated at each set time t, and
The set time t is set shorter as the first target value F 1 is higher.
It

【0017】[0017]

【0018】[0018]

【実施例】以下、この発明の一実施例について図面を参
照して説明する。図1において、Aは室外ユニット、B
1 ,B2 は室内ユニットである。これらユニットに、次
の冷凍サイクルが構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, A is an outdoor unit and B is
1 and B 2 are indoor units. The following refrigeration cycle is configured in these units.

【0019】能力可変式の圧縮機1の吐出口に、四方弁
2を介して室外熱交換器3が接続される。この室外熱交
換器3に、液側主管Wが接続される。この液側主管Wは
液側支管(liquid side branch pipes)W1 ,W2 に分
岐されている。液側支管W1,W2 に、室内熱交換器1
2,22が接続される。液側支管W1 ,W2 に、減圧器
として電動膨張弁11,21が設けられる。この電動膨
張弁11,21は、供給される駆動パルスの数に応じて
開度が連続的に変化するパルスモータバルブである。以
下、電動膨張弁のことをPMVと称する。
An outdoor heat exchanger 3 is connected to a discharge port of a variable capacity compressor 1 through a four-way valve 2. The liquid side main pipe W is connected to the outdoor heat exchanger 3. The liquid side main pipe W is branched into liquid side branch pipes W 1 and W 2 . The indoor heat exchanger 1 is attached to the liquid side branch pipes W 1 and W 2.
2, 22 are connected. The liquid-side branch pipes W 1 and W 2 are provided with electric expansion valves 11 and 21 as pressure reducers. The electric expansion valves 11 and 21 are pulse motor valves whose opening continuously changes according to the number of drive pulses supplied. Hereinafter, the electric expansion valve will be referred to as PMV.

【0020】室内熱交換器12,22にガス側支管G
1 ,G2 が接続される。このガス側支管G1 ,G2 はガ
ス側主管Gに集結されており、ガス側主管Gは上記四方
弁2を介して圧縮機1の吸込口に接続される。
A gas side branch pipe G is attached to the indoor heat exchangers 12 and 22.
1 , G 2 are connected. The gas side branch pipes G 1 and G 2 are gathered together in the gas side main pipe G, and the gas side main pipe G is connected to the suction port of the compressor 1 via the four-way valve 2.

【0021】室外熱交換器3の近傍に室外ファン4が設
けられる。圧縮機1の吐出口と四方弁2との間の管に、
除霜用のバイパス管5の一端が接続され、そのバイパス
管5の他端が液側主管Wに接続される。バイパス管5に
二方弁6が設けられる。室外熱交換器3に温度センサ7
が取付けられる。四方弁2と圧縮機1の吸込口との間の
管に、温度センサ8が取付けられる。圧縮機1の吐出口
に接続されている配管に、温度センサ9(圧縮機1の吐
出冷媒温度を検知する第2温度センサ)が取付けられ
る。
An outdoor fan 4 is provided near the outdoor heat exchanger 3. In the pipe between the discharge port of the compressor 1 and the four-way valve 2,
One end of the defrosting bypass pipe 5 is connected, and the other end of the bypass pipe 5 is connected to the liquid side main pipe W. A two-way valve 6 is provided in the bypass pipe 5. A temperature sensor 7 is attached to the outdoor heat exchanger 3.
Is installed. A temperature sensor 8 is attached to a pipe between the four-way valve 2 and the suction port of the compressor 1. A temperature sensor 9 (second temperature sensor that detects the temperature of the refrigerant discharged from the compressor 1) is attached to a pipe connected to the discharge port of the compressor 1.

【0022】室内熱交換器12,22の近傍に室内ファ
ン13,23が設けられる。室内熱交換器12に温度セ
ンサ14が取付けられる。室内熱交換器22に温度セン
サ24が取付けられる。ガス側支管G1 に温度センサ1
5が取付けられる。ガス側支管G2 に温度センサ25が
取付けられる。
Indoor fans 13, 23 are provided near the indoor heat exchangers 12, 22. A temperature sensor 14 is attached to the indoor heat exchanger 12. A temperature sensor 24 is attached to the indoor heat exchanger 22. Temperature sensor on the gas side branch pipe G 1 1
5 is attached. A temperature sensor 25 is attached to the gas side branch pipe G 2 .

【0023】制御回路を図2に示す。商用交流電源30
に、室外ユニットAの室外制御部40が接続される。こ
の室外制御部40は、マイクロコンピュータおよびその
周辺回路からなる。この室外制御部40に、PMV1
1,21、二方弁6、四方弁2、室外ファンモータ4
M、温度センサ7,8,9,15,25、インバータ回
路41が接続される。
The control circuit is shown in FIG. Commercial AC power supply 30
The outdoor control unit 40 of the outdoor unit A is connected to the. The outdoor control unit 40 includes a microcomputer and its peripheral circuits. PMV1 is added to the outdoor control unit 40.
1, 21, two-way valve 6, four-way valve 2, outdoor fan motor 4
M, temperature sensors 7, 8, 9, 15, 25, and the inverter circuit 41 are connected.

【0024】インバータ回路41は、電源30の電圧を
整流し、それを室外制御部40の指令に応じた周波数お
よびレベルの電圧に変換し、出力する。この出力は圧縮
機モータ1Mの駆動電力となる。
The inverter circuit 41 rectifies the voltage of the power supply 30, converts it into a voltage of a frequency and level according to a command from the outdoor control section 40, and outputs it. This output becomes drive power for the compressor motor 1M.

【0025】室内ユニットB1 ,B2 はそれぞれ室内制
御部50を備える。室内制御部50は、マイクロコンピ
ュータおよびその周辺回路からなる。この室内制御部5
0に、室内温度センサ(負荷の温度を検知する第1温度
センサ)51、温度センサ14(および24)、リモー
トコントロール式の操作器52、室内ファンモータ13
M(および23M)が接続される。
The indoor units B 1 and B 2 each include an indoor control section 50. The indoor control unit 50 includes a microcomputer and its peripheral circuits. This indoor control unit 5
0, the indoor temperature sensor (first temperature sensor for detecting the temperature of the load) 51, the temperature sensor 14 (and 24), the remote control type operation device 52, the indoor fan motor 13
M (and 23M) are connected.

【0026】これら室内制御部50と室外制御部40と
が、それぞれ電源ラインACLおよびシリアル信号ライ
ンSLにより接続される。各室内制御部50および室外
制御部40は、シリアル信号ラインSLを用いた電源電
圧同期のデータ転送を相互に行なうことにより、空気調
和機の全般にわたる制御を行なう。
The indoor control unit 50 and the outdoor control unit 40 are connected by a power supply line ACL and a serial signal line SL, respectively. The indoor control unit 50 and the outdoor control unit 40 perform overall control of the air conditioner by mutually performing power supply voltage-synchronized data transfer using the serial signal line SL.

【0027】各室内制御部50は、主として次の機能手
段を備える。 [1]操作器52で設定される運転条件(冷房モード指
令、暖房モード指令、室内温度の目標値Tsなどを含
む)を室外制御部40に知らせる手段。
Each indoor control section 50 mainly includes the following functional means. [1] A means for notifying the outdoor control unit 40 of the operating conditions (including the cooling mode command, the heating mode command, the target value Ts of the indoor temperature, etc.) set by the operation unit 52.

【0028】[2]室内温度センサ51の検知温度Ta
と操作器52で設定される室内温度の目標値Tsとの差
ΔT(=Ta−Ts)を空調負荷として検出し、その空
調負荷ΔTを室外制御部40に知らせる手段。
[2] Temperature Ta detected by the room temperature sensor 51
And means for detecting the difference ΔT (= Ta−Ts) between the indoor temperature target value Ts set by the operating device 52 as an air conditioning load and notifying the outdoor controller 40 of the air conditioning load ΔT.

【0029】[3]温度センサ14(および24)の検
知温度Tcおよび室内温度センサ51の検知温度Taを
室外制御部40に知らせる手段。室外制御部40は、主
として次の機能手段を備える。
[3] A means for notifying the outdoor control section 40 of the detected temperature Tc of the temperature sensor 14 (and 24) and the detected temperature Ta of the indoor temperature sensor 51. The outdoor control unit 40 mainly includes the following functional means.

【0030】[1]各室外制御部50から知らされる冷
房モード指令に基づき、圧縮機1の吐出冷媒を四方弁
2、室外熱交換器3、PMV11,21、室内熱交換器
12,22、四方弁2に通して圧縮機1に戻し、冷房運
転を実行する手段。
[1] Based on the cooling mode command informed from each outdoor control unit 50, the refrigerant discharged from the compressor 1 is supplied with the four-way valve 2, the outdoor heat exchanger 3, the PMVs 11 and 21, the indoor heat exchangers 12 and 22, A means for returning to the compressor 1 through the four-way valve 2 to execute a cooling operation.

【0031】[2]各室外制御部50から知らされる暖
房モード指令に基づき、四方弁2を切換え、圧縮機1の
吐出冷媒を四方弁2、室内熱交換器12,22、PMV
11,21、室外熱交換器3、四方弁2に通して圧縮機
1に戻し、暖房運転を実行する手段。
[2] The four-way valve 2 is switched based on the heating mode command informed from each outdoor control section 50, and the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2, the indoor heat exchangers 12, 22 and the PMV.
11 and 21, the outdoor heat exchanger 3, the four-way valve 2 to return to the compressor 1 to perform heating operation.

【0032】[3]運転時、温度センサ9の検知温度T
dが第1設定値( 105℃)未満のとき(Aゾーン)、各
室内制御部50から知らされる空調負荷ΔTの合計に応
じて圧縮機1の運転周波数F(=インバータ回路41の
出力周波数)に対する第1目標値F1 を設定し、その第
1目標値F1 に実際の運転周波数Fを合わせる手段(第
1制御手段)。
[3] Temperature T detected by the temperature sensor 9 during operation
When d is less than the first set value (105 ° C.) (A zone), the operating frequency F of the compressor 1 (= the output frequency of the inverter circuit 41 is determined according to the total air conditioning load ΔT notified from each indoor control unit 50). first sets a target value F 1 for), means to adjust the actual operating frequency F to the first target value F 1 (first control means).

【0033】[4]温度センサ9の検知温度Tdが第1
設定値( 105℃)以上のとき(Bゾーン)、各室内制御
部50から知らされる空調負荷ΔTの合計に応じて運転
周波数Fに対する第1目標値F1 を設定するとともに、
温度センサ9の検知温度Tdと第2設定値( 110℃)T
dsとの差Tdd(=Tds−Td)、およびその差Tddの変
化量ΔTdd(=Tdd−前回Tdd)に応じて運転周波数F
に対する第2目標値F2 を設定し、これら第1目標値F
1 および第2目標値F2 のうち小さい方に実際の運転周
波数Fを合わせる手段(第2制御手段)。
[4] The temperature Td detected by the temperature sensor 9 is the first
When it is equal to or higher than the set value (105 ° C.) (zone B), the first target value F 1 for the operating frequency F is set according to the total of the air conditioning load ΔT notified from each indoor control unit 50, and
Temperature Td detected by temperature sensor 9 and second set value (110 ° C) T
The operating frequency F according to the difference Tdd (= Tds-Td) from ds and the change amount ΔTdd (= Tdd-previous Tdd) of the difference Tdd.
The second target value F 2 for the
Means for adjusting the actual operating frequency F to the smaller one of 1 and the second target value F 2 (second control means).

【0034】[5]温度センサ9の検知温度Tdが第3
設定値( 122℃)以上のとき(Cゾーン)、圧縮機1の
運転を停止する手段(第3制御手段)。 [6]冷房運転時、温度センサ15の検知温度Tgと温
度センサ14の検知温度Tcとの差(=Tg−Tc)を
室内熱交換器(蒸発器)12における冷媒の過熱度SHと
して検出し、温度センサ25の検知温度Tgと温度セン
サ24の検知温度Tcとの差を室内熱交換器(蒸発器)
22での冷媒の過熱度SHとして検出する手段。
[5] The temperature Td detected by the temperature sensor 9 is the third
A means (third control means) for stopping the operation of the compressor 1 when it is equal to or higher than the set value (122 ° C.) (C zone). [6] During cooling operation, the difference (= Tg−Tc) between the temperature Tg detected by the temperature sensor 15 and the temperature Tc detected by the temperature sensor 14 is detected as the superheat degree SH of the refrigerant in the indoor heat exchanger (evaporator) 12. , The difference between the temperature Tg detected by the temperature sensor 25 and the temperature Tc detected by the temperature sensor 24 is calculated as the indoor heat exchanger (evaporator).
A means for detecting the superheat degree SH of the refrigerant at 22.

【0035】[7]冷房運転時、検出される各過熱度SH
が冷房用にあらかじめ決められている設定値SHs となる
よう、PMV11,21の開度をそれぞれ制御する冷房
用の第1制御手段。
[7] Each superheat degree SH detected during cooling operation
Is a first control unit for cooling, which controls the opening of each of the PMVs 11 and 21 so that the set value SHs becomes a preset value SHs.

【0036】[8]暖房運転時、温度センサ7の検知温
度Teと温度センサ8の検知温度Tsとの差(=Ts−
Te)を室外熱交換器(蒸発器)3での冷媒の過熱度SH
として検出する手段。
[8] During heating operation, the difference between the temperature Te detected by the temperature sensor 7 and the temperature Ts detected by the temperature sensor 8 (= Ts-
Te) is the superheat degree SH of the refrigerant in the outdoor heat exchanger (evaporator) 3.
Means to detect as.

【0037】[9]暖房運転時、検出される過熱度SHが
暖房用にあらかじめ決められている設定値SHs となるよ
う、PMV11,21の開度をそれぞれ制御する手段。 [10]暖房運転時、定期的に、二方弁6を開いて室外熱
交換器3に対する除霜運転を実行する手段。二方弁6が
開くと、圧縮機1から吐出される高温冷媒が室外熱交換
器3に注入される。
[9] Means for controlling the opening degree of each of the PMVs 11 and 21 during heating operation so that the detected superheat degree SH becomes a preset value SHs predetermined for heating. [10] A means for periodically performing the defrosting operation on the outdoor heat exchanger 3 by opening the two-way valve 6 during the heating operation. When the two-way valve 6 is opened, the high temperature refrigerant discharged from the compressor 1 is injected into the outdoor heat exchanger 3.

【0038】つぎに、上記の構成の作用を説明する。各
操作器52で冷房モードが設定された場合、圧縮機1の
吐出冷媒が図1の実線矢印の方向に流れ、室外熱交換器
3が凝縮器、室内熱交換器12,22が蒸発器として機
能する。これにより、冷房運転が実行される。
Next, the operation of the above configuration will be described. When the cooling mode is set in each operation device 52, the refrigerant discharged from the compressor 1 flows in the direction of the solid arrow in FIG. 1, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchangers 12 and 22 function as evaporators. Function. As a result, the cooling operation is executed.

【0039】各操作器52で暖房モードが設定された場
合、四方弁2が切換えられて圧縮機1の吐出冷媒が図1
の破線矢印の方向に流れ、室内熱交換器12,22が凝
縮器、室外熱交換器3が蒸発器として機能する。これに
より、暖房運転が実行される。
When the heating mode is set by each operating device 52, the four-way valve 2 is switched and the refrigerant discharged from the compressor 1 is discharged as shown in FIG.
, The indoor heat exchangers 12 and 22 function as condensers, and the outdoor heat exchanger 3 functions as an evaporator. As a result, the heating operation is executed.

【0040】この冷房および暖房運転中、図3ないし図
6に示す運転周波数制御が実行される。室内ユニットB
1 ,B2 で室内温度Taが検知され、これら室内温度T
aと各リモコン52で設定される目標温度Tsとの差Δ
Tが空調負荷として検出される。これら空調負荷ΔTの
合計値に応じて運転周波数Fに対する第1目標値F1
決定される。そして、この第1目標値F1 が目標値F0
に置き換えられる。
During the cooling and heating operations, the operation frequency control shown in FIGS. 3 to 6 is executed. Indoor unit B
The room temperature Ta is detected by 1 and B 2 , and the room temperature T is detected.
difference Δ between a and the target temperature Ts set by each remote controller 52
T is detected as the air conditioning load. The first target value F 1 for the operating frequency F is determined according to the total value of these air conditioning loads ΔT. Then, the first target value F 1 is the target value F 0
Is replaced by

【0041】圧縮機1から吐出される冷媒の温度Tdが
温度センサ9で検知され、その検知温度Tdと図4に示
すゾーン制御条件とが対比される。Tdが 113℃未満の
とき、フラグFLAGが“0”にセットされる。このフラグ
FLAGは、Tdが異常温度域である 122℃以上のCゾーン
に入ったかどうかを記憶しておくためのもので、“0”
はCゾーンにまだ入っていないことを示す。
The temperature Td of the refrigerant discharged from the compressor 1 is detected by the temperature sensor 9, and the detected temperature Td is compared with the zone control condition shown in FIG. When Td is less than 113 ° C, the flag FLAG is set to "0". This flag
FLAG is for storing whether Td entered the C zone of 122 ° C or higher, which is an abnormal temperature range. "0"
Indicates that it is not in the C zone yet.

【0042】Tdが 105℃未満のAゾーンにあるとき、
実際の運転周波数Fが上記の目標値F0 に合うよう制御
される。つまり、通常の運転周波数制御である。なお、
Aゾーンは、図7に示した従来のAゾーンよりも低温度
側に設定されている。
When Td is in the A zone below 105 ° C.,
The actual operating frequency F is controlled so as to match the above target value F 0 . That is, it is a normal operation frequency control. In addition,
Zone A is set to a lower temperature side than the conventional zone A shown in FIG.

【0043】Tdが上昇して 105℃以上のBゾーンに入
ると、タイムカウントtが開始され、そのタイムカウン
トtと設定時間t1 とが比較される。設定時間t1 は、
図5に示すt1 決定ルーチンによって決定される。すな
わち、目標値F0 (=F1 )が50Hz以下のときt1 =30
秒、50Hzより高く100Hz以下のときt1 =20秒、100Hzを
超えた場合(ただし150Hz以下)には1 =10秒が決定
される。なお、Bゾーンは、吐出冷媒保護制御いわゆる
Pd制御ゾーンであり、図7に示した従来のBゾーンよ
りも低温度側が広く、従来のAゾーンを含む広い領域を
有している。
When Td rises and enters the zone B above 105 ° C., the time count t is started, and the time count t is compared with the set time t 1 . The set time t 1 is
It is determined by the t 1 determination routine shown in FIG. That is, when the target value F 0 (= F 1 ) is 50 Hz or less , t 1 = 30
Second, when higher than 50Hz and below 100Hz t 1 = 20 seconds, 100Hz
When it exceeds (however, 150 Hz or less), t 1 = 10 seconds is determined. The B zone is a so-called discharge refrigerant protection control,
The Pd control zone is wider on the low temperature side than the conventional B zone shown in FIG. 7 and has a wide area including the conventional A zone.

【0044】タイムカウントtが設定時間t1 に達する
と、TdとTds( 110℃)との差Tdd(=Tds−Td)
が算出され、さらにその差Tddの変化量ΔTdd(=Tdd
−前回Tdd)が算出される。これら算出結果を用いた下
式の演算により、実際の運転周波数Fに対する補正値Δ
0 が算出される。なお、G1 = 1.0、G2 = 1.0であ
る。
When the time count t reaches the set time t 1 , the difference between Td and Tds (110 ° C.) Tdd (= Tds-Td)
Is calculated, and the amount of change in the difference Tdd is ΔTdd (= Tdd
-Previous time Tdd) is calculated. The correction value Δ for the actual operating frequency F is calculated by the following formula using these calculation results.
F 0 is calculated. Note that G 1 = 1.0 and G 2 = 1.0.

【0045】ΔF0 =G1 ・Tdd+G2 ・ΔTdd たとえば、タイムカウントtが設定時間t1 に達した時
点でのTdが 109℃で、それよりt1 時間前の前回のT
dが 106℃であったとする。この場合、現時点のTdd=
110℃− 109℃= 1℃、前回のTdd= 110℃− 106℃=
4℃であるから、ΔTdd= 1℃− 4℃=− 3℃が得られ
る。
ΔF 0 = G 1 Tdd + G 2 ΔTdd For example, when the time count t reaches the set time t 1 , the Td is 109 ° C., and the previous T 1 hour before that is t 1.
It is assumed that d is 106 ° C. In this case, the current Tdd =
110 ° C-109 ° C = 1 ° C, the previous Tdd = 110 ° C-106 ° C =
Since it is 4 ° C., ΔTdd = 1 ° C.−4 ° C. = − 3 ° C. is obtained.

【0046】よって、ΔF0 =G1 ・( 1℃)+G2
(− 3℃)=− 2Hzを得る。また、タイムカウントtが
設定時間t1 に達した時点でのTdが 113℃で、それよ
りt1 時間前の前回のTdが 109℃であったとする。こ
の場合、現時点のTdd= 110℃− 113℃=− 3℃、前回
のTdd= 110℃− 109℃= 1℃であるから、ΔTdd=
(− 3℃)−(− 1℃)=− 2℃が得られる。
Therefore, ΔF 0 = G 1 · (1 ° C) + G 2 ·
(−3 ° C.) = − 2 Hz is obtained. It is also assumed that the Td at the time when the time count t reaches the set time t 1 is 113 ° C., and the previous Td before the time t 1 is 109 ° C. In this case, Tdd = 110 ° C-113 ° C = -3 ° C at the present time and Tdd = 110 ° C-109 ° C = 1 ° C in the previous time, so ΔTdd =
(−3 ° C.) − (− 1 ° C.) = − 2 ° C. is obtained.

【0047】よって、ΔF0 =G1 ・(− 3℃)+G2
・(− 2℃)=− 5Hzを得る。実際の運転周波数Fは実
運転周波数値Ffとして記憶されており、そのFfに上
記のΔF0 が加算されて第2目標値F2 (=Ff+ΔF
0 )が設定される。
Therefore, ΔF 0 = G 1 · (−3 ° C.) + G 2
・ (−2 ℃) = − 5Hz is obtained. The actual operating frequency F is stored as the actual operating frequency value Ff, and the above-mentioned ΔF 0 is added to the Ff to obtain the second target value F 2 (= Ff + ΔF
0 ) is set.

【0048】各空調負荷ΔTの合計に基づいて設定され
る第1目標値F1 と、補正値ΔFを含む第2目標値F
とが比較され、両者のうち小さい方が目標値F0
して設定される。たとえば、F2 >F1 であれば、F1
が目標値F0 として設定される。F2 ≦F1 であれば、
2 が目標値F0 として設定される。
A first target value F 1 set on the basis of the total of the air conditioning loads ΔT and a second target value F including a correction value ΔF 0
2 is compared, and the smaller one is set as the target value F 0 . For example, if F 2 > F 1 , then F 1
Is set as the target value F 0 . If F 2 ≦ F 1 , then
F 2 is set as the target value F 0 .

【0049】設定された目標値F0 が実運転周波数値F
fとして更新記憶される。そして、運転周波数Fが目標
値F0 に合うよう制御される。このように、Bゾーンを
従来のBゾーンよりも低温度側に拡くして従来のAゾー
ンを含む広い領域に設定するとともに、TdがBゾーン
に入った途端、BゾーンおけるTdの大きさをTdsを基
準に判断し(つまりTdd)、かつTdの変化の傾きをA
ゾーンからの履歴を含めて判断し(つまりΔTdd)、こ
れら判断結果に応じて運転周波数Fに対する補正値ΔF
0 を決定するようにしたので、運転周波数Fを必要最小
限に補正しつつTdのオーバーシュート気味の上昇を回
避することができる。よって、運転周波数Fの急激な低
下もなく、Tdを最適な状態つまりAゾーンへとスムー
ズに下降させ安定させることができる。これにより、圧
縮機1内の潤滑油の分解や劣化を防止することができ、
圧縮機1の寿命向上が図れる。
The set target value F 0 is the actual operating frequency value F
It is updated and stored as f. Then, the operating frequency F is controlled so as to match the target value F 0 . In this way, the B zone is expanded to a lower temperature side than the conventional B zone to set a wide area including the conventional A zone, and as soon as Td enters the B zone, the size of Td in the B zone is increased. Is determined based on Tds (that is, Tdd), and the slope of the change in Td is A
Judgment including the history from the zone (that is, ΔTdd), and the correction value ΔF for the operating frequency F according to these judgment results
Since 0 is determined, it is possible to correct the operating frequency F to a necessary minimum while avoiding an increase in Td overshoot. Therefore, Td can be smoothly lowered to the optimum state, that is, the A zone, and stabilized without the operating frequency F drastically decreasing. With this, it is possible to prevent decomposition and deterioration of the lubricating oil in the compressor 1,
The life of the compressor 1 can be improved.

【0050】とくに、補正値ΔF0 を求めるための制御
の実行インターバルtが目標値F0(つまり運転周波数
F)に応じて変わるので、Tdの変化に対する制御の追
従性が良好となり、Tdの安定化に大きく貢献できる。
Particularly, since the execution interval t of the control for obtaining the correction value ΔF 0 changes according to the target value F 0 (that is, the operating frequency F), the control followability with respect to the change of Td becomes good, and the stability of Td becomes stable. Can greatly contribute to

【0051】Bゾーンの制御の後、Tdが 105℃未満の
Aゾーンに戻ると、通常の運転周波数制御に戻る。ただ
し、Bゾーンの制御にもかかわらず、仮にTdが 122℃
以上のCゾーンまで上昇すると、フラグFLAGが“1”に
セットされるとともに、目標値F0 が 0Hzに設定されて
圧縮機1の運転が停止される。この停止後は、フラグFL
AGが“1”であることにより、BゾーンとCゾーンとの
境界点が 113℃となる。
After the control of the B zone, when returning to the A zone where Td is less than 105 ° C., the normal operation frequency control is resumed. However, despite control of the B zone, Td is 122 ° C.
When the temperature rises to the above C zone, the flag FLAG is set to "1", the target value F 0 is set to 0 Hz, and the operation of the compressor 1 is stopped. After this stop, flag FL
Since AG is “1”, the boundary point between the B zone and the C zone is 113 ° C.

【0052】このように、圧縮機1の運転を強制的に停
止することにより、圧縮機1内の潤滑油の分解や劣化を
防止できることはもちろん、圧縮機モータ1Mの温度上
昇を防止でき、ひいては圧縮機モータ1Mの巻線の絶縁
劣化が防止される。
By forcibly stopping the operation of the compressor 1 as described above, it is possible to prevent the decomposition and deterioration of the lubricating oil in the compressor 1 as well as to prevent the temperature rise of the compressor motor 1M, which in turn can prevent it. Insulation deterioration of the winding of the compressor motor 1M is prevented.

【0053】その後、Tdが 113℃未満のBゾーンに戻
ると、圧縮機1が起動され、Bゾーンの制御が再開され
る。一方、暖房運転時、定期的に、二方弁6が開かれて
室外熱交換器3に対する除霜運転が実行される。すなわ
ち、二方弁6が開くと、圧縮機1から吐出される高温冷
媒が室外熱交換器3に注入され、その高温冷媒の熱によ
って室外熱交換器3に付着している霜が除去される。
After that, when returning to the B zone where Td is less than 113 ° C., the compressor 1 is started and the control of the B zone is restarted. On the other hand, during the heating operation, the two-way valve 6 is periodically opened to perform the defrosting operation on the outdoor heat exchanger 3. That is, when the two-way valve 6 is opened, the high temperature refrigerant discharged from the compressor 1 is injected into the outdoor heat exchanger 3, and the heat of the high temperature refrigerant removes the frost adhering to the outdoor heat exchanger 3. .

【0054】この除霜運転時、温度センサ7によって室
外熱交換器3の温度Teが検知されており、その検知温
度Teがたとえば2℃以上になると、除霜が完了したと
の判断の下に、除霜運転が終了されて暖房運転に復帰す
る。
During the defrosting operation, the temperature Te of the outdoor heat exchanger 3 is detected by the temperature sensor 7, and when the detected temperature Te reaches, for example, 2 ° C. or more, it is determined that the defrosting is completed. The defrosting operation is ended and the heating operation is resumed.

【0055】この除霜運転の終了時、図6に示すよう
に、タイムカウントtaに基づく一定時間tasにおい
て、Tdが所定値Td1 より低いかどうかの判定がなさ
れる。Tdが所定値Td1 よりも低ければ、タイムカウ
ントtbに基づく一定時間tbsだけ、運転周波数Fが所
定の低周波数Faに設定される。
At the end of this defrosting operation, as shown in FIG. 6, it is determined whether Td is lower than a predetermined value Td 1 at a constant time tas based on the time count ta. If Td is lower than the predetermined value Td 1 , the operating frequency F is set to the predetermined low frequency Fa for the constant time tbs based on the time count tb.

【0056】一定時間tbsの経過後は、たとえTdがま
だ所定値Td1 より低くても、一定時間tasが経過する
時点で通常の運転周波数制御に復帰する。除霜運転が終
了した直後は圧縮機1内の潤滑油の希釈度が高くなって
おり、そのまま運転周波数Fが上昇してしまうと潤滑油
が分解や劣化を起こしてしまう。そこで、除霜終了時、
Tdがまだ低いうちに運転周波数Fを低周波数Faに設
定し、上記の不具合を解消するのである。なお、上記実
施例では、空気調和機への適用について説明したが、冷
蔵庫など他の機器にも同様に適用可能である。
After the elapse of the constant time tbs, even if Td is still lower than the predetermined value Td 1 , the normal operation frequency control is resumed when the constant time tas elapses. Immediately after the defrosting operation is completed, the degree of dilution of the lubricating oil in the compressor 1 is high, and if the operating frequency F rises as it is, the lubricating oil will be decomposed or deteriorated. Therefore, at the end of defrosting,
The operating frequency F is set to the low frequency Fa while Td is still low, and the above-mentioned problem is solved. In addition, in the said Example, although the application to an air conditioner was demonstrated, it is applicable similarly to other apparatuses, such as a refrigerator.

【0057】[0057]

【発明の効果】以上述べたようにこの発明によれば
縮機から吐出される冷媒の温度を、運転周波数の大きな
変動を生じることなく最適な状態に安定化して圧縮機内
の潤滑油の分解や劣化を防止し、圧縮機の寿命向上が図
れる冷凍サイクル装置を提供できる。
As described above, according to the present invention, the temperature of the refrigerant discharged from the compressor is stabilized in an optimum state without causing a large fluctuation of the operating frequency, and the lubricating oil in the compressor is decomposed. It is possible to provide a refrigeration cycle device that can prevent deterioration of the compressor and improve the life of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の冷凍サイクルの構成図。FIG. 1 is a configuration diagram of a refrigeration cycle according to an embodiment of the present invention.

【図2】同実施例の制御回路のブロック図。FIG. 2 is a block diagram of a control circuit of the embodiment.

【図3】同実施例の作用を説明するためのフローチャー
ト。
FIG. 3 is a flowchart for explaining the operation of the embodiment.

【図4】同実施例におけるゾーン制御条件を示す図。FIG. 4 is a diagram showing zone control conditions in the embodiment.

【図5】同実施例におけるt1 決定ルーチンのフローチ
ャート。
FIG. 5 is a flowchart of a t 1 determination routine in the same embodiment.

【図6】同実施例における除霜制御ルーチンのフローチ
ャート。
FIG. 6 is a flowchart of a defrosting control routine in the embodiment.

【図7】従来のゾーン制御条件を示す図。FIG. 7 is a diagram showing a conventional zone control condition.

【符号の説明】[Explanation of symbols]

A…室外ユニット、B1 ,B2 …室内ユニット、1…能
力可変式の圧縮機、3…室外熱交換器、11,21…P
MV、12,22…室内熱交換器、9…温度センサ、4
0…室内制御部、41…インバータ回路、50…室外制
御部、51…室内温度センサ。
A ... outdoor unit, B 1, B 2 ... indoor unit, 1 ... variable capacity type compressor, 3 ... outdoor heat exchanger, 11 and 21 ... P
MV, 12, 22 ... Indoor heat exchanger, 9 ... Temperature sensor, 4
0 ... Indoor control unit, 41 ... Inverter circuit, 50 ... Outdoor control unit, 51 ... Indoor temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−106907(JP,A) 特開 平2−25654(JP,A) 特開 昭61−191831(JP,A) 特公 平5−49905(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 371 F25B 1/00 361 F24F 11/02 102 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-106907 (JP, A) JP-A-2-25654 (JP, A) JP-A-61-191831 (JP, A) JP-B 5- 49905 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 1/00 371 F25B 1/00 361 F24F 11/02 102

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、減圧器、および蒸発器
を配管接続してなる冷凍サイクルと、 負荷の温度Taを検知する第1温度センサと、 前記圧縮機から吐出される冷媒の温度Tdを検知する第
2温度センサと、 この第2温度センサの検知温度Tdが第1設定値未満の
とき、前記第1温度センサの検知温度Taと目標温度
との差に応じて前記圧縮機の運転周波数を制御する
第1制御手段と、 前記第2温度センサの検知温度Tdが第1設定値以上の
とき、前記第1温度センサの検知温度Taと目標温度T
sとの差に応じて前記圧縮機の運転周波数Fに対する第
1目標値F を設定するともに、第2温度センサの検知
温度Tdと第2設定値(>第1設定値)Tdsとの差
ddおよびその差Tddの変化量ΔTddから前記圧縮
機の実際の運転周波数Fに対する補正値ΔF を算出し
てその実際の運転周波数Fに補正値ΔF を加算した第
2目標値F を設定し、これら第1目標値F および第
2目標値F のうち小さい方に前記圧縮機の運転周波数
Fを合わせる第2制御手段と、前記第2温度センサの検知温度Tdが第3設定値(>第
2設定値Tds)以上のときに圧縮機の運転を停止する
第3制御手段と、 を備え、第2温度センサの検知温度Tdに対する第1設
定値を低温度側に拡げてその第1設定値と第2設定値T
dsとの間のゾーンを広く設定し、そのゾーンに検知温
度Tdが入った途端、同ゾーンおける検知温度Tdの大
きさを第2設定値Tdsとの差Tddとして検出すると
ともにその差Tddの変化量ΔTddを検出し、これら
検出結果に応じて圧縮機の運転周波数Fに対する第2目
標値F を設定することを特徴とする冷凍サイクル装
置。
1. A refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator are connected by piping, a first temperature sensor for detecting a temperature Ta of a load, and a temperature of a refrigerant discharged from the compressor. A second temperature sensor that detects Td, and a detected temperature Ta of the first temperature sensor and a target temperature T when the detected temperature Td of the second temperature sensor is less than a first set value.
a first control means for controlling the operating frequency F of the compressor in accordance with the difference between s, when the detection temperature Td of the second temperature sensor is equal to or higher than the first set value, the detection temperature Ta of the first temperature sensor And target temperature T
s to the operating frequency F of the compressor according to the difference between
1 While setting the target value F 1 , the difference T between the temperature Td detected by the second temperature sensor and the second set value (> the first set value) Tds
From the change amount ΔTdd of dd and its difference Tdd, the compression is performed.
Calculate the correction value ΔF 0 for the actual operating frequency F of the machine
The correction value ΔF 0 added to the actual operating frequency F
The second target value F 2 is set, and the first target value F 1 and the first target value F 1 are set .
2 The operating frequency of the compressor is the smaller of the two target values F 2.
The second control means for adjusting F and the detected temperature Td of the second temperature sensor are set to the third set value (> the third set value).
2 When the set value Tds) or more, stop the operation of the compressor
Third control means, and a first setting for the detection temperature Td of the second temperature sensor.
Spread the constant value to the low temperature side, and set the first set value and the second set value T
Set a wide zone between ds and the detected temperature in that zone.
As soon as the temperature Td is entered, the detected temperature Td in the same zone is high.
If the threshold is detected as the difference Tdd from the second set value Tds,
Both of them detect the change amount ΔTdd of the difference Tdd, and
The second for the operating frequency F of the compressor according to the detection result
A refrigeration cycle apparatus characterized by setting a standard value F 2 .
【請求項2】 請求項1記載の冷凍サイクル装置におい
て、 前記第2制御手段は、補正値ΔF を設定時間tごとに
算出するとともに、その設定時間tを第1目標値F
高いほど短く設定することを特徴とする冷凍サイクル装
置。
2. The refrigeration cycle apparatus according to claim 1, wherein the second control means sets a correction value ΔF 0 at each set time t.
The first target value F 1 is calculated by calculating the set time t.
Refrigeration cycle equipment characterized by being set shorter as the height increases
Place
JP31941593A 1993-12-20 1993-12-20 Refrigeration cycle device Expired - Fee Related JP3436962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31941593A JP3436962B2 (en) 1993-12-20 1993-12-20 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31941593A JP3436962B2 (en) 1993-12-20 1993-12-20 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPH07174416A JPH07174416A (en) 1995-07-14
JP3436962B2 true JP3436962B2 (en) 2003-08-18

Family

ID=18109943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31941593A Expired - Fee Related JP3436962B2 (en) 1993-12-20 1993-12-20 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP3436962B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003774B (en) * 2010-12-29 2012-08-01 石家庄国祥运输设备有限公司 Indoor temperature control method of train air-conditioner
JP5906790B2 (en) * 2012-02-20 2016-04-20 株式会社富士通ゼネラル Air conditioner
CN112781187B (en) * 2019-11-05 2023-05-30 广东美的制冷设备有限公司 Air conditioner control method, air conditioner and readable storage medium

Also Published As

Publication number Publication date
JPH07174416A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
JP3117339B2 (en) Refrigeration cycle device
US20210254847A1 (en) Hvac functionality restoration systems and methods
JP2909187B2 (en) Air conditioner
JP3322684B2 (en) Air conditioner
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
WO2016125239A1 (en) Refrigeration/air-conditioning device
US20210302055A1 (en) Systems and methods for communication in hvac system
US9677798B2 (en) Refrigerating device
JP3445861B2 (en) Air conditioner
JP3436962B2 (en) Refrigeration cycle device
KR100311859B1 (en) Air conditioner having a number of indoor heat exchanger
JP3438551B2 (en) Air conditioner
JP3481076B2 (en) Operation control device for air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
JP3253104B2 (en) Refrigeration cycle device
JP3377632B2 (en) Air conditioner
JPWO2020003490A1 (en) Air conditioner
JP2003254587A (en) Air conditioner
JP3483711B2 (en) Air conditioner and its control method
JPH06100395B2 (en) Refrigeration system operation controller
JP3375235B2 (en) Refrigeration cycle device
JPH10141788A (en) Multi-room split type air conditioner
JP3128480B2 (en) Refrigeration apparatus and air conditioner using the refrigeration apparatus
JPH07113556A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees