JPH08327122A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08327122A
JPH08327122A JP7137947A JP13794795A JPH08327122A JP H08327122 A JPH08327122 A JP H08327122A JP 7137947 A JP7137947 A JP 7137947A JP 13794795 A JP13794795 A JP 13794795A JP H08327122 A JPH08327122 A JP H08327122A
Authority
JP
Japan
Prior art keywords
indoor
flow rate
indoor unit
air conditioner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7137947A
Other languages
Japanese (ja)
Inventor
Toru Kubo
徹 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7137947A priority Critical patent/JPH08327122A/en
Publication of JPH08327122A publication Critical patent/JPH08327122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To provide an air conditioner capable of stabilizing the quantity of refrigerant flowing to an indoor heat exchanger in excellent response to the optimum value, and thereby always operating suitably. CONSTITUTION: The total amount of the openings flow rate regulating valves 11, 21, 31 are obtained from the operating frequency of a compressor 1, indoor temperatures detected by indoor units B1 , B2 , B3 , atmospheric temperature detected by an outdoor unit A and capacity rank decided at the indoor unit. The distribution ratio of the refrigerant to the indoor units is obtained according to the circumstances of the indoor units. The target value of the opening of the each regulating valve is obtained according to the total value and the ratio, and the opening of each regulating valve is set to the target value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、室外ユニットおよび
複数の室内ユニットを備えたマルチタイプの空気調和機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-type air conditioner having an outdoor unit and a plurality of indoor units.

【0002】[0002]

【従来の技術】圧縮機および室外熱交換器を有する室外
ユニット、それぞれが室内熱交換器を有する複数の室内
ユニットを備えたマルチタイプの空気調和機では、各室
内ユニットを設置する部屋の空調負荷を検出し、これら
空調負荷の総和に応じて圧縮機の運転周波数を制御す
る。これにより、空調負荷の総和に対応する最適な冷房
能力あるいは暖房能力が得られる。
2. Description of the Related Art In a multi-type air conditioner equipped with an outdoor unit having a compressor and an outdoor heat exchanger, and a plurality of indoor units each having an indoor heat exchanger, an air conditioning load of a room in which each indoor unit is installed. Is detected and the operating frequency of the compressor is controlled according to the sum of these air conditioning loads. As a result, the optimum cooling capacity or heating capacity corresponding to the total air conditioning load can be obtained.

【0003】ただし、運転周波数が変化すると、冷凍サ
イクル中の冷媒流量が変化し、各室内熱交換器に流れる
冷媒の量も変化する。この冷媒流量の変化は、冷房時で
あれば、各室内熱交換器(蒸発器)における冷媒の過熱
度の変化となって現われる。この過熱度は、各室内熱交
換器への適正な冷媒流量を確保する上から一定の値に維
持する必要がある。
However, when the operating frequency changes, the flow rate of the refrigerant in the refrigeration cycle changes, and the amount of the refrigerant flowing through each indoor heat exchanger also changes. This change in the refrigerant flow rate appears as a change in the degree of superheat of the refrigerant in each indoor heat exchanger (evaporator) during cooling. This superheat degree needs to be maintained at a constant value in order to ensure an appropriate refrigerant flow rate to each indoor heat exchanger.

【0004】そこで、各室内ユニットにつながる冷媒配
管に流量調整弁が設けられ、各室内熱交換器における冷
媒の過熱度がそれぞれ一定の値(=設定値)を維持する
よう、各流量調整弁の開度が調節される。この場合、室
内熱交換器および冷凍サイクルのガス側配管にそれぞれ
温度センサが取付けられ、両温度センサの検知温度の差
が過熱度として検出される。
Therefore, a flow rate adjusting valve is provided in the refrigerant pipe connected to each indoor unit, and each flow rate adjusting valve is controlled so that the superheat degree of the refrigerant in each indoor heat exchanger maintains a constant value (= set value). The opening is adjusted. In this case, a temperature sensor is attached to each of the indoor heat exchanger and the gas side pipe of the refrigeration cycle, and the difference between the temperatures detected by the temperature sensors is detected as the degree of superheat.

【0005】[0005]

【発明が解決しようとする課題】上記の過熱度制御で
は、流量調整弁の開度が調節されると、まず室内熱交換
器への冷媒の流量が変化し、それが過熱度の変化となっ
て現われる。そして、この変化が捕らえられ、再び流量
調整弁の開度が調節されることになる。
In the above superheat degree control, when the opening degree of the flow rate adjusting valve is adjusted, the flow rate of the refrigerant to the indoor heat exchanger first changes, which results in a change in the superheat degree. Appears. Then, this change is captured, and the opening degree of the flow rate adjusting valve is adjusted again.

【0006】このようないわゆるフィードバック制御で
は、開度調節から過熱度変化までに時間遅れが存在す
る。この時間遅れの影響で、過熱度はすぐには設定値へ
と収束せず、設定値を中心とする上下の振幅変動を繰返
しながら収束していくことになる。つまり、応答遅れを
生じ、各室内熱交換器に流れる冷媒の量が最適値へとな
かなか安定せず、適正な運転が困難となる。
In such so-called feedback control, there is a time delay from the opening adjustment to the change in superheat degree. Due to the influence of this time delay, the degree of superheat does not immediately converge to the set value, but rather converges while repeating amplitude fluctuations around the set value. That is, a response delay occurs, the amount of the refrigerant flowing through each indoor heat exchanger is not stable at an optimum value, and proper operation becomes difficult.

【0007】また、温度センサによる過熱度検出の例を
図5に示すが、過熱側ではセンサの雰囲気温度以上は検
出できず、液バック側では0deg 以下は検出できない
等、それぞれに検出の限界があり、過熱度を正しく捕ら
え切れないのが実状である。この検出誤差は、上記の応
答遅れと合い交って、冷凍サイクルの運転をますます不
安定なものとしてしまう。
FIG. 5 shows an example of detecting the degree of superheat by the temperature sensor. However, there is a limit of detection such that the temperature above the ambient temperature of the sensor cannot be detected on the overheat side and 0 deg or less cannot be detected on the liquid back side. The reality is that the degree of superheat cannot be properly captured. This detection error, combined with the above-mentioned response delay, makes the operation of the refrigeration cycle more and more unstable.

【0008】この発明は上記の事情を考慮したもので、
その目的とするところは、各室内熱交換器に流れる冷媒
の量を最適値へと応答性よく安定させることができ、こ
れにより常に適正な運転を可能とする空気調和機を提供
することにある。
The present invention takes the above circumstances into consideration,
It is an object of the present invention to provide an air conditioner capable of stabilizing the amount of refrigerant flowing through each indoor heat exchanger to an optimum value with good responsiveness, thereby always enabling proper operation. .

【0009】[0009]

【課題を解決するための手段】第1の発明の空気調和機
は、圧縮機および室外熱交換器を有する室外ユニット、
それぞれが室内熱交換器を有する複数の室内ユニット、
室外ユニットから各室内ユニットに流れる冷媒の量を調
節するための複数の流量調整弁を備えたものであって、
圧縮機の運転周波数、各室内ユニットで検知される室内
温度、室外ユニットで検知される外気温度、および各室
内ユニットに定められている能力ランクに基づき、各流
量調整弁の開度の合計値を求める合計値検出手段と、各
室内ユニットの状況に応じて各室内ユニットに対する冷
媒の分配比を求める分配比検出手段と、前記合計値およ
び前記分配比に応じて各流量調整弁の開度の目標値を求
める目標値検出手段と、各流量調整弁の開度を前記目標
値に設定する開度設定手段とを備える。
The air conditioner of the first invention is an outdoor unit having a compressor and an outdoor heat exchanger,
A plurality of indoor units, each having an indoor heat exchanger,
It is provided with a plurality of flow rate adjusting valves for adjusting the amount of refrigerant flowing from the outdoor unit to each indoor unit,
Based on the operating frequency of the compressor, the indoor temperature detected by each indoor unit, the outside air temperature detected by the outdoor unit, and the capacity rank set for each indoor unit, calculate the total value of the opening of each flow rate adjustment valve. A total value detecting means to be obtained, a distribution ratio detecting means to obtain a distribution ratio of the refrigerant to each indoor unit according to the situation of each indoor unit, and a target of the opening degree of each flow rate adjusting valve according to the total value and the distribution ratio Target value detection means for obtaining a value and opening degree setting means for setting the opening degree of each flow rate adjusting valve to the target value are provided.

【0010】第2の発明の空気調和機は、第1の発明の
合計値検出手段が、求めた合計値を各室内ユニットの運
転台数に対応する係数の積算により補正するものであ
る。第3の発明の空気調和機は、第1の発明の分配比検
出手段が、各室内ユニットで検知される室内温度、各室
内ユニットで検知される室内熱交換器温度、および各室
内ユニットに定められている能力ランクに応じて、また
は室内ユニットごとに検知される室内温度と室内熱交換
器温度との差に応じて、分配比を求めるものである。
In the air conditioner of the second invention, the total value detecting means of the first invention corrects the calculated total value by integrating the coefficients corresponding to the operating numbers of the indoor units. In the air conditioner of the third invention, the distribution ratio detecting means of the first invention is set for the indoor temperature detected by each indoor unit, the indoor heat exchanger temperature detected by each indoor unit, and each indoor unit. The distribution ratio is obtained according to the capacity rank that is set, or according to the difference between the indoor temperature and the indoor heat exchanger temperature detected for each indoor unit.

【0011】第4の発明の空気調和機は、第1の発明の
開度設定手段が、各流量調整弁の現開度と目標値との差
に応じて各流量調整弁に対する開度の操作量を決定する
ものである。
In the air conditioner of the fourth invention, the opening degree setting means of the first invention operates the opening degree of each flow rate adjusting valve according to the difference between the current opening degree of each flow rate adjusting valve and the target value. It determines the amount.

【0012】[0012]

【作用】第1の発明の空気調和機では、圧縮機の運転周
波数、各室内ユニットで検知される室内温度、室外ユニ
ットで検知される外気温度、および各室内ユニットに定
められている能力ランクに基づき、各流量調整弁の開度
の合計値が求められる。また、各室内ユニットの状況に
応じて各室内ユニットに対する冷媒の分配比が求められ
る。これら合計値および分配比に応じて各流量調整弁の
開度の目標値が求められ、その目標値に各流量調整弁の
開度が設定される。
In the air conditioner of the first aspect of the invention, the operating frequency of the compressor, the indoor temperature detected by each indoor unit, the outside air temperature detected by the outdoor unit, and the capacity rank determined for each indoor unit are set. Based on this, the total value of the openings of the flow rate adjusting valves is obtained. Further, the distribution ratio of the refrigerant to each indoor unit is obtained according to the situation of each indoor unit. A target value of the opening degree of each flow rate adjusting valve is obtained according to the total value and the distribution ratio, and the opening degree of each flow rate adjusting valve is set to the target value.

【0013】第2の発明の空気調和機では、第1の発明
において、求められた合計値が各室内ユニットの運転台
数に対応する係数の積算により補正される。第3の発明
の空気調和機では、第1の発明において、分配比が、各
室内ユニットで検知される室内温度、各室内ユニットで
検知される室内熱交換器温度、および各室内ユニットに
定められている能力ランクに応じて、または室内ユニッ
トごとに検知される室内温度と室内熱交換器温度との差
に応じて、求められる。第4の発明の空気調和機では、
第1の発明において、各流量調整弁の現開度と目標値と
の差に応じて各流量調整弁に対する開度の操作量が決定
される。
In the air conditioner of the second invention, in the first invention, the obtained total value is corrected by integrating the coefficients corresponding to the operating numbers of the indoor units. In the air conditioner of the third invention, in the first invention, the distribution ratio is determined for the indoor temperature detected by each indoor unit, the indoor heat exchanger temperature detected by each indoor unit, and each indoor unit. It is calculated according to the capacity rank of the indoor unit or the difference between the indoor temperature and the indoor heat exchanger temperature detected for each indoor unit. In the air conditioner of the fourth invention,
In the first aspect of the invention, the manipulated variable of the opening degree for each flow rate adjusting valve is determined according to the difference between the current opening degree of each flow rate adjusting valve and the target value.

【0014】[0014]

【実施例】以下、この発明の一実施例について図面を参
照して説明する。図1において、Aは室外ユニット、B
1 ,B2 ,B3 は室内ユニットで、これらユニットに次
の冷凍サイクルが構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, A is an outdoor unit and B is
1 , B 2 , B 3 are indoor units, and the following refrigeration cycle is configured in these units.

【0015】圧縮機1の吐出口に四方弁2を介して室外
熱交換器3が接続され、その室外熱交換器3に液側主管
Wが接続される。液側主管Wは液側支管W1 ,W2 ,W
3 に分岐され、その各液側支管に室内熱交換器12,2
2,32が接続される。
An outdoor heat exchanger 3 is connected to a discharge port of the compressor 1 via a four-way valve 2, and a liquid side main pipe W is connected to the outdoor heat exchanger 3. Liquid side main pipe W is liquid side branch pipe W 1 , W 2 , W
It is branched into 3 and the indoor heat exchangers 12 and 2 are connected to the respective liquid side branch pipes.
2, 32 are connected.

【0016】液側支管W1 ,W2 ,W3 に流量調整弁1
1,21,31が設けられる。これら流量調整弁は、供
給される駆動パルスの数に応じて開度が連続的に変化す
るパルスモータバルブ(PMV)である。
A flow rate adjusting valve 1 for the liquid side branch pipes W 1 , W 2 and W 3.
1, 21, 31 are provided. These flow rate adjusting valves are pulse motor valves (PMV) whose opening degree changes continuously according to the number of drive pulses supplied.

【0017】室内熱交換器12,22,32にガス側支
管G1 ,G2 ,G3 が接続される。これらガス側支管は
ガス側主管Gに集結され、そのガス側主管Gは上記四方
弁2を介して圧縮機1の吸込口に接続される。
Gas side branch pipes G 1 , G 2 and G 3 are connected to the indoor heat exchangers 12, 22 and 32. These gas side branch pipes are gathered together in the gas side main pipe G, and the gas side main pipe G is connected to the suction port of the compressor 1 via the four-way valve 2.

【0018】室外熱交換器3の近傍に室外ファン4およ
び室内温度センサ5が設けられる。圧縮機1の吐出口と
四方弁2との間の管に除霜用のバイパス6の一端が接続
され、そのバイパス6の他端が液側主管Wに接続され
る。バイパス6には流通制御用の二方弁7が設けられ
る。
An outdoor fan 4 and an indoor temperature sensor 5 are provided near the outdoor heat exchanger 3. One end of a defrosting bypass 6 is connected to a pipe between the discharge port of the compressor 1 and the four-way valve 2, and the other end of the bypass 6 is connected to the liquid side main pipe W. The bypass 6 is provided with a two-way valve 7 for flow control.

【0019】室内熱交換器12,22,32の近傍に室
内ファン13,23,33が設けられる。室内熱交換器
12,22,32に熱交換器温度センサ14,24,3
4がそれぞれ取付けられる。
Indoor fans 13, 23, 33 are provided near the indoor heat exchangers 12, 22, 32. Heat exchanger temperature sensors 14, 24, 3 for the indoor heat exchangers 12, 22, 32
4 are attached respectively.

【0020】室内ユニットB1 ,B2 ,B3 に対し、室
内熱交換器12,22,32の容量などをそれぞれ基準
とする能力ランクRxがあらかじめ定められている。制
御回路を図2に示す。
For the indoor units B 1 , B 2 and B 3 , the capacity rank Rx based on the capacity of the indoor heat exchangers 12, 22 and 32 is predetermined. The control circuit is shown in FIG.

【0021】商用交流電源40に、室外ユニットAの室
外制御部50が接続される。この室外制御部50は、マ
イクロコンピュータおよびその周辺回路からなる。この
室外制御部50に、流量調整弁11,21,31、四方
弁2、室外ファンモータ4M、室内温度センサ5、二方
弁7、インバータ回路51が接続される。
The outdoor control unit 50 of the outdoor unit A is connected to the commercial AC power supply 40. The outdoor control unit 50 includes a microcomputer and its peripheral circuits. To the outdoor control unit 50, the flow rate adjusting valves 11, 21, 31, the four-way valve 2, the outdoor fan motor 4M, the indoor temperature sensor 5, the two-way valve 7, and the inverter circuit 51 are connected.

【0022】インバータ回路51は、電源40の電圧を
整流し、それを室外制御部50の指令に応じた周波数お
よびレベルの電圧に変換し、出力する。この出力は圧縮
機モータ1Mの駆動電力となる。
The inverter circuit 51 rectifies the voltage of the power supply 40, converts it into a voltage of a frequency and level according to a command from the outdoor control unit 50, and outputs it. This output becomes drive power for the compressor motor 1M.

【0023】室内ユニットB1 ,B2 ,B3 はそれぞれ
室内制御部60を備える。室内制御部60は、マイクロ
コンピュータおよびその周辺回路からなる。この室内制
御部60に、室内温度センサ15(および25,3
5)、熱交換器温度センサ14(および24,34)、
室内ファンモータ13M(および23M,32M)、受
光部61が接続される。受光部61は、リモートコント
ロール式の操作器(以下、リモコンと略称する)62か
ら発せられる赤外線光を受光する。
The indoor units B 1 , B 2 and B 3 each include an indoor control unit 60. The indoor control unit 60 includes a microcomputer and its peripheral circuits. The indoor temperature sensor 15 (and 25, 3
5), the heat exchanger temperature sensor 14 (and 24, 34),
The indoor fan motor 13M (and 23M, 32M) and the light receiving unit 61 are connected. The light receiving unit 61 receives infrared light emitted from a remote control type operation device (hereinafter, abbreviated as a remote controller) 62.

【0024】これら室内制御部60と室外制御部50と
が、それぞれ電源ラインACLおよびデータ転送用のシ
リアル信号ラインSLにより接続される。各室内制御部
60は、主要な機能手段として次のものを有する。
The indoor control unit 60 and the outdoor control unit 50 are connected by a power supply line ACL and a serial signal line SL for data transfer, respectively. Each indoor control unit 60 has the following as main functional means.

【0025】[1]リモコン62の操作による運転条件
(設定温度Tsを含む)を電源電圧同期のシリアル信号
により室外ユニットAに知らせる手段。 [2]室内温度センサ15(および25,35)の検知
温度Taとリモコン62で設定される設定温度Tsとの
差を空調負荷として検出し、その空調負荷に対応する要
求能力(周波数値)を電源電圧同期のシリアル信号によ
り室外ユニットAに知らせる手段。
[1] A means for notifying the outdoor unit A of the operating conditions (including the set temperature Ts) by operating the remote controller 62 by a serial signal synchronized with the power supply voltage. [2] The difference between the detected temperature Ta of the indoor temperature sensor 15 (and 25, 35) and the set temperature Ts set by the remote controller 62 is detected as an air conditioning load, and the required capacity (frequency value) corresponding to the air conditioning load is detected. A means to notify the outdoor unit A by a serial signal synchronized with the power supply voltage.

【0026】[3]室内温度センサ15(および25,
35)の検知温度Ta、熱交換器温度センサ14(およ
び24,34)の検知温度Tc、および当該室内ユニッ
トの能力ランクRxを電源電圧同期のシリアル信号によ
り室外ユニットAに知らせる手段。
[3] Indoor temperature sensor 15 (and 25,
A means for notifying the outdoor unit A of the detection temperature Ta of 35), the detection temperature Tc of the heat exchanger temperature sensor 14 (and 24, 34), and the capacity rank Rx of the indoor unit by a serial signal synchronized with the power supply voltage.

【0027】室外制御部50は、主要な機能手段として
次のものを有する。 [1]各室内ユニットからの冷房運転モード指令に基づ
き、圧縮機1から吐出される冷媒を四方弁2、室外熱交
換器3、流量調整弁11,21,31、室内熱交換器1
2,22,32、四方弁2に通して圧縮機1に戻し、冷
房運転を実行する手段。
The outdoor control unit 50 has the following as main functional means. [1] Based on the cooling operation mode command from each indoor unit, the refrigerant discharged from the compressor 1 is supplied with the four-way valve 2, the outdoor heat exchanger 3, the flow rate adjusting valves 11, 21, 31 and the indoor heat exchanger 1.
2, 22, 32, means for passing through the four-way valve 2 and returning to the compressor 1 to execute cooling operation.

【0028】[2]各室内ユニットからの暖房運転モー
ド指令に基づき、四方弁2を切換え、圧縮機1から吐出
される冷媒を四方弁2、室内熱交換器12,22,3
2、流量調整弁11,21,31、室外熱交換器3、四
方弁2に通して圧縮機1に戻し、暖房運転を実行する手
段。
[2] Based on the heating operation mode command from each indoor unit, the four-way valve 2 is switched, and the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2 and the indoor heat exchangers 12, 22, 3.
2, means for performing heating operation by returning to the compressor 1 through the flow rate adjusting valves 11, 21, 31 and the outdoor heat exchanger 3 and the four-way valve 2.

【0029】[3]冷房および暖房運転時、圧縮機1の
運転周波数F(=インバータ回路51の出力周波数)を
各室内ユニットからの要求能力の総和に応じて制御する
手段。
[3] Means for controlling the operating frequency F of the compressor 1 (= output frequency of the inverter circuit 51) during cooling and heating operations in accordance with the sum of the required capacities from the indoor units.

【0030】[4]冷房運転時、各室内ユニットから知
らされる室内温度Taの平均値Tax、および同じく各室
内ユニットから知らされる能力ランクRの平均値Rx を
求める手段。
[4] Means for obtaining the average value Tax of the indoor temperature Ta notified from each indoor unit and the average value Rx of the capacity rank R also notified from each indoor unit during the cooling operation.

【0031】[5]冷房運転時、運転周波数F、上記室
温平均値Tax、室外温度センサ5の検知温度(外気温
度)To、および上記能力ランク平均値Rx に基づき、
流量調整弁11,21,31の開度の合計値PCLを求
める合計値検出手段。(実際には、室内ユニットB1
2 ,B3 の全てが運転されるとは限らないので、合計
値PCLに対して各室内ユニットの運転台数に対応する
係数Diを積算し、補正合計値PCLi(=Di・PC
L)を得る)。
[5] During cooling operation, based on the operating frequency F, the room temperature average value Tax, the temperature detected by the outdoor temperature sensor 5 (outside air temperature) To, and the capacity rank average value Rx,
Total value detecting means for obtaining the total value PCL of the opening degrees of the flow rate adjusting valves 11, 21, 31. (Actually, the indoor unit B 1 ,
Since not all B 2 and B 3 are operated, the coefficient Di corresponding to the number of operating indoor units is added to the total value PCL to obtain the corrected total value PCLi (= Di · PC
L)).

【0032】[6]室内ユニットB1 ,B2 ,B3 の状
況に応じて、各室内ユニットに対する冷媒の分配比Hを
求める分配比検出手段。(室内ユニットB1 ,B2 ,B
3 の状況は、各室内ユニットから知らされる室内温度T
a、各室内ユニットから知らされる室内熱交換器温度T
c、および各室内ユニットから知らされる能力ランクR
である。または、室内ユニットB1 ,B2 ,B3 の状況
は、室内ユニットごとの室内温度Taと室内熱交換器温
度Tcとの差の対比である)。
[6] Distribution ratio detecting means for obtaining the distribution ratio H of the refrigerant to each indoor unit according to the situation of the indoor units B 1 , B 2 , B 3 . (Indoor units B 1 , B 2 , B
The situation of 3 is the indoor temperature T notified from each indoor unit.
a, Indoor heat exchanger temperature T known from each indoor unit
c and ability rank R informed from each indoor unit
Is. Or, the situation of the indoor units B 1 , B 2 , B 3 is a comparison of the difference between the indoor temperature Ta and the indoor heat exchanger temperature Tc for each indoor unit).

【0033】[7]補正合計値PCLiおよび分配比H
に応じて流量調整弁11,21,31の開度の目標値Q
t をそれぞれ求める目標値検出手段。 [8]流量調整弁11,21,31の開度Qをそれぞれ
目標値Qt に設定する開度設定手段。(具体的には、流
量調整弁11,21,31の現開度Qとそれぞれ目標値
Qt との差に応じて開度の操作量を決定する)。
[7] Correction total value PCLi and distribution ratio H
According to the target value Q of the opening of the flow rate adjusting valves 11, 21, 31
Target value detecting means for obtaining each t. [8] Opening degree setting means for setting the respective opening degrees Q of the flow rate adjusting valves 11, 21, 31 to the target value Qt. (Specifically, the operation amount of the opening is determined according to the difference between the current opening Q of the flow rate adjusting valves 11, 21, 31 and the target value Qt).

【0034】つぎに、上記の構成の作用を図3のフロー
チャートを参照して説明する。各リモコン62で冷房運
転モードが設定された場合、圧縮機1の吐出冷媒が図1
の実線矢印の方向に流れる冷房サイクルが形成され、室
外熱交換器3が凝縮器、室内熱交換器12,22,32
が蒸発器として機能する。これにより、冷房運転が実行
される。
Next, the operation of the above configuration will be described with reference to the flowchart of FIG. When the cooling operation mode is set by each remote controller 62, the refrigerant discharged from the compressor 1 is
A cooling cycle that flows in the direction of the solid line arrow is formed, and the outdoor heat exchanger 3 becomes the condenser and the indoor heat exchangers 12, 22, 32.
Functions as an evaporator. As a result, the cooling operation is executed.

【0035】冷房運転時、圧縮機1の運転周波数F(=
インバータ回路41の出力周波数)が室内ユニットB
1 ,B2 ,B3 の要求能力の総和に応じて制御される。
この運転周波数制御と同時に、各室内ユニットから知ら
される室内温度Taの平均値Taxが逐次に求められ、ま
た各室内ユニットから知らされる能力ランクRの平均値
Rx が求められる。
During the cooling operation, the operating frequency F (=
The output frequency of the inverter circuit 41) is the indoor unit B
It is controlled according to the sum of the required capacities of 1 , B 2 , and B 3 .
Simultaneously with this operation frequency control, the average value Tax of the indoor temperature Ta known from each indoor unit is sequentially obtained, and the average value Rx of the capability rank R known from each indoor unit is also obtained.

【0036】そして、運転周波数F、室温平均値Tax、
室外温度センサ5の検知温度(外気温度)To、および
能力ランク平均値Rx を用いた下式の演算が実行され、
流量調整弁11,21,31の開度の合計値PCLが求
められる。a1 ,a2 ,a3,a4 ,a5 は定数であ
る。
The operating frequency F, the room temperature average value Tax,
The calculation of the following formula using the detected temperature (outside air temperature) To of the outdoor temperature sensor 5 and the average value Rx of the capability ranks is executed,
The total value PCL of the openings of the flow rate adjusting valves 11, 21, 31 is obtained. a 1 , a 2 , a 3 , a 4 , and a 5 are constants.

【0037】[0037]

【数1】 [Equation 1]

【0038】実際には、室内ユニットB1 ,B2 ,B3
の全てが運転されるとは限らないので、下式のように、
合計値PCLに対して各室内ユニットの運転台数に対応
する係数Diが積算され、補正合計値PCLiが求めら
れる。係数Diは、室内ユニットB1 ,B2 ,B3 の運
転台数の全ての組合せに対応する個数分、あらかじめ室
外制御部50内のメモリに記憶されている。
In practice, the indoor units B 1 , B 2 , B 3
Not all are driven, so as in the following formula,
A coefficient Di corresponding to the number of operating indoor units is added to the total value PCL to obtain a corrected total value PCLi. The coefficient Di is stored in advance in the memory in the outdoor control unit 50 by the number corresponding to all combinations of the operating numbers of the indoor units B 1 , B 2 , and B 3 .

【0039】[0039]

【数2】 [Equation 2]

【0040】また、室内ユニットB1 ,B2 ,B3 の状
況、たとえば各室内温度Ta、各室内熱交換器温度T
c、および各能力ランクRに応じて、各室内ユニットに
対する冷媒の分配比Hが求められる。
The conditions of the indoor units B 1 , B 2 , B 3 such as the indoor temperature Ta and the indoor heat exchanger temperature T
The distribution ratio H of the refrigerant to each indoor unit is obtained according to c and each capability rank R.

【0041】求められた補正合計値PCLiおよび分配
比Hに応じて流量調整弁11,21,31の開度の目標
値Qt がそれぞれ求められる。そして、流量調整弁1
1,21,31の開度Qがそれぞれ目標値Qt に設定さ
れる。すなわち、図4に示す開度設定条件が室外制御部
50内のメモリに記憶されており、この開度設定条件に
現開度Qと目標値Qt との差が当て嵌められることによ
り開度の操作量ΔQが決定され、その操作量ΔQだけ流
量調整弁の開度が操作される。図4の数値は駆動パルス
数を表わしており、たとえば現開度Qと目標値Qt との
差が駆動パルス50発分に相当するとき、開度の操作量Δ
Qとして駆動パルス10発が決定される。
The target values Qt of the opening degrees of the flow rate adjusting valves 11, 21, 31 are respectively calculated according to the calculated correction total value PCLi and the distribution ratio H. And the flow control valve 1
The opening Q of 1, 21, 31 is set to the target value Qt, respectively. That is, the opening degree setting condition shown in FIG. 4 is stored in the memory in the outdoor control unit 50, and the difference between the current opening degree Q and the target value Qt is applied to this opening degree setting condition to determine the opening degree. The operation amount ΔQ is determined, and the opening of the flow rate adjusting valve is operated by the operation amount ΔQ. The numerical values in FIG. 4 represent the number of drive pulses. For example, when the difference between the current opening Q and the target value Qt corresponds to 50 drive pulses, the operation amount Δ of the opening is
As Q, 10 drive pulses are determined.

【0042】ここでは、室内ユニットB1 ,B2 ,B3
の状況として、室内ユニットごとの室内温度Taと室内
熱交換器温度Tcとの差の対比を捕らえ、その対比を分
配比Hとして説明する。この場合、下式により目標値Q
t が求められる。下式の分数部分が分配比Hに相当す
る。
Here, the indoor units B 1 , B 2 , B 3
As the situation, the difference between the indoor temperature Ta and the indoor heat exchanger temperature Tc of each indoor unit is captured, and the comparison is described as the distribution ratio H. In this case, the target value Q
t is required. The fractional part of the following equation corresponds to the distribution ratio H.

【0043】[0043]

【数3】 (Equation 3)

【0044】jの値( 1〜n )は室内ユニットの全台数
に対応しており、分数部分の分母として、室内ユニット
1 ,B2 ,B3 ごとの室内温度Taと室内熱交換器温
度Tcとの差{=(Ta−Tc)の絶対値}の合計値が
求められる。iは室内ユニットB1 ,B2 ,B3 の個々
に対応する。
The value of j (1 to n) corresponds to the total number of indoor units, and the indoor temperature Ta and the indoor heat exchanger temperature of each indoor unit B 1 , B 2 , B 3 are used as the denominator of the fractional part. The total value of the difference from Tc {= absolute value of (Ta-Tc)} is obtained. i corresponds to each of the indoor units B 1 , B 2 , and B 3 .

【0045】このように、それぞれの室内熱交換器に対
する冷媒の分配量を現時点の運転状況および負荷状況か
らフィードフォワード的に推定して制御することによ
り、室内熱交換器12,22,32に流れる冷媒の量を
最適値へと応答性よく安定させることができ、常に適正
な運転が可能となる。
In this way, the distribution amount of the refrigerant to each indoor heat exchanger is estimated in a feed-forward manner from the present operating condition and load condition and controlled to flow to the indoor heat exchangers 12, 22, 32. The amount of the refrigerant can be stabilized to the optimum value with good responsiveness, and proper operation can always be performed.

【0046】なお、上記実施例では、室内ユニットが3
台の場合を例に説明したが、室内ユニットが2台あるい
は4台以上の場合にも同様に実施可能である。また、上
記実施例においては、開度の目標値Qt の設定にフィー
ドバック制御である過熱度制御を用いなかったが、上記
実施例で目標値Qt を決定する段階で、従来と同様な手
法のフィードバック制御である過熱度制御で決定された
各流量調整弁に対する補正開度を分配された補正合計値
に加減算して目標値Qt を決定してもよい。これによれ
ば、より冷媒の量を最適値へと応答性よく安定させるこ
とができる。
In the above embodiment, the number of indoor units is three.
Although the case of the number of indoor units has been described as an example, the present invention can be similarly applied to the case where there are two or four or more indoor units. Further, in the above-mentioned embodiment, the superheat control which is the feedback control is not used for setting the target value Qt of the opening, but at the stage of determining the target value Qt in the above-mentioned embodiment, the feedback of the conventional method is used. The target value Qt may be determined by adding / subtracting the correction opening degree for each flow rate adjusting valve determined by the superheat control, which is the control, to the distributed correction total value. According to this, the amount of the refrigerant can be stabilized to the optimum value with good responsiveness.

【0047】[0047]

【発明の効果】以上述べたようにこの発明によれば、圧
縮機の運転周波数、各室内ユニットで検知される室内温
度、室外ユニットで検知される外気温度、および各室内
ユニットに定められている能力ランクに基づいて各流量
調整弁の開度の合計値を求め、各室内ユニットの状況に
応じて各室内ユニットに対する冷媒の分配比を求め、こ
れら合計値および分配比に応じて各流量調整弁の開度の
目標値を求め、その目標値に各流量調整弁の開度を設定
する構成としたので、各室内熱交換器に流れる冷媒の量
を最適値へと応答性よく安定させることができ、これに
より常に適正な運転を可能とする空気調和機を提供でき
る。
As described above, according to the present invention, the operating frequency of the compressor, the indoor temperature detected by each indoor unit, the outside air temperature detected by the outdoor unit, and each indoor unit are determined. Calculate the total value of the opening of each flow rate adjusting valve based on the capacity rank, calculate the distribution ratio of the refrigerant to each indoor unit according to the situation of each indoor unit, and then calculate each flow rate adjusting valve according to these total value and distribution ratio. Since the target value of the opening of the indoor heat exchanger is determined and the opening of each flow rate adjusting valve is set to the target value, it is possible to stabilize the amount of the refrigerant flowing through each indoor heat exchanger to the optimum value with good responsiveness. It is possible to provide an air conditioner that always enables proper operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の冷凍サイクルの構成図。FIG. 1 is a configuration diagram of a refrigeration cycle according to an embodiment of the present invention.

【図2】同実施例の制御回路のブロック図。FIG. 2 is a block diagram of a control circuit of the embodiment.

【図3】同実施例の作用を説明するためのフローチャー
ト。
FIG. 3 is a flowchart for explaining the operation of the embodiment.

【図4】同実施例における開度制御条件を示す図。FIG. 4 is a diagram showing opening control conditions in the embodiment.

【図5】従来の温度センサによる過熱度検出の例を示す
図。
FIG. 5 is a diagram showing an example of superheat detection by a conventional temperature sensor.

【符号の説明】[Explanation of symbols]

A…室外ユニット、B1 ,B2 ,B3 …室内ユニット、
1…能力可変圧縮機、2…四方弁、3…室外熱交換器、
11,21,31…流量調整弁、12,22,32…室
内熱交換器、14,24,34…熱交換器温度センサ、
15,25,35…室内温度センサ、50…室外制御
部、60…室内制御部。
A ... outdoor unit, B 1 , B 2 , B 3 ... indoor unit,
1 ... Variable capacity compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger,
11, 21, 31 ... Flow rate adjusting valve, 12, 22, 32 ... Indoor heat exchanger, 14, 24, 34 ... Heat exchanger temperature sensor,
15, 25, 35 ... Indoor temperature sensor, 50 ... Outdoor control unit, 60 ... Indoor control unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機および室外熱交換器を有する室外
ユニット、それぞれが室内熱交換器を有する複数の室内
ユニット、室外ユニットから各室内ユニットに流れる冷
媒の量を調節するための複数の流量調整弁を備えた空気
調和機において、 圧縮機の運転周波数、各室内ユニットで検知される室内
温度、室外ユニットで検知される外気温度、および各室
内ユニットに定められている能力ランクに基づき、各流
量調整弁の開度の合計値を求める合計値検出手段と、 各室内ユニットの状況に応じて各室内ユニットに対する
冷媒の分配比を求める分配比検出手段と、 前記合計値および前記分配比に応じて各流量調整弁の開
度の目標値を求める目標値検出手段と、 各流量調整弁の開度を前記目標値に設定する開度設定手
段と、 を具備したことを特徴とする空気調和機。
1. An outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, and a plurality of flow rate adjustments for adjusting the amount of refrigerant flowing from the outdoor unit to each indoor unit. In an air conditioner equipped with a valve, each flow rate is based on the operating frequency of the compressor, the indoor temperature detected by each indoor unit, the outside air temperature detected by the outdoor unit, and the capacity rank set for each indoor unit. Total value detection means for obtaining the total value of the opening of the adjusting valve, distribution ratio detection means for obtaining the distribution ratio of the refrigerant to each indoor unit according to the situation of each indoor unit, and according to the total value and the distribution ratio Target value detecting means for obtaining a target value of the opening degree of each flow rate adjusting valve, and opening degree setting means for setting the opening degree of each flow rate adjusting valve to the target value are provided. Air conditioner to be.
【請求項2】 請求項1に記載の空気調和機において、 合計値検出手段は、求めた合計値を各室内ユニットの運
転台数に対応する係数の積算により補正する、 ことを特徴とする空気調和機。
2. The air conditioner according to claim 1, wherein the total value detecting means corrects the calculated total value by integrating a coefficient corresponding to the number of operating indoor units. Machine.
【請求項3】 請求項1に記載の空気調和機において、 分配比検出手段は、各室内ユニットで検知される室内温
度、各室内ユニットで検知される室内熱交換器温度、お
よび各室内ユニットに定められている能力ランクに応じ
て、または室内ユニットごとに検知される室内温度と室
内熱交換器温度との差の対比に応じて、分配比を求め
る、 ことを特徴とする空気調和機。
3. The air conditioner according to claim 1, wherein the distribution ratio detecting means includes an indoor temperature detected by each indoor unit, an indoor heat exchanger temperature detected by each indoor unit, and each indoor unit. An air conditioner characterized by obtaining a distribution ratio according to a defined capacity rank or according to a contrast of a difference between an indoor temperature and an indoor heat exchanger temperature detected for each indoor unit.
【請求項4】 請求項1に記載の空気調和機において、 開度設定手段は、各流量調整弁の現開度と目標値との差
に応じて各流量調整弁に対する開度の操作量を決定す
る、 ことを特徴とする空気調和機。
4. The air conditioner according to claim 1, wherein the opening degree setting means sets the operation amount of the opening degree for each flow rate adjusting valve according to the difference between the current opening degree of each flow rate adjusting valve and the target value. An air conditioner that is characterized by:
JP7137947A 1995-06-05 1995-06-05 Air conditioner Pending JPH08327122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7137947A JPH08327122A (en) 1995-06-05 1995-06-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137947A JPH08327122A (en) 1995-06-05 1995-06-05 Air conditioner

Publications (1)

Publication Number Publication Date
JPH08327122A true JPH08327122A (en) 1996-12-13

Family

ID=15210433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137947A Pending JPH08327122A (en) 1995-06-05 1995-06-05 Air conditioner

Country Status (1)

Country Link
JP (1) JPH08327122A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053979A1 (en) * 2000-12-26 2002-07-11 Toshiba Carrier Corporation Air conditioner and control method for the air conditioner
JP2014185818A (en) * 2013-03-25 2014-10-02 Fujitsu General Ltd Air conditioner
CN108139106A (en) * 2015-10-26 2018-06-08 三菱电机株式会社 Conditioner
WO2020016959A1 (en) * 2018-07-18 2020-01-23 三菱電機株式会社 Air conditioning device and air conditioning method
JP2020098049A (en) * 2018-12-17 2020-06-25 三菱重工サーマルシステムズ株式会社 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053979A1 (en) * 2000-12-26 2002-07-11 Toshiba Carrier Corporation Air conditioner and control method for the air conditioner
JP2014185818A (en) * 2013-03-25 2014-10-02 Fujitsu General Ltd Air conditioner
CN108139106A (en) * 2015-10-26 2018-06-08 三菱电机株式会社 Conditioner
CN108139106B (en) * 2015-10-26 2020-10-30 三菱电机株式会社 Air conditioning apparatus
WO2020016959A1 (en) * 2018-07-18 2020-01-23 三菱電機株式会社 Air conditioning device and air conditioning method
JPWO2020016959A1 (en) * 2018-07-18 2021-02-15 三菱電機株式会社 Air conditioner and air conditioner
JP2020098049A (en) * 2018-12-17 2020-06-25 三菱重工サーマルシステムズ株式会社 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Similar Documents

Publication Publication Date Title
US10101041B2 (en) HVAC unit with hot gas reheat
KR0150812B1 (en) Airconditioner with outdoor air temperature calculating function
JP6609417B2 (en) Air conditioner
JP2983269B2 (en) Air conditioner
JP3772777B2 (en) Air conditioner and control method of air conditioner
GB2274930A (en) Refrigerating apparatus and control methods therefor
JP2006145204A (en) Air conditioner
KR100311859B1 (en) Air conditioner having a number of indoor heat exchanger
JP3181116B2 (en) Air conditioner
WO2021214931A1 (en) Air conditioning system and control method
JPH08327122A (en) Air conditioner
JP3377632B2 (en) Air conditioner
JP2001272114A (en) Control for refrigerant of multi-chamber type air conditioner
JP3443433B2 (en) Air conditioner
JPH1038398A (en) Controller of electric expansion valve
JP2960237B2 (en) Air conditioner
JP2914783B2 (en) Air conditioner
JP2536313B2 (en) Operation control device for air conditioner
JPH03217746A (en) Multiroom type air-conditioner
JP3375235B2 (en) Refrigeration cycle device
JP6906689B2 (en) Air conditioner
JP2003254588A (en) Multi-type air conditioner
JPH02195155A (en) Air conditioner
JPH10141788A (en) Multi-room split type air conditioner
JPH05248695A (en) Air conditioner