JPH03217746A - Multiroom type air-conditioner - Google Patents

Multiroom type air-conditioner

Info

Publication number
JPH03217746A
JPH03217746A JP2012582A JP1258290A JPH03217746A JP H03217746 A JPH03217746 A JP H03217746A JP 2012582 A JP2012582 A JP 2012582A JP 1258290 A JP1258290 A JP 1258290A JP H03217746 A JPH03217746 A JP H03217746A
Authority
JP
Japan
Prior art keywords
indoor
temperature
capacity
compressor
capacities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012582A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsushima
弘章 松嶋
Hiroshi Iwata
博 岩田
Shinya Yoshinaga
信也 吉永
Takashi Masuda
隆司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012582A priority Critical patent/JPH03217746A/en
Publication of JPH03217746A publication Critical patent/JPH03217746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To obtain a multiroom type air-conditioner having excellent comfortableness by operating a compressor in response to the detected temperature of the atmosphere and the total sum of requested capacities of indoor units, and driving flow control valves in response to the ratio of the capacitors of the units. CONSTITUTION:Differences between set temperatures 31A-31C of indoor units 2A-2C and indoor temperature sensors 30A-30C and required capacities QA-QC calculated from load capacities stored in memories 34A-34C are transferred to an outdoor controller 28. The controller 28 calculates the rotating speed of a compressor from the total value QT (QA+QB+QC) of the capacities of the indoor units and data associated in the controller 28 from the detected temperatures, and drives the compressor through an inverter 24. The openings of flow control valves 12A-12C are controlled by flow control valve drivers 36A-36C to openings to become suitable refrigerant flow rates for the capacities of the respective units, and the openings of the valves 12A-12C become ratios of the capacities to the total value of the capacities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一台の室外ユニットに複数台の室内ユニット
を接続してなる多室形空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit.

〔従来の技術〕[Conventional technology]

一般に、一台の室外ユニットに複数台の室内ユニットを
接続した多室形空気調和機の能力制御方法は、例えば、
特開昭63−61844号公報に記載のように、各室内
ユニットの設定温度と室内温度に応じて圧縮機回転数、
及び、各室内ユニット毎に設けた流量制御弁を制御する
もの、あるいは、特開平1−193563号公報に記載
のように、設定温度と室内温度の差から算出した要求能
力を各ユニットの容量で修正し、修正した要求能力の総
和に応じて圧縮機回転数を制御するものが開示されてい
る。
Generally, the capacity control method for a multi-room air conditioner in which multiple indoor units are connected to one outdoor unit is as follows:
As described in Japanese Patent Application Laid-open No. 63-61844, the compressor rotation speed,
And, the one that controls the flow rate control valve provided for each indoor unit, or the one that controls the required capacity calculated from the difference between the set temperature and the indoor temperature by the capacity of each unit, as described in Japanese Patent Application Laid-open No. 1-193563. A system has been disclosed in which the compressor rotational speed is controlled in accordance with the total sum of the corrected required capacities.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、設定温度と室内温度の差及びユニット
能力から圧縮機回転数を制御するために、室内の負荷が
変動した場合、例えば、日照条件が変化した場合、ある
いは、他の空調装置と併用した場合には考慮されておら
ず、最適な能力制御は困難となり、能力不足や能力過剰
を生じるといった問題点があった。
The above conventional technology controls the compressor rotation speed based on the difference between the set temperature and the indoor temperature and the unit capacity. This was not taken into consideration when used in combination, making it difficult to control the optimum capacity, resulting in problems such as insufficient capacity or excess capacity.

本発明の目的は、各室内の負荷に応じて能力を制御する
ことにより、快適性にすぐれた多室形空気調和機を提供
することにある。
An object of the present invention is to provide a multi-room air conditioner with excellent comfort by controlling the capacity according to the load in each room.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の多室形空気調和機
は、室内温度を検出する手段と、設定温度を入力する手
段と室内ユニットが設置されている室の熱負荷を検出す
る手段とを設け、室内温度と設定温度の差と熱負荷から
算呂した要求能力を室外ユニットに送信する手段と、外
気温度を検出する手段と、検出した外気温度と各室内ユ
ニットの要求能力の総和に応じて圧縮機を運転する手段
と、各室内ユニットの要求能力の比に応じて流量制御弁
を駆動する手段とを設けたものである。
In order to achieve the above object, the multi-room air conditioner of the present invention includes means for detecting indoor temperature, means for inputting a set temperature, and means for detecting the heat load of the room in which the indoor unit is installed. A means for transmitting the required capacity determined from the difference between the indoor temperature and the set temperature and the heat load to the outdoor unit, a means for detecting the outside air temperature, and a means for transmitting the required capacity calculated from the difference between the indoor temperature and the set temperature and the heat load to the outdoor unit, and a means for detecting the sum of the detected outside air temperature and the required capacity of each indoor unit. A means for operating the compressor accordingly and a means for driving a flow rate control valve according to the ratio of required capacities of each indoor unit are provided.

〔作用〕 本発明の目的を達成するために、室内の負荷を検出する
手段を設けたことにより、室内の負荷が変動に応じて能
力制御することができ、最適な能力配分が可能となる。
[Operation] In order to achieve the object of the present invention, by providing a means for detecting the indoor load, the capacity can be controlled according to fluctuations in the indoor load, and optimal capacity distribution becomes possible.

〔実施例〕〔Example〕

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

第1図は、本発明の一実施例に係る多室形空気調和機の
制御回路図、第2図は第1図の実施例に係る多室形空気
調和機の冷凍サイクルを示す図である。
FIG. 1 is a control circuit diagram of a multi-chamber air conditioner according to an embodiment of the present invention, and FIG. 2 is a diagram showing a refrigeration cycle of the multi-chamber air conditioner according to the embodiment of FIG. .

第2図において、1は室外ユニットであり回転数を変え
ることにより能力を制御できる圧縮機3,冷房運転と暖
房運転時で冷媒の流れ方向を切換える四方弁4,室外側
熱交換器5,室外側熱交換器5に送風する室外ファン6
,電動式の膨張弁7,余剰冷媒を溜めるリキッドタンク
8,アキュームレータ9からなる。2A,2B,2Cは
室内ユニットであり、室内側熱交換器10A,IOB,
10C、室内側熱交換器10A,IOB,IOCに、そ
れぞれ、送風する室内ファンIIA,IIB,11C、
室内側熱交換器10A,IOB,IOCへの冷媒流量を
制御できる電動式の流量制御弁12A,12B,12C
からなり、ガス側接続管13及び液側接続管14で室外
ユニット1に接続されている。
In Fig. 2, reference numeral 1 denotes an outdoor unit, including a compressor 3 whose capacity can be controlled by changing the rotation speed, a four-way valve 4 that switches the flow direction of refrigerant between cooling and heating operations, an outdoor heat exchanger 5, and an indoor unit. Outdoor fan 6 blowing air to the outside heat exchanger 5
, an electric expansion valve 7, a liquid tank 8 for storing surplus refrigerant, and an accumulator 9. 2A, 2B, 2C are indoor units, and indoor heat exchangers 10A, IOB,
10C, indoor fans IIA, IIB, and 11C that blow air to the indoor heat exchangers 10A, IOB, and IOC, respectively;
Electric flow control valves 12A, 12B, 12C that can control the flow rate of refrigerant to the indoor heat exchanger 10A, IOB, IOC
It is connected to the outdoor unit 1 through a gas side connecting pipe 13 and a liquid side connecting pipe 14.

この多室形空気調和機の制御回路構成を第1図により説
明する。
The control circuit configuration of this multi-room air conditioner will be explained with reference to FIG.

室外ユニット1には、圧縮機吐出冷媒温度センサ20,
圧縮機吸込冷媒温度センサ21,室外側熱交換器温度セ
ンサ22,外気温度センサ23が設けられており、圧縮
機3を駆動するインバータ回路24,四方弁4を駆動す
る四方弁駆動装置25,室外ファン6を駆動する室外フ
ァン駆動装置26、及び、膨張弁7を駆動する膨張弁駆
動装置27を制御する室外制御器28を備えている。
The outdoor unit 1 includes a compressor discharge refrigerant temperature sensor 20,
A compressor suction refrigerant temperature sensor 21, an outdoor heat exchanger temperature sensor 22, and an outside air temperature sensor 23 are provided. An outdoor fan drive device 26 that drives the fan 6 and an outdoor controller 28 that controls an expansion valve drive device 27 that drives the expansion valve 7 are provided.

室内ユニット2A,2B,2Cには、それぞれ、室内温
度センサ30A,30B,30Cと室内の設定温度31
A,31B,31Cを選定する操作器32A,32B,
32Cと室内の負荷を算出する演算器33A,33B,
33C及び算出した負荷を記憶する記憶部34A,34
B,34Cが設けられており、室内ファンをIIA,I
IB,11Cを駆動する室内ファン駆動装置35A,3
5B,35C及び流量制御弁12A,12B,12Gを
駆動する流量制御弁駆動装置36A,36B,36C等
を制御する室内制御器37A,37B,37Cが設置さ
れている。
The indoor units 2A, 2B, 2C have indoor temperature sensors 30A, 30B, 30C and an indoor set temperature 31, respectively.
Operator 32A, 32B, which selects A, 31B, 31C,
32C and computing units 33A, 33B that calculate the indoor load.
33C and storage units 34A and 34 that store the calculated load.
B, 34C are installed, and indoor fans IIA, I
Indoor fan drive device 35A, 3 that drives IB, 11C
Indoor controllers 37A, 37B, and 37C are installed to control flow rate control valve drive devices 36A, 36B, and 36C that drive flow rate control valves 12A, 12B, and 12G.

室外制御器28と室内制御器37A,37.B,37C
は相方向にデータ転送可能となっており、運転モード、
各センサ検呂出力,要求能力,運転能力等を各機器間を
接続する信号線を介して転送する。
Outdoor controller 28 and indoor controllers 37A, 37. B, 37C
data can be transferred in both directions, and the operation mode,
The test output of each sensor, required capacity, driving capacity, etc. are transferred via signal lines that connect each device.

以上のように構成した多室形空気調和機の動作を説明す
る。まず、全ての室内ユニットを冷房運転する場合を説
明する。
The operation of the multi-room air conditioner configured as above will be explained. First, a case will be described in which all indoor units are operated for cooling.

すべての操作器32A,32B,32Cの運転スイッチ
(図示せず)がONになり設定温度31A,31B,3
1Cが室内温度センサ30A,30B,30Gで検出さ
れる室内温度より高い場合、全ての室内ユニットが冷房
運転される。このとき、四方弁4が冷房運転側に設定さ
れ、室外ファン6,室内ファンIIA,IIB,IIC
が駆動される。
The operation switches (not shown) of all the actuators 32A, 32B, 32C are turned on and the set temperatures 31A, 31B, 3
When 1C is higher than the indoor temperature detected by the indoor temperature sensors 30A, 30B, and 30G, all indoor units are operated for cooling. At this time, the four-way valve 4 is set to the cooling operation side, and the outdoor fan 6, indoor fans IIA, IIB, IIC
is driven.

また,一定周期で室内ユニット2Aの設定温度31Aと
室内温度センサ30Aで検呂した温度との差と記憶部3
4Aで記憶されている負荷容量から算出した要求能力Q
^を室外制御器28に転送する。同様に室内ユニット2
Bからは要求能力Qa 、室内ユニット2Gからは要求
能力Qcがそれぞれ室外制御器28に転送される。室外
制御器28で各室内ユニットの要求能力の合計値Qt(
Q^十〇B+QC)と外気温度センサ23で検出された
温度から・室外制御器28内に組み込まれているデータ
から圧縮機回転数を算出し、インバータ回路24を介し
てこの回転数で圧縮機を駆動する。
In addition, the difference between the set temperature 31A of the indoor unit 2A and the temperature detected by the indoor temperature sensor 30A and the storage unit 3 are measured at regular intervals.
Required capacity Q calculated from the load capacity stored in 4A
^ is transferred to the outdoor controller 28. Similarly, indoor unit 2
The required capacity Qa is transferred from the indoor unit 2G, and the required capacity Qc is transferred from the indoor unit 2G to the outdoor controller 28. The outdoor controller 28 calculates the total required capacity Qt(
The compressor rotation speed is calculated from the temperature detected by the outside air temperature sensor 23 and the data built into the outdoor controller 28, and the compressor rotation speed is calculated via the inverter circuit 24. to drive.

ただし、算呂した圧縮機回転数が圧縮機の許容回転数を
越えた場合には、最大許容回転数で駆動し、最大許容回
転数での室外ユニットの能力Q m a xを算出する
。そして,実際の供給能力は室内ユニットの要求能力に
能力Q wa a xと要求能力の総和Qrの比を乗じ
た値、例えば、室内ユニット2Aの供給熱QAOはQ^
・Q−ax/QTとなる。この実際の供給熱量を要求能
力として室内ユニット2A,2B,2Cにそれぞれ送信
される。また、膨張弁7は圧縮機吐出冷媒温度センサ2
0で検出した吐出冷媒温度が,設定温度Taより低い場
合には、圧縮機回転数で決められた開度、設定温度Ta
より高い場合は吐a冷媒温度がTdになるように膨張弁
駆動装置27を介して制御される。
However, if the compressor rotation speed exceeds the allowable rotation speed of the compressor, the compressor is driven at the maximum allowable rotation speed, and the capacity Qmax of the outdoor unit at the maximum allowable rotation speed is calculated. The actual supply capacity is the value obtained by multiplying the required capacity of the indoor unit by the ratio of the capacity Q wa a x and the total required capacity Qr.For example, the supplied heat QAO of the indoor unit 2A is Q^
・Q-ax/QT. This actual amount of heat to be supplied is transmitted to the indoor units 2A, 2B, and 2C as the required capacity. Further, the expansion valve 7 is connected to the compressor discharge refrigerant temperature sensor 2.
If the discharge refrigerant temperature detected at 0 is lower than the set temperature Ta, the opening degree determined by the compressor rotation speed and the set temperature Ta
If the temperature is higher than that, the discharge a refrigerant temperature is controlled via the expansion valve drive device 27 so that it becomes Td.

一方,流量制御弁12A,12B,12Cの開度は各室
内ユニットの要求能力に適正な冷媒流量になる開度に流
量制御弁駆動装[26A,26B,26Cで制御される
。すなわち、冷媒流量と能力は比例するために、各流量
制御弁12A,12B,12Cの開度は、各要求能力と
要求能力の合計値の比となる。
On the other hand, the opening degrees of the flow rate control valves 12A, 12B, and 12C are controlled by the flow rate control valve driving device [26A, 26B, and 26C] so that the refrigerant flow rate is appropriate for the required capacity of each indoor unit. That is, since the refrigerant flow rate and the capacity are proportional, the opening degree of each flow control valve 12A, 12B, 12C becomes the ratio of each required capacity and the total value of the required capacity.

ここで、室内の要求負荷を第3図,第4図を用いて説明
する。第3図は室内温度の時間変化を示したもの、第4
図は、室内ユニットの能力に応じて予め記憶部に設定さ
れている設定温度と室内温度の差と室温上昇率の関係で
ある。
Here, the required indoor load will be explained using FIGS. 3 and 4. Figure 3 shows the change in indoor temperature over time;
The figure shows the relationship between the room temperature increase rate and the difference between a set temperature that is preset in the storage unit according to the capacity of the indoor unit and the indoor temperature.

室内の熱バランスは供給熱量QL,微小時間Δtでの室
温上昇Δt,室内の熱容量Qlll室内発生熱量と外部
からの進入熱量の合計である室内損失熱量Q,とすると
次式で表わされる,ここで、n回目に測定した値を添字
n,n−1回目に測定した値を添字n−1で表わすと,
室内の熱容量Q1及び室内損失熱量は次式で表わされる
The indoor heat balance is expressed by the following equation, assuming that the amount of heat supplied is QL, the room temperature rises Δt in a minute time Δt, the indoor heat capacity Qllll, the indoor heat loss Q is the sum of the indoor heat generated and the heat entering from the outside, where: , the value measured the nth time is expressed by the subscript n, and the value measured the n-1st time is expressed by the subscript n-1.
The indoor heat capacity Q1 and the indoor heat loss are expressed by the following equations.

ΔTn一ΔTn−z ・・(3) 上式を用いて、各室内ユニットの熱負荷をそれぞれの演
算器31A,31B,31Cで算出し、結果を記憶部3
4A,34B,34Cに記憶する。
ΔTn - ΔTn-z (3) Using the above formula, the heat load of each indoor unit is calculated by each computing unit 31A, 31B, 31C, and the result is stored in the storage unit 3.
4A, 34B, and 34C.

ただし、供給熱量は、そのときの要求熱量を用いる。However, the amount of heat required at that time is used as the amount of heat to be supplied.

一方、室温上昇率八T/Δtは、第4図に示した値を用
いることにより、設定温度と室内温度の差が大きいほど
、大きくなっており、供給能力が大きくなる。
On the other hand, by using the values shown in FIG. 4, the room temperature increase rate 8T/Δt increases as the difference between the set temperature and the room temperature increases, and the supply capacity increases.

従って、記憶部34A.34B,34Gに記憶された熱
容量Qal室内損失熱量Q,,室内上昇率ΔT/tより
(1)式を用いて供給熱量が算出でき、この供給熱量を
各室内ユニットの要求能力として室外ユニットに送信す
る。
Therefore, storage unit 34A. From the heat capacity Qal stored in 34B and 34G, the indoor heat loss Q, and the indoor increase rate ΔT/t, the supplied heat amount can be calculated using equation (1), and this supplied heat amount is sent to the outdoor unit as the required capacity of each indoor unit. do.

ただし、起動直後の一定時間toは、冷凍サイクルが不
安定であり、熱量計算ができない。この期間は、前回運
転した時に記憶した熱容量Qmg室内損失熱量Qi を
用いる。
However, for a certain period of time to immediately after startup, the refrigeration cycle is unstable and the amount of heat cannot be calculated. During this period, the heat capacity Qmg and indoor heat loss Qi stored during the previous operation are used.

各室内ユニットの要求能力で駆動された圧縮機3を吐呂
した高温高圧のガス冷媒は、四方弁4を通り室外側熱交
換器5で室外ファン6で送風された空気と熱交換し、凝
縮する。この凝縮した液冷媒は膨張弁7で減圧され気液
二相の冷媒となり,液側接続管14を通り各室内ユニッ
ト2A,2B,2Cに送られる。室内ユニット2Aに送
られた冷媒は流量制御弁12Aにより要求能力に応じた
冷媒量が減圧され、室内側熱交換器10Aに送られ室内
ファンIIAで送風された空気と熱交換して蒸発する。
The high-temperature, high-pressure gas refrigerant discharged from the compressor 3 driven by the required capacity of each indoor unit passes through the four-way valve 4, exchanges heat with the air blown by the outdoor fan 6 in the outdoor heat exchanger 5, and is condensed. do. This condensed liquid refrigerant is depressurized by the expansion valve 7 to become a gas-liquid two-phase refrigerant, and is sent to each indoor unit 2A, 2B, 2C through the liquid side connection pipe 14. The refrigerant sent to the indoor unit 2A is reduced in pressure by the flow rate control valve 12A according to the required capacity, and is sent to the indoor heat exchanger 10A where it exchanges heat with the air blown by the indoor fan IIA and evaporates.

同様に、室内ユニット2B,2Cで蒸発した冷媒と合流
し、ガス側接続管13を通り四方弁4に送られ,アキュ
ームレータ9を経て圧縮機8に戻る。
Similarly, it joins with the refrigerant evaporated in the indoor units 2B and 2C, is sent to the four-way valve 4 through the gas side connecting pipe 13, and returns to the compressor 8 via the accumulator 9.

また、一部の冷房運転が不要になった場合には、操作器
の運転スイッチをOFFにすると、例えば、室内ユニッ
ト2Bの流量制御弁12Bを全開にして,室内側熱交換
器10Bに冷媒を供給しないようにして、外部からの吸
熱をなくす。この時、室内側熱交換器10B内の圧力は
ガス側接続管13と同一となるために低圧となり、ガス
冷媒となる。
In addition, if a part of the cooling operation is no longer required, turn off the operation switch of the controller, for example, fully open the flow control valve 12B of the indoor unit 2B to supply refrigerant to the indoor heat exchanger 10B. Eliminate heat absorption from the outside by not supplying heat. At this time, the pressure inside the indoor heat exchanger 10B becomes the same as that of the gas side connecting pipe 13, so the pressure becomes low and the refrigerant becomes a gas refrigerant.

このときの余剰冷媒はリキッドタンク8に溜められる。The surplus refrigerant at this time is stored in the liquid tank 8.

次に、暖房運転について説明する。すべての操作器32
A,32B,32Cの運転スイッチがONになり、設定
温度31A,31B,31Cが室内温度センサ30A,
3.OB,30Cで検出される室内温度より低い場合,
すべての室内ユニットが暖房運転される。このとき、四
方弁4が暖房運転側に設定され、室内ファン6,室内フ
ァン11A,IIB,IIGが駆動される。また、冷媒
運転と同様に設定温度31A,31B,31Cと室内温
度センサ30A,30B,30Cで検呂した温度との差
と記憶部34A,34B,34Cで記憶されている負荷
容量から算出した要求能力QA. Qfl, Qcが室
外制御器28に転送され、要求能力の合計値と外気温度
センサ23で検出された温度から室外制御器28で圧縮
機回転数を算出し、インバータ回路24で圧縮機3を駆
動する。
Next, heating operation will be explained. All controls 32
The operation switches of A, 32B, and 32C are turned on, and the set temperatures 31A, 31B, and 31C are set to the indoor temperature sensors 30A and 32C.
3. If it is lower than the indoor temperature detected by OB, 30C,
All indoor units are heated. At this time, the four-way valve 4 is set to the heating operation side, and the indoor fan 6 and indoor fans 11A, IIB, and IIG are driven. In addition, similar to the refrigerant operation, the request is calculated from the difference between the set temperatures 31A, 31B, 31C and the temperatures checked by the indoor temperature sensors 30A, 30B, 30C and the load capacity stored in the storage units 34A, 34B, 34C. Ability QA. Qfl, Qc are transferred to the outdoor controller 28, the outdoor controller 28 calculates the compressor rotation speed from the total required capacity and the temperature detected by the outside air temperature sensor 23, and the inverter circuit 24 drives the compressor 3. do.

さらに、流量制御弁12A,12B,12Cは冷房運転
時と同様に室内ユニット2A,2B,2Cの要求能力に
応じて駆動され、膨張弁7は圧縮機吐出冷媒温度センサ
20で検出した吐出温度が設定値T,より低い場合には
、圧縮機吸込冷媒温度センサ21と室外側熱交換器温度
センサ22で検出される温度差が一定となるように制御
される。
Further, the flow rate control valves 12A, 12B, 12C are driven according to the required capacity of the indoor units 2A, 2B, 2C as in the case of cooling operation, and the expansion valve 7 is operated according to the discharge temperature detected by the compressor discharge refrigerant temperature sensor 20. When the temperature is lower than the set value T, the temperature difference detected by the compressor suction refrigerant temperature sensor 21 and the outdoor heat exchanger temperature sensor 22 is controlled to be constant.

吐出温度が設定値T,より高い場合は、吐出温度がT4
になるように制御される。
If the discharge temperature is higher than the set value T, the discharge temperature is T4.
controlled so that

暖房運転時は冷房運転とは逆に、圧縮機3を吐出した高
温高圧のガス冷媒は四方弁4、ガス側接続管13を通り
室内ユニット2A,2B,2Cに送られる。室内ユニッ
ト2A,2B,2C内の室内側熱交換器10A,IOB
,IOCで放熱し液冷媒となり、流量制御弁12A,.
12B,12cで減圧され、液側接続管14を通り膨張
弁7に送られる。膨張弁7でさらに減圧され、室外側熱
交換器5で外気より吸熱し、ガス冷媒となり、四方弁4
,アキュームレータ9を通り圧縮機3にもどる。
During the heating operation, contrary to the cooling operation, the high temperature and high pressure gas refrigerant discharged from the compressor 3 is sent to the indoor units 2A, 2B and 2C through the four-way valve 4 and the gas side connecting pipe 13. Indoor heat exchanger 10A, IOB in indoor units 2A, 2B, 2C
, IOC radiates heat and becomes a liquid refrigerant, which flows through the flow control valves 12A, .
The pressure is reduced at 12B and 12c, and the liquid is sent to the expansion valve 7 through the liquid side connecting pipe 14. The pressure is further reduced by the expansion valve 7, and the outdoor heat exchanger 5 absorbs heat from the outside air, becoming a gas refrigerant, and the four-way valve 4
, passes through the accumulator 9 and returns to the compressor 3.

各流量制御弁12A,12B,12Cは各室内ユニット
2A,2B,2Cの要求負荷に応じて駆動されているた
め、室内側熱交換器10A,IOB,10Cにはそれぞ
れの要求能力に適した冷媒量が供給される。従って、室
内ユニット2A,2B,2Cでの放熱量は要求能力に応
じて適正に制御される。
Since each flow rate control valve 12A, 12B, 12C is driven according to the required load of each indoor unit 2A, 2B, 2C, the indoor heat exchanger 10A, IOB, 10C is supplied with refrigerant suitable for each required capacity. quantity is supplied. Therefore, the amount of heat dissipated in the indoor units 2A, 2B, and 2C is appropriately controlled according to the required capacity.

また,一部の暖房が不要になった場合、たとえば、室内
ユニットBが不要になった場合には、操作器32Bの運
転スイッチをOFFにすると、室内ファンIOCがOF
F、流量制御井12Cが自然対流による放熱量に応じた
開度まで絞られる。
In addition, when a part of the heating is no longer needed, for example when the indoor unit B is no longer needed, turning off the operation switch of the controller 32B turns off the indoor fan IOC.
F. The flow rate control well 12C is throttled to an opening degree that corresponds to the amount of heat dissipated by natural convection.

従って、室内外熱交換器10B内はガス側接続管13と
同一の圧力となり、この圧力の飽和温度となりわずかに
自然対流により室内に放熱する。しかし、この放熱量は
小さく、また、自然対流による放熱量に応じて流量制御
弁12Bを開けているために、室内側熱交換器10B内
は気液二相流となり、液冷媒量の増加は少なく、リキッ
ドタンク8の容量が少なくてよい。
Therefore, the pressure inside the indoor/outdoor heat exchanger 10B is the same as that of the gas side connecting pipe 13, and the temperature reaches the saturation temperature of this pressure, and heat is radiated indoors by slight natural convection. However, this amount of heat radiation is small, and since the flow rate control valve 12B is opened according to the amount of heat radiation due to natural convection, the interior of the indoor heat exchanger 10B becomes a gas-liquid two-phase flow, and the increase in the amount of liquid refrigerant is Therefore, the capacity of the liquid tank 8 may be small.

以上のように、本実施例によれば、各室内ユニットで各
室の負荷を算出し、負荷より要求能力を設定し、要求能
力に応じた冷媒流量になるように,流量制御弁,圧縮機
回転数を制御するため、各室に適正な能力を供給でき、
各室の室内ユニット容量の違いや負荷変動に対応でき、
常に、最適な能力制御を行い快適性にすぐれている。
As described above, according to this embodiment, each indoor unit calculates the load of each room, sets the required capacity based on the load, and sets the flow control valve and compressor so that the refrigerant flow rate corresponds to the required capacity. Since the rotation speed is controlled, appropriate capacity can be supplied to each chamber,
Can accommodate differences in indoor unit capacity and load fluctuations in each room,
It always performs optimal capacity control and provides excellent comfort.

尚、本実施例では、流量制御弁を室内ユニット内部に設
けたが、室外ユニット内部,あるいは、接続管途中に設
けても同様に実施可能である。さらに,室内ユニットは
三台以上あるいは二台の場合でも実施可能である。
In this embodiment, the flow control valve is provided inside the indoor unit, but it can also be provided inside the outdoor unit or in the middle of the connecting pipe. Furthermore, it is possible to implement the method with three or more indoor units or even with two indoor units.

第5図は、本発明の他の実施例に係る多室形空気調和機
の制御回路図、第6図は室温上昇率である。
FIG. 5 is a control circuit diagram of a multi-room air conditioner according to another embodiment of the present invention, and FIG. 6 is a diagram showing the room temperature rise rate.

28A,28B,28Cは、記憶部34aA,34aB
,34aC内に記憶されている室温上昇率ΔT/Δtの
値を変える切換えスイッチである。
28A, 28B, 28C are storage units 34aA, 34aB
, 34aC is a changeover switch that changes the value of the room temperature increase rate ΔT/Δt stored in the memory.

記憶部34aA,34aB,34aC内には、第6図に
示す(i), (ii)の二種類の室温上昇率八T/Δ
tが設定温度と室内温度との差の関数で記憶されている
。ここで、(i)は通常運転時の室温上昇率、(ii)
は急速立上げ時の室温上昇率である。
The storage units 34aA, 34aB, and 34aC store two types of room temperature rise rates (8T/Δ) shown in FIG. 6 (i) and (ii).
t is stored as a function of the difference between the set temperature and the room temperature. Here, (i) is the room temperature rise rate during normal operation, (ii)
is the room temperature rise rate during rapid startup.

室内ユニット2A,2B,2C内の室内制御器37A,
37B,37Cからは第1図の例と同様にして算出した
各室の要求能力Q^+ Qa,Qc及び室内損失熱量Q
1^t Qta, Qtcが室外制御器28に送信され
る。室外制御器28で各室内ユニットの要求能力の合計
値QTと外気温度センサ23で検出された温度から圧縮
機回転数を算畠し、インバータ回路24を介して圧縮機
を駆動する。
Indoor controller 37A in indoor units 2A, 2B, 2C,
From 37B and 37C, the required capacity of each room Q^+ Qa, Qc and indoor heat loss Q calculated in the same manner as the example in Figure 1
1^t Qta, Qtc are transmitted to the outdoor controller 28. The outdoor controller 28 calculates the compressor rotation speed from the total required capacity QT of each indoor unit and the temperature detected by the outside temperature sensor 23, and drives the compressor via the inverter circuit 24.

この時、算出した圧縮機回転数が許容回転数を越えた場
合には、最大許容回転数で駆動し、最大許容回転数での
室外ユニットの能力Q m a xを算出する。そして
、実際の供給能力は、室内ユニットの要求能力に能力Q
 s a xと要求能力の総和Qtの比を乗した値、例
えば、室内ユニット2Aの供給能力QAOはQ^・Q.
&x/QTとなる。このとき、供給能力QAOが室内損
失熱量Qt^より小さい場合には、供給能力QAOが室
内損失熱量Qi^となり、これに応じて他の室内ユニッ
トへの供給能力が小さくなる。この供給能力を各室内ユ
ニットへ送信し、要求能力とするとともに、要求能力と
能力Q +a a。
At this time, if the calculated compressor rotation speed exceeds the allowable rotation speed, the compressor is driven at the maximum allowable rotation speed, and the capacity Qmax of the outdoor unit at the maximum allowable rotation speed is calculated. The actual supply capacity is calculated by adding the required capacity of the indoor unit to the capacity Q.
The value obtained by multiplying the ratio of s a x to the total required capacity Qt, for example, the supply capacity QAO of the indoor unit 2A is Q^・Q.
&x/QT. At this time, if the supply capacity QAO is smaller than the indoor heat loss Qt^, the supply capacity QAO becomes the indoor heat loss Qi^, and the supply capacity to other indoor units decreases accordingly. This supply capacity is transmitted to each indoor unit and used as the required capacity, and the required capacity and capacity Q +a a.

の比に応じて各流量制御弁12A,12B,12Cを駆
動する。
The flow rate control valves 12A, 12B, and 12C are driven according to the ratio.

以上のように,制御することにより、多室形空気調和機
は第一の実施例と同様の動作を行うが、使用頻度の高い
室内ユニット、例えば、室内ユニット2Aの切換えスイ
ッチ38Aを室温上昇率(n)の急速立上げにし,他の
室内ユニット2B,2Cを通常運転時の(i)にするこ
とにより、室内ユニット2Aの供給能力が大きくなり、
他室よりも早く設定温度に達する。
As described above, by controlling the multi-room air conditioner, the same operation as in the first embodiment is performed, but the changeover switch 38A of the frequently used indoor unit, for example, the indoor unit 2A, is set to By setting (n) to the rapid start-up and setting the other indoor units 2B and 2C to (i) during normal operation, the supply capacity of the indoor unit 2A is increased.
The set temperature is reached faster than other rooms.

さらに、一部の室内ユニット、例えば、室内ユニット2
Cを運転中に、他の二台を設定温度と室内温度の差が大
きい状態で始動した場合、この二室への供給熱量が大き
くなり、室内ユニット2Cへの供給熱量が小さくなる。
Furthermore, some indoor units, for example, indoor unit 2
If the other two units are started with a large difference between the set temperature and the indoor temperature while the unit 2C is in operation, the amount of heat supplied to these two rooms will increase, and the amount of heat supplied to the indoor unit 2C will decrease.

しかし、室内損失熱量より供給熱量は確保することがで
き、現状の室内温度を少なくとも維持することができる
However, the amount of heat supplied can be secured compared to the amount of heat lost indoors, and at least the current indoor temperature can be maintained.

以上のように、本実施例によれば、切換えスイッチの設
定により始動時の能力配分を変えることができ、室内ユ
ニットの設定されている室の使用状態に適した制御が可
能となる。また、他室へ負荷が大きくなり、一部の室内
ユニットへの供給能力が小さくなっても、少なくとも現
状の室内温度を維持することができ、快適性の低下はな
い。
As described above, according to this embodiment, the capacity distribution at the time of startup can be changed by setting the changeover switch, and control suitable for the usage state of the room in which the indoor unit is set becomes possible. Furthermore, even if the load on other rooms increases and the supply capacity to some indoor units decreases, at least the current indoor temperature can be maintained and comfort will not deteriorate.

尚、本実施例では,要求能力を変える係数として温度上
昇率を用いたが、室内の熱容量、あるいは、設定温度と
室内温度の差を検出した値から変化させて行っても同一
の効果を得る。
In this example, the temperature increase rate was used as a coefficient for changing the required capacity, but the same effect can be obtained by changing the indoor heat capacity or the detected value of the difference between the set temperature and the indoor temperature. .

第7図は本発明のさらに他の実施例に係る多室形空気調
和機の制御回路図である。
FIG. 7 is a control circuit diagram of a multi-room air conditioner according to still another embodiment of the present invention.

39A,39B,39Cは操作器32A.32B,32
Cに設けられ記憶部34aA,34aB,34aC内に
記憶されている室温上昇率ΔT/Δtの値を変える切換
えスイッチとしての急速スイッチで、ONにすると、急
速高上げ時の室温上昇率を選び、設定温度が室内温度に
達すると自動的にOFFになる。
39A, 39B, 39C are operating devices 32A. 32B, 32
This is a quick switch that is provided in C and serves as a changeover switch for changing the value of the room temperature rise rate ΔT/Δt stored in the storage units 34aA, 34aB, and 34aC.When turned on, the switch selects the room temperature rise rate during rapid temperature rise. When the set temperature reaches the room temperature, it will automatically turn off.

以上のように構成することにより、急速スイッチ39A
,39B,39C(7)全てがOFF(7)時は本発明
の第1図の実施例と同一の動作を行う。
By configuring as above, the quick switch 39A
, 39B, 39C (7) are all OFF (7), the same operation as in the embodiment of FIG. 1 of the present invention is performed.

ここで、急に空調が必要になった場合、例えば、室内ユ
ニット2Bの室の温度を急速に設定温度にする必要が生
じた場合、急速スイッチ39BをONにすることにより
、要求能力が大きくなり、本発明の他の実施例と同様に
他室よりも早く設定値に達する。
Here, if air conditioning is suddenly required, for example, if it is necessary to quickly bring the room temperature of the indoor unit 2B to the set temperature, the required capacity can be increased by turning on the rapid switch 39B. , the set value is reached earlier than in other rooms, as in other embodiments of the present invention.

室内温度が設定値に達すると急速スイッチ39Bは自動
的にOFFになり、次回の始動時には通常運転になり、
急速スイッチ39Bの切り忘れによる誤動作がなくなる
When the indoor temperature reaches the set value, the quick switch 39B will automatically turn off, and the next time the engine starts, it will return to normal operation.
Malfunctions caused by forgetting to turn off the quick switch 39B are eliminated.

以上のように、本実施例によれば、操作器に設けられた
急速スイッチのON,OFFにより始動時の能力配分を
変えることができ、室内ユニットの設置されている室の
使用状況に適した制御が可能となる.また、急速スイッ
チがONの場合でも室内温度が饅定温度に達すると自動
的にOFFになり、切り忘れによる誤動作がなくなる。
As described above, according to this embodiment, the capacity distribution at the time of starting can be changed by turning on and off the quick switch provided on the controller, and the capacity distribution at the time of starting can be changed to suit the usage conditions of the room where the indoor unit is installed. Control becomes possible. Furthermore, even if the rapid switch is ON, it will automatically turn OFF when the indoor temperature reaches the drinking temperature, eliminating malfunctions caused by forgetting to turn it off.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、算出した負荷により要求能力を設定し
、要求能力に応じて流量制御井及び圧縮機回転数を制御
するために各室に適正な能力を供給でき,各室の室内ユ
ニット容量の違いや負荷室動に対応でき、常に、最適な
能力制御を行い快適性にすぐれている。
According to the present invention, the required capacity can be set based on the calculated load, and appropriate capacity can be supplied to each room in order to control the flow rate control well and compressor rotation speed according to the required capacity, and the indoor unit capacity of each room is It can respond to differences in capacity and load chamber movements, and always performs optimal capacity control for excellent comfort.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る多室形空気調和機の制
御回路図、第2図は第1図の多室形空気調和機の冷凍サ
イクル図、第3図は室内温度の時間変化図、第4図は設
定温度と室内温度の差と室温上昇率の関係を示す図、第
5図は本発明の他の実施例に係る多室形空気調和機の制
御回路図、第6図は第5図の実施例の設定温度と室内温
度の差と室温上昇率の関係を示す図、第7図は本発明の
さらに他の実施例に係る多室形空気調和機の制御回路図
である。 1・・・室外ユニット、2A,2B,2G・・・室内ユ
ニット、3・・・圧縮機、5・・・室外側熱交換器、7
・・・膨張弁. 10A,IOB,IOC,・・・室内
側熱交換器、12A,12B,12C・・・流量制御弁
、23・・・外気温度センサ、24・・・インバータ回
路、27・・・膨張丼駆動装置、28・・・室外制御器
、30A,30B,30C・・・室内温度センサ、3 
1A, 3 1 B, 31C・・・設定温度、32A
,32B,32C・・・操作器、33A,33B,33
C・・・演算器、34A,34B,34C, 36A, 37A, 38B, 34aA,34aB,34aC−・−記憶部、36B,
36C・・・流量制御弁駆動装置、3B,37G・・・
室内制御器、38A,38C・・・切換えスイッチ、3
9A,39B,第 霞 第 2 霞 5−’! ダトイVJ禰;く炙勢 第 3 圓 薯 4 口 第51¥] 第 b ロ
Fig. 1 is a control circuit diagram of a multi-chamber air conditioner according to an embodiment of the present invention, Fig. 2 is a refrigeration cycle diagram of the multi-chamber air conditioner of Fig. 1, and Fig. 3 is a time period of indoor temperature. FIG. 4 is a diagram showing the relationship between the difference between the set temperature and the indoor temperature and the room temperature rise rate. FIG. 5 is a control circuit diagram of a multi-room air conditioner according to another embodiment of the present invention. The figure is a diagram showing the relationship between the difference between the set temperature and the indoor temperature and the room temperature rise rate in the embodiment of Fig. 5, and Fig. 7 is a control circuit diagram of a multi-room air conditioner according to still another embodiment of the present invention. It is. 1... Outdoor unit, 2A, 2B, 2G... Indoor unit, 3... Compressor, 5... Outdoor heat exchanger, 7
...Expansion valve. 10A, IOB, IOC,... Indoor heat exchanger, 12A, 12B, 12C... Flow rate control valve, 23... Outside air temperature sensor, 24... Inverter circuit, 27... Expansion bowl drive device , 28... Outdoor controller, 30A, 30B, 30C... Indoor temperature sensor, 3
1A, 3 1 B, 31C...Set temperature, 32A
, 32B, 32C... operating device, 33A, 33B, 33
C... Arithmetic unit, 34A, 34B, 34C, 36A, 37A, 38B, 34aA, 34aB, 34aC--Storage unit, 36B,
36C...Flow control valve drive device, 3B, 37G...
Indoor controller, 38A, 38C... changeover switch, 3
9A, 39B, Kasumi No. 2 Kasumi 5-'! Datoi VJ Ne; Kurouse No. 3 Enpo 4 Mouth No. 51 ¥] Part b B

Claims (1)

【特許請求の範囲】 1、能力可変の圧縮機をもつ室外ユニットと前記室外ユ
ニットと接続された複数台の室内ユニットとを備え、前
記各室内ユニットの液側接続管に冷媒流量を制御できる
流量制御弁を設けた多室形空気調和機において、 室内温度を検出する手段と、設定温度を入力する手段と
前記室内ユニットが設置されている室の熱負荷を検出す
る手段とを設け、前記室内温度と設定温度の差と熱負荷
とから算出した要求能力を前記室外ユニットに送信する
手段と、外気温度を検出する手段と検出した外気温度と
、前記各室内ユニットの要求能力の総和に応じて前記圧
縮機を運転する手段と、前記各室内ユニットの要求能力
の比に応じて前記流量制御弁を駆動する手段を設けたこ
とを特徴とする多室形空気調和機。
[Scope of Claims] 1. A flow rate system comprising an outdoor unit having a variable capacity compressor and a plurality of indoor units connected to the outdoor unit, and capable of controlling the flow rate of refrigerant to the liquid side connection pipe of each indoor unit. A multi-room air conditioner equipped with a control valve is provided with means for detecting an indoor temperature, means for inputting a set temperature, and means for detecting a heat load of a room in which the indoor unit is installed, means for transmitting the required capacity calculated from the difference between the temperature and the set temperature and the heat load to the outdoor unit; a means for detecting the outside air temperature; A multi-room air conditioner, comprising: means for operating the compressor; and means for driving the flow rate control valve according to a ratio of required capacities of each of the indoor units.
JP2012582A 1990-01-24 1990-01-24 Multiroom type air-conditioner Pending JPH03217746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012582A JPH03217746A (en) 1990-01-24 1990-01-24 Multiroom type air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012582A JPH03217746A (en) 1990-01-24 1990-01-24 Multiroom type air-conditioner

Publications (1)

Publication Number Publication Date
JPH03217746A true JPH03217746A (en) 1991-09-25

Family

ID=11809350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012582A Pending JPH03217746A (en) 1990-01-24 1990-01-24 Multiroom type air-conditioner

Country Status (1)

Country Link
JP (1) JPH03217746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539766B1 (en) * 2004-05-21 2006-01-12 엘지전자 주식회사 Unitary air conditioner and his control method
JP2007120938A (en) * 2005-10-28 2007-05-17 Lg Electronics Inc Partial overload eliminating method and device for air conditioner
WO2014203311A1 (en) 2013-06-17 2014-12-24 三菱電機株式会社 Air conditioning system control device and air conditioning system control method
JP2016138715A (en) * 2015-01-28 2016-08-04 ヤンマー株式会社 heat pump
JP2020098049A (en) * 2018-12-17 2020-06-25 三菱重工サーマルシステムズ株式会社 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539766B1 (en) * 2004-05-21 2006-01-12 엘지전자 주식회사 Unitary air conditioner and his control method
JP2007120938A (en) * 2005-10-28 2007-05-17 Lg Electronics Inc Partial overload eliminating method and device for air conditioner
WO2014203311A1 (en) 2013-06-17 2014-12-24 三菱電機株式会社 Air conditioning system control device and air conditioning system control method
US10253996B2 (en) 2013-06-17 2019-04-09 Mitsubishi Electric Corporation Air-conditioning system control device and air-conditioning system control method
JP2016138715A (en) * 2015-01-28 2016-08-04 ヤンマー株式会社 heat pump
JP2020098049A (en) * 2018-12-17 2020-06-25 三菱重工サーマルシステムズ株式会社 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Similar Documents

Publication Publication Date Title
US5344069A (en) Air conditioning apparatus for distributing primarily-conditioned air to rooms
KR940008432B1 (en) Multiple type air conditioning system
US4997030A (en) Central air conditioning system having remote controller in a plurality of rooms for starting or stopping air conditioning apparatus
CN102422095A (en) Air conditioning device
WO2015125863A1 (en) Heat source device
JP6609697B2 (en) Heat source system and control method of heat source system
JP2016196971A (en) Air conditioner
JP3772777B2 (en) Air conditioner and control method of air conditioner
US20070084939A1 (en) Systems and methods of controlling a fan coil unit
JP2001248937A (en) Heat pump hot water supply air conditioner
WO2021214931A1 (en) Air conditioning system and control method
JPH03217746A (en) Multiroom type air-conditioner
KR101611315B1 (en) Air conditioner and operating method thereof
KR101997443B1 (en) Air conditioner and method for controlling the same
JP5216813B2 (en) Control method for air conditioning system
JPH02223757A (en) Air conditioner
JPH03211370A (en) Controller for expansion valve of multiple-air conditioner
JPH01256762A (en) Heat pump type heating and hot water supplying device
JPH01281378A (en) Heat pump type cooler/hot water heater
JPH08327122A (en) Air conditioner
JPH08178448A (en) Multi-room type air conditioner
JPH0568657B2 (en)
KR20180056292A (en) Air-conditioner and Method thereof
JPH07133969A (en) Air conditioner
KR20070069264A (en) Air conditioner and controlling method of the same