JP2020098049A - Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system - Google Patents

Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system Download PDF

Info

Publication number
JP2020098049A
JP2020098049A JP2018235539A JP2018235539A JP2020098049A JP 2020098049 A JP2020098049 A JP 2020098049A JP 2018235539 A JP2018235539 A JP 2018235539A JP 2018235539 A JP2018235539 A JP 2018235539A JP 2020098049 A JP2020098049 A JP 2020098049A
Authority
JP
Japan
Prior art keywords
temperature difference
capacity
indoor
indoor unit
living room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018235539A
Other languages
Japanese (ja)
Inventor
好教 布目
Yoshiaki Nunome
好教 布目
岡村 和美
Kazumi Okamura
和美 岡村
史穏 久松
Shion Hisamatsu
史穏 久松
雅司 ▲高▼野
雅司 ▲高▼野
Masashi Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2018235539A priority Critical patent/JP2020098049A/en
Publication of JP2020098049A publication Critical patent/JP2020098049A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a control device of an air conditioning system that enables a capacity to be easily distributed to an indoor unit that needs a capacity.SOLUTION: There is provided a control device 40 of an air conditioning system 1 equipped with a plurality of indoor units 3. When a capacity distribution mode for redistributing an operation capacity of each indoor unit 3 is set, an indoor and outdoor temperature difference, which is a difference between an indoor temperature and an outdoor temperature of habitable rooms where each indoor unit 3 is installed, is calculated respectively; a habitable room of a minimum temperature difference where the indoor and outdoor temperature difference is minimum, and a habitable room of a maximum temperature difference where the indoor and outdoor temperature difference is maximum are specified; and capacity distribution control is executed for redistributing the operation capacities between the indoor unit 3 of the minimum temperature difference and the indoor unit 3 of the maximum temperature difference.SELECTED DRAWING: Figure 1

Description

本開示は、空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラムに関するものである。 The present disclosure relates to an air conditioning system control device, an air conditioning system, an air conditioning system control method, and an air conditioning system control program.

複数台の室内機を接続する室外機を備える空気調和システムにおいては、全ての室内機の能力の和が室外機の最大能力を超えて設置されることが一般的である。このような空気調和システムでは、運転中の室内機の能力の和が室外機の最大能力を超える場合、制御により各室内機に優先順位を設けて優先度の高い室内機に能力を分配することが行われている。 In an air conditioning system including an outdoor unit that connects a plurality of indoor units, it is common that the sum of the capacities of all the indoor units exceeds the maximum capacity of the outdoor unit. In such an air conditioning system, if the sum of the capacities of the indoor units in operation exceeds the maximum capacity of the outdoor unit, prioritize each indoor unit by control and distribute the capacity to the indoor units with high priority. Is being done.

例えば、特許文献1には、各室内機に優先順位を設定し、運転している室内機の能力を優先順位順に足し合わせ、その和が室外機の能力を超えないように制御されることが開示されている。
また特許文献2には、運転中の室内機の能力の和が室外機の最大能力を超える場合、予め選定した優先室内機以外の他の室内機の設定室温を調整するなど、他の室内機への冷媒流量を低減して優先室内機へ優先的に冷媒を供給することが開示されている。
For example, in Patent Literature 1, it is possible to set priorities for the indoor units, add the capacities of the operating indoor units in the order of priority, and control so that the sum does not exceed the capacity of the outdoor unit. It is disclosed.
Further, in Patent Document 2, when the sum of the capacities of the indoor units in operation exceeds the maximum capacity of the outdoor unit, other indoor units such as adjusting the set room temperature of other indoor units than the priority indoor unit selected in advance It is disclosed that the refrigerant flow rate to the indoor unit is reduced to preferentially supply the refrigerant to the priority indoor unit.

特開昭63−207944号公報JP-A-63-207944 特開平8−271017号公報JP 8-271017 A

しかしながら、上記特許文献1及び2に開示された発明では、予め優先順位を設けるため、室内及び室外環境の変化やユーザの所望する温度環境への対応が柔軟に行えないという問題があった。また、上記特許文献1では、優先順位をリモコンによる設定で変更が可能であるが、ユーザによる操作を要し煩雑であるという問題があった。さらに、優先順位の高い室内機の設置された居室が所望の環境となった後、他の室内機に対する制御の検討がなされていなかった。 However, in the inventions disclosed in Patent Documents 1 and 2, the priorities are set in advance, so that there is a problem that it is not possible to flexibly deal with changes in the indoor and outdoor environments and the temperature environment desired by the user. Further, in Patent Document 1 described above, the priority order can be changed by setting with the remote controller, but there is a problem that the operation is required by the user and is complicated. Furthermore, after the living room in which the indoor unit having a high priority is installed becomes the desired environment, control of other indoor units has not been examined.

本開示は、このような事情に鑑みてなされたものであって、能力を要する室内機への能力振り分けが簡便に行える空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an air conditioning system control device, an air conditioning system, an air conditioning system control method, and an air system that can easily perform capacity allocation to indoor units that require capacity. The purpose is to provide a control program for a harmony system.

上記課題を解決するために、本開示の空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラムは以下の手段を採用する。
本開示の幾つかの実施形態における一態様に係る空気調和システムの制御装置は、複数の室内機を備える空気調和システムの制御装置であって、各前記室内機の運転能力を再分配する能力振り分けモードが設定されると、各前記室内機が設置された居室の各室内温度と室外温度との差である内外温度差をそれぞれ算出し、前記内外温度差が最小である最小温度差の前記居室および前記内外温度差が最大である最大温度差の前記居室を特定し、前記最小温度差の前記居室の前記室内機と、前記最大温度差の前記居室の前記室内機の前記運転能力を再分配する能力振り分け制御を行う。
In order to solve the above-mentioned problems, the control device of the air conditioning system, the air conditioning system, the control method of the air conditioning system, and the control program of the air conditioning system of the present disclosure employ the following means.
A control device for an air conditioning system according to an aspect of some embodiments of the present disclosure is a control device for an air conditioning system including a plurality of indoor units, and the capability distribution for redistributing the operating capacity of each of the indoor units. When the mode is set, the inside/outside temperature difference, which is the difference between the indoor temperature and the outdoor temperature of the living room in which each indoor unit is installed, is calculated, and the living room with the minimum temperature difference is the smallest. And specifying the living room with the maximum temperature difference where the inside and outside temperature difference is the maximum, and redistributing the operating capacity of the indoor unit of the living room with the minimum temperature difference and the indoor unit of the living room with the maximum temperature difference. Ability distribution control is performed.

各室内機の運転能力を再分配する能力振り分けモードが設定されると、各室内機が設置された居室の各室内温度と室外温度との差である内外温度差をそれぞれ算出し、内外温度差が最小である最小温度差の居室および内外温度差が最大である最大温度差の居室を特定し、最小温度差の居室の室内機と、最大温度差の居室の室内機の運転能力を再分配する能力振り分け制御を行う。
これにより、本態様によれば、室内温度と室外温度との差が大きく能力を必要とする室内機に対し、室内温度と室外温度との差が小さく能力を比較的必要としない室内機の余剰能力を分配することができる。そのため、能力を必要とする室内機が設置された居室を所望の温度環境に早急に近づけることができる。
When the capacity distribution mode that redistributes the operating capacity of each indoor unit is set, the inside/outside temperature difference, which is the difference between the indoor temperature and the outdoor temperature of the room where each indoor unit is installed, is calculated, and the inside/outside temperature difference is calculated. Identify the room with the smallest temperature difference and the room with the largest temperature difference, and redistribute the operating capacity between the indoor unit with the smallest temperature difference and the indoor unit with the largest temperature difference. Ability distribution control is performed.
Thus, according to this aspect, in contrast to an indoor unit that requires a large capacity between the indoor temperature and the outdoor temperature, a surplus of an indoor unit that does not require a relatively small capacity between the indoor temperature and the outdoor temperature is required. Ability can be distributed. Therefore, it is possible to quickly bring a living room in which an indoor unit that requires a capacity is installed to a desired temperature environment.

上記態様では、前記最小温度差の前記居室における設定温度と前記室内温度との差である設定温度差が第1閾値以下であれば、前記能力振り分け制御を行うとしてもよい。 In the above aspect, if the set temperature difference, which is the difference between the set temperature in the living room and the room temperature with the minimum temperature difference, is equal to or less than a first threshold value, the capacity allocation control may be performed.

本態様によれば、最小温度差の居室における設定温度と室内温度との差である設定温度差が第1閾値以下であれば、能力振り分け制御を行うことから、最小温度差の居室の設定温度差が小さく、所望の温度環境に近い場合は、最小温度差の居室の室内機の余剰能力を他に分配することができる。また、最小温度差の居室の設定温度差が大きく、室内機の能力を必要とする場合は、能力を他に分配することなく引き続き室内機を運転することができる。 According to this aspect, if the set temperature difference, which is the difference between the set temperature in the room with the minimum temperature difference and the room temperature, is equal to or less than the first threshold value, the capacity allocation control is performed, and thus the set temperature in the room with the minimum temperature difference is performed. When the difference is small and the temperature environment is close to the desired temperature environment, the surplus capacity of the indoor unit in the living room having the minimum temperature difference can be distributed to others. Further, when the set temperature difference of the living room having the smallest temperature difference is large and the capacity of the indoor unit is required, the indoor unit can be continuously operated without distributing the capacity to another.

上記態様では、前記能力振り分け制御は、前記最大温度差の前記居室の前記室内機に対しては、該室内機の前記運転能力の最大値を振り分け、前記最小温度差の前記居室の前記室内機に対しては、前記最大温度差の前記居室の前記室内機の前記運転能力の前記能力振り分け制御前に対する増分を低減した前記運転能力を振り分けるとしてもよい。 In the above aspect, the capacity distribution control distributes the maximum value of the operation capacity of the indoor unit to the indoor unit of the living room having the maximum temperature difference, and the indoor unit of the living room having the minimum temperature difference. With respect to the above, it is possible to distribute the operating capacity with a reduced increment of the operating capacity of the indoor unit of the living room having the maximum temperature difference from that before the capacity allocation control.

能力振り分け制御は、最大温度差の居室の室内機に対しては、室内機の運転能力の最大値を振り分け、最小温度差の居室の室内機に対しては、最大温度差の居室の室内機の運転能力の能力振り分け制御前に対する増分を低減した運転能力を振り分ける。
室内機の能力は、一般的に定格能力が設けられているが、実際の運転能力はそれよりも大きくすることができる。すなわち室内機の最大能力は、定格能力よりも大きい値である。
本態様によれば、能力振り分け制御では、最大温度差の居室の室内機に対し、その室内機の最大能力を振り分け、最小温度差の居室の室内機に対し、最大温度差の室内機の制御前の運転能力から最大能力へ増加した増分の分だけ能力を低減した運転能力を振り分けることで、最小温度差の室内機の余剰能力を最大温度差の室内機へ分配することができる。最大温度差の室内機は最大能力で運転することから、室内機が設置された居室を所望の温度環境に早急に近づけることができる。
The capacity distribution control distributes the maximum operating capacity of the indoor unit to the indoor unit in the room with the maximum temperature difference, and allocates the maximum operation capacity of the indoor unit to the indoor unit in the room with the minimum temperature difference. Allocating the driving ability of the driving ability of which the increment is reduced from that before the control.
The capacity of the indoor unit is generally provided with a rated capacity, but the actual operating capacity can be made larger than that. That is, the maximum capacity of the indoor unit is larger than the rated capacity.
According to this aspect, in the capacity distribution control, the maximum capacity of the indoor unit is distributed to the indoor unit in the living room with the maximum temperature difference, and the indoor unit with the maximum temperature difference is controlled with respect to the indoor unit in the living room with the minimum temperature difference. The surplus capacity of the indoor unit having the minimum temperature difference can be distributed to the indoor unit having the maximum temperature difference by distributing the operating capacity whose capacity is reduced by the increment increased from the previous operating capacity to the maximum capacity. Since the indoor unit with the maximum temperature difference operates with the maximum capacity, it is possible to quickly bring the room in which the indoor unit is installed close to the desired temperature environment.

上記態様では、前記能力振り分け制御は、各前記室内機に備えられる各室内膨張弁の開度を調整することで該室内機の前記運転能力を制御するとしてもよい。 In the above aspect, the capacity distribution control may control the operation capacity of the indoor unit by adjusting the opening degree of each indoor expansion valve provided in each indoor unit.

本態様によれば、能力振り分け制御は、各室内機に備えられる各室内膨張弁の開度を調整することで室内機の運転能力を制御することから、簡便に運転能力の分配を行うことができる。 According to this aspect, since the capacity distribution control controls the operation capacity of the indoor unit by adjusting the opening degree of each indoor expansion valve provided in each indoor unit, the operation capacity can be distributed easily. it can.

上記態様では、前記能力振り分けモードは、全ての前記室内機が要求する要求能力の和が、前記空気調和システムに備えられた室外機の最高能力を上回る場合に設定されるとしてもよい。 In the above aspect, the capacity distribution mode may be set when the sum of the required capacities required by all the indoor units exceeds the maximum capacity of the outdoor units included in the air conditioning system.

能力振り分けモードは、全ての室内機が要求する要求能力の和が、空気調和システムに備えられた室外機の最高能力を上回る場合に設定される。
一般的に、各室内機の要求する要求能力の和が室外機の最高能力を上回ると、運転能力が定格能力の比で分配されない場合がある。この時、各室内機は所望の運転能力を得ることができず、各居室は、冷房運転ならば過冷や不冷となる虞がある。
そこで、各室内機の要求する要求能力の和が室外機の最高能力を上回る場合は、能力振り分けモードを設定することにより、内外温度差が大きく能力を必要とする室内機に対し、内外温度差が小さく能力を比較的必要としない室内機の余剰能力を分配することができる。そのため、能力を必要とする室内機が設置された居室を所望の温度環境に早急に近づけ、冷房運転ならば過冷や不冷、暖房運転ならば過暖や不暖を防ぐことができる。
The capacity distribution mode is set when the sum of the required capacities required by all the indoor units exceeds the maximum capacity of the outdoor unit provided in the air conditioning system.
Generally, when the sum of the required capacities required by each indoor unit exceeds the maximum capacity of the outdoor unit, the operating capacity may not be distributed in the ratio of the rated capacity. At this time, each indoor unit cannot obtain a desired operating capacity, and there is a risk that each living room will be overcooled or uncooled during the cooling operation.
Therefore, if the sum of the required capacities required by each indoor unit exceeds the maximum capacity of the outdoor unit, the capacity distribution mode is set to set the indoor/outdoor temperature difference to the indoor unit that requires a large capacity. It is possible to distribute the surplus capacity of the indoor unit, which has a small size and requires a relatively small capacity. Therefore, it is possible to quickly bring a room in which an indoor unit requiring capacity is installed to a desired temperature environment, and prevent overcooling or noncooling in the cooling operation and overheating or nonheating in the heating operation.

上記態様では、前記能力振り分け制御中において、前記最大温度差の前記居室の前記室内温度が所定時間以内に前記設定温度に到達する、または、前記最小温度差の前記居室の前記室内温度と前記設定温度との差が前記第1閾値よりも大きい第2閾値以上となると、前記能力振り分け制御が停止されるとしてもよい。 In the above aspect, during the capacity distribution control, the indoor temperature of the living room having the maximum temperature difference reaches the set temperature within a predetermined time, or the indoor temperature of the living room and the setting of the minimum temperature difference are set. The capacity allocation control may be stopped when the difference from the temperature is equal to or larger than a second threshold value that is larger than the first threshold value.

能力振り分け制御中において、最大温度差の居室の室内温度が所定時間以内に設定温度に到達する、または、最小温度差の居室の室内温度と設定温度との差が第1閾値よりも大きい第2閾値以上となると、能力振り分け制御が停止される。
これにより、本態様によれば、最大温度差の居室の室内機が最大能力で運転されることで設定温度に所定時間内で到達するか、最小温度差の居室の室内機が運転能力を抑えて運転されることで室内温度が設定温度から乖離すると、能力振り分けを必要としないとして、能力振り分け制御を停止して、通常の運転に戻すことができる。
In the capacity distribution control, the indoor temperature of the living room having the maximum temperature difference reaches the set temperature within a predetermined time, or the difference between the indoor temperature of the living room having the minimum temperature difference and the set temperature is larger than the first threshold value. When the threshold value is exceeded, the ability allocation control is stopped.
Thus, according to this aspect, the indoor unit in the living room with the maximum temperature difference reaches the set temperature within a predetermined time by operating with the maximum capacity, or the indoor unit in the living room with the minimum temperature difference suppresses the driving capacity. When the indoor temperature deviates from the set temperature due to the operation, the capacity allocation control is stopped, and the capacity allocation control can be stopped to return to the normal operation.

上記態様では、前記最小温度差の前記居室の前記室内温度と前記設定温度との差が前記第2閾値より小さい場合、暖房運転においては前記室内機のファンを弱設定で運転する、または、前記室内機を停止し、冷房運転においては前記室内機の前記ファンを設定値で運転するとしてもよい。 In the above aspect, when the difference between the indoor temperature of the living room and the set temperature of the minimum temperature difference is smaller than the second threshold value, the fan of the indoor unit is operated with a weak setting in the heating operation, or The indoor unit may be stopped and the fan of the indoor unit may be operated at the set value in the cooling operation.

最小温度差の居室の室内温度と設定温度との差が第2閾値より小さい場合、暖房運転においては室内機のファンを弱設定で運転する、または、室内機を停止し、冷房運転においては室内機のファンを設定値で運転する。
これにより、本態様によれば、最小温度差の居室の室内温度と設定温度との差が第2閾値より小さく、運転能力を抑えて運転しても設定温度に近い温度の場合は、暖房運転ならばファンを弱設定で運転するか、室内機を停止することで能力を必要としない運転を行うことができる。暖房運転の場合は、ファンの運転のみを行うと室温が下がりやすく、またユーザが寒さを感じやすい。よって、ファンは弱運転とするか、あるいは室内機の運転を停止する。一方、冷房運転の場合は、リモコン等で設定された風量のまま、ファンの運転を行うことで温度を上がりにくくしながら能力を必要としない運転を行うことができる。
When the difference between the indoor temperature of the living room with the minimum temperature difference and the set temperature is smaller than the second threshold value, the fan of the indoor unit is operated with a weak setting in the heating operation, or the indoor unit is stopped and the indoor operation is performed in the cooling operation. Operate the machine fan at the set value.
Thus, according to this aspect, when the difference between the indoor temperature of the living room having the minimum temperature difference and the set temperature is smaller than the second threshold value and the temperature is close to the set temperature even when the operation capacity is suppressed, the heating operation is performed. If so, the fan can be operated with a weak setting or the indoor unit can be stopped to perform an operation that does not require capacity. In the heating operation, if only the fan is operated, the room temperature is likely to drop, and the user is likely to feel cold. Therefore, the fan is operated weakly or the operation of the indoor unit is stopped. On the other hand, in the case of the cooling operation, by operating the fan with the air volume set by the remote controller or the like, it is possible to perform the operation that does not require the capacity while making it difficult to raise the temperature.

本開示の幾つかの実施形態における一態様に係る空気調和システムは、複数の室内機と、前述のいずれかに記載の制御装置と、を備える。 An air conditioning system according to an aspect of some embodiments of the present disclosure includes a plurality of indoor units and the control device described in any of the above.

本開示の幾つかの実施形態における一態様に係る空気調和システムの制御方法は、複数の室内機を備える空気調和システムの制御方法であって、各前記室内機の運転能力を再分配する能力振り分けモードが設定される工程と、各前記室内機が設置された居室の各室内温度と室外温度との差である内外温度差をそれぞれ算出する工程と、前記内外温度差が最小である最小温度差の前記居室および前記内外温度差が最大である最大温度差の前記居室を特定する工程と、前記最小温度差の前記居室の前記室内機と、前記最大温度差の前記居室の前記室内機の前記運転能力を再分配する能力振り分け工程とを有する。 A control method for an air conditioning system according to an aspect of some embodiments of the present disclosure is a control method for an air conditioning system including a plurality of indoor units, wherein the ability distribution for redistributing the operating capacity of each of the indoor units is performed. A step of setting a mode, a step of calculating an inside/outside temperature difference which is a difference between an indoor temperature and an outdoor temperature of a living room in which each indoor unit is installed, and a minimum temperature difference in which the inside/outside temperature difference is minimum Of the living room and the step of identifying the living room of the maximum temperature difference where the inside and outside temperature difference is the maximum, the indoor unit of the living room of the minimum temperature difference, and the indoor unit of the living room of the maximum temperature difference And an ability distribution step of redistributing the driving ability.

本開示の幾つかの実施形態における一態様に係る空気調和システムの制御プログラムは、複数の室内機を備える空気調和システムの制御プログラムであって、各前記室内機の運転能力を再分配する能力振り分けモードが設定されるステップと、各前記室内機が設置された居室の各室内温度と室外温度との差である内外温度差をそれぞれ算出するステップと、前記内外温度差が最小である最小温度差の前記居室および前記内外温度差が最大である最大温度差の前記居室を特定するステップと、前記最小温度差の前記居室の前記室内機と、前記最大温度差の前記居室の前記室内機の前記運転能力を再分配する能力振り分け制御ステップとを有する。 A control program for an air conditioning system according to an aspect of some embodiments of the present disclosure is a control program for an air conditioning system including a plurality of indoor units, and the capacity distribution for redistributing the operating capacity of each of the indoor units. A step of setting a mode, a step of calculating an inside/outside temperature difference which is a difference between each indoor temperature and an outdoor temperature of a living room in which each indoor unit is installed, and a minimum temperature difference in which the inside/outside temperature difference is minimum The step of identifying the living room with the maximum temperature difference in which the living room and the inside-outside temperature difference are the maximum, the indoor unit of the living room with the minimum temperature difference, and the indoor unit of the living room with the maximum temperature difference And a capability distribution control step for redistributing the driving capability.

本開示によれば、能力を必要とする室内機に対し能力を振り分けるので、能力を必要とする室内機が設置された居室を所望の温度環境に早急に近づけることができる。 According to the present disclosure, since the ability is distributed to the indoor unit that requires the ability, it is possible to quickly bring the room in which the indoor unit that requires the ability is installed close to a desired temperature environment.

幾つかの実施形態に係る空気調和システムの一態様を示した概略構成図である。It is a schematic block diagram which showed the one aspect|mode of the air conditioning system which concerns on some embodiment. 幾つかの実施形態に係る空気調和システムの制御の一態様を示したフローチャートである。It is the flowchart which showed the one aspect|mode of control of the air conditioning system which concerns on some embodiment. 幾つかの実施形態に係る空気調和システムの暖房時の能力振り分け制御の一態様を示したフローチャートである。It is a flow chart which showed one mode of capacity distribution control at the time of heating of an air harmony system concerning some embodiments. 幾つかの実施形態に係る空気調和システムの冷房時の能力振り分け制御の一態様を示したフローチャートである。It is the flowchart which showed one aspect of the ability distribution control at the time of cooling of the air conditioning system which concerns on some embodiment.

以下に、本開示の幾つかの実施形態に係る空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラムの各実施形態について、図面を参照して説明する。
図1には、本開示の幾つかの実施形態に係る空気調和システムの一態様の概略構成が示されている。
Hereinafter, embodiments of an air conditioning system control device, an air conditioning system, an air conditioning system control method, and an air conditioning system control program according to some embodiments of the present disclosure will be described with reference to the drawings. ..
FIG. 1 shows a schematic configuration of one aspect of an air conditioning system according to some embodiments of the present disclosure.

マルチ型空気調和システム(空気調和システム)1は、1台の室外機2に、複数台の室内機3A,3Bが並列に接続されたものである。複数台の室内機3A,3Bは、室外機2に接続されているガス側配管4と液側配管5との間に分岐器6を介して互いに並列に接続されている。本実施形態においては、複数台の室内機は2台である場合を例に挙げて説明するが、室内機の台数は複数であればよく、特に限定されない。
なお、以下において特に区別しない場合、室内機は室内機3と示す。
In the multi-type air conditioning system (air conditioning system) 1, a plurality of indoor units 3A and 3B are connected in parallel to one outdoor unit 2. The plurality of indoor units 3A, 3B are connected in parallel to each other via a branching device 6 between the gas side pipe 4 and the liquid side pipe 5 connected to the outdoor unit 2. In this embodiment, the case where the number of indoor units is two will be described as an example, but the number of indoor units may be any number and is not particularly limited.
In the following, the indoor unit is referred to as the indoor unit 3 unless otherwise specified.

室外機2は、冷媒を圧縮するインバータ駆動の圧縮機10と、冷媒の循環方向を切換える四方切換弁12と、冷媒と外気とを熱交換させる室外熱交換器20とを備えている。
室外機2側の上記各機器は、冷媒配管22を介して順次接続され、公知の室外側冷媒回路を構成している。また、室外機2には、室外熱交換器20に対して外気を送風する室外ファン24が設けられている。
The outdoor unit 2 includes an inverter-driven compressor 10 that compresses the refrigerant, a four-way switching valve 12 that switches the circulation direction of the refrigerant, and an outdoor heat exchanger 20 that exchanges heat between the refrigerant and the outside air.
The above-mentioned devices on the outdoor unit 2 side are sequentially connected via a refrigerant pipe 22 to form a known outdoor refrigerant circuit. Further, the outdoor unit 2 is provided with an outdoor fan 24 that blows outside air to the outdoor heat exchanger 20.

ガス側配管4及び液側配管5は、室外機2に接続される冷媒配管であり、現場での据え付け施工時に、室外機2とそれに接続される複数台の室内機3A,3Bとの間の距離に応じて、その配管長が適宜設定される。ガス側配管4及び液側配管5の途中には、複数の分岐器6が設けられ、該分岐器6を介して適宜台数の室内機3A,3Bが接続されている。これによって、密閉された1系統の冷凍サイクル(冷媒回路)7が構成されている。 The gas-side pipe 4 and the liquid-side pipe 5 are refrigerant pipes connected to the outdoor unit 2, and are installed between the outdoor unit 2 and a plurality of indoor units 3A, 3B connected thereto during installation on site. The pipe length is appropriately set according to the distance. A plurality of branch units 6 are provided in the middle of the gas side pipe 4 and the liquid side pipe 5, and an appropriate number of indoor units 3A, 3B are connected via the branch units 6. As a result, a closed refrigeration cycle (refrigerant circuit) 7 is constructed.

また、室外機2は、室外温度センサ50を備えている。
室外温度センサ50は、室外機2の設置された室外の室外温度を検出する。
室外温度センサ50で検知された室外温度の情報は、制御装置40(詳細は後述する)に出力される。
The outdoor unit 2 also includes an outdoor temperature sensor 50.
The outdoor temperature sensor 50 detects the outdoor temperature of the outdoor where the outdoor unit 2 is installed.
Information on the outdoor temperature detected by the outdoor temperature sensor 50 is output to the control device 40 (details will be described later).

室内機3A,3Bは、室内空気を冷媒と熱交換させて冷却又は加熱し、室内の空調に供する室内熱交換器30と、室内膨張弁(EEVC)31と、室内熱交換器30を介して室内空気を循環させる室内ファン(ファン)32と、室内コントローラ39とを備えており、室内側の分岐ガス側配管4A,4B及び分岐液側配管5A,5Bを介して分岐器6に接続されている。 The indoor units 3A and 3B are provided with an indoor heat exchanger 30 that cools or heats indoor air by exchanging heat with a refrigerant to provide indoor air conditioning, an indoor expansion valve (EEVC) 31, and an indoor heat exchanger 30. An indoor fan (fan) 32 that circulates indoor air and an indoor controller 39 are provided, and are connected to the branch device 6 via the branch gas side pipes 4A and 4B and the branch liquid side pipes 5A and 5B on the indoor side. There is.

また、室内機3A,3Bは、室内温度センサ90を備えている。
室内温度センサ90は、室内機3A,3Bが設置された居室の室内温度を検出する。
室内温度センサ90で検知された室内温度の情報は、それぞれ対応する室内機3A,3Bの室内コントローラ39を介して制御装置40(詳細は後述する)に出力される。
In addition, the indoor units 3A and 3B include an indoor temperature sensor 90.
The indoor temperature sensor 90 detects the indoor temperature of the living room in which the indoor units 3A and 3B are installed.
The information on the indoor temperature detected by the indoor temperature sensor 90 is output to the control device 40 (details will be described later) via the indoor controllers 39 of the corresponding indoor units 3A and 3B.

またユーザは、各居室の所望する温度(設定温度)をリモコンを用いて設定する。この設定温度についても、それぞれ対応する室内機3A,3Bの室内コントローラ39を介して制御装置40(詳細は後述する)に出力される。 The user also sets the desired temperature (set temperature) of each room using the remote controller. This set temperature is also output to the control device 40 (details will be described later) via the indoor controllers 39 of the corresponding indoor units 3A and 3B.

上記のマルチ型空気調和システム1において、暖房運転は、以下のように行われる。暖房運転時の冷媒の流れを図1の破線矢印で示している。
圧縮機10により圧縮され、吐出された高温高圧の冷媒ガスは、ガス側配管4を経て室外機2から導出され、分岐器6、室内側の分岐ガス側配管4A,4Bを経て複数台の室内機3A,3Bに導入される。
In the multi-type air conditioning system 1 described above, the heating operation is performed as follows. The flow of the refrigerant during the heating operation is shown by the broken line arrow in FIG.
The high-temperature high-pressure refrigerant gas compressed and discharged by the compressor 10 is led out from the outdoor unit 2 via the gas side pipe 4, and is passed through the branch unit 6 and the indoor side branch gas side pipes 4A and 4B to a plurality of indoor units. Installed in machines 3A and 3B.

室内機3A,3Bに導入された高温高圧の冷媒ガスは、室内熱交換器30で室内ファン32を介して循環される室内空気と熱交換され、これにより加熱された室内空気は室内に吹出されて暖房に供される。一方、室内熱交換器30で凝縮液化された冷媒は、室内膨張弁31、分岐液側配管5A,5Bを経て分岐器6に至り、他の室内機からの冷媒と合流され、液側配管5を経て室外機2に戻る。なお、暖房時、室内機3A,3Bでは、凝縮器として機能する室内熱交換器30に流入される冷媒流量が制御目標値となるように、室内膨張弁31の開度が制御される。 The high-temperature and high-pressure refrigerant gas introduced into the indoor units 3A and 3B is heat-exchanged with the indoor air circulated through the indoor fan 32 in the indoor heat exchanger 30, and the heated indoor air is blown out into the room. Be used for heating. On the other hand, the refrigerant condensed and liquefied in the indoor heat exchanger 30 reaches the branch device 6 via the indoor expansion valve 31 and the branch liquid side pipes 5A and 5B, is merged with the refrigerant from another indoor unit, and the liquid side pipe 5 And returns to the outdoor unit 2. In addition, at the time of heating, in the indoor units 3A and 3B, the opening degree of the indoor expansion valve 31 is controlled so that the flow rate of the refrigerant flowing into the indoor heat exchanger 30 functioning as a condenser has a control target value.

室外機2に戻った冷媒は、室外熱交換器20に流入される。
室外熱交換器20では、室外ファン24から送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。この冷媒は、室外熱交換器20から四方切換弁12を経て、圧縮機10に吸入され、圧縮機10において再び圧縮される。以上のサイクルを繰り返すことによって暖房運転が行われる。
The refrigerant returned to the outdoor unit 2 flows into the outdoor heat exchanger 20.
In the outdoor heat exchanger 20, the outside air blown from the outdoor fan 24 and the refrigerant exchange heat, and the refrigerant absorbs heat from the outside air to be vaporized. This refrigerant is sucked into the compressor 10 from the outdoor heat exchanger 20 via the four-way switching valve 12, and is compressed again in the compressor 10. Heating operation is performed by repeating the above cycle.

一方、冷房運転は、以下のように行われる。冷房運転時の冷媒の流れを図1の実線矢印で示している。
圧縮機10で圧縮され、吐出された高温高圧の冷媒ガスは、四方切換弁12により室外熱交換器20側に循環され、室外熱交換器20で室外ファン24により送風される外気と熱交換されて凝縮液化され液冷媒となる。
On the other hand, the cooling operation is performed as follows. The flow of the refrigerant during the cooling operation is indicated by the solid arrow in FIG.
The high-temperature high-pressure refrigerant gas that is compressed and discharged by the compressor 10 is circulated to the outdoor heat exchanger 20 side by the four-way switching valve 12 and is heat-exchanged with the outdoor air blown by the outdoor fan 24 in the outdoor heat exchanger 20. Is condensed and liquefied to become a liquid refrigerant.

この液冷媒は、室外機2から液側配管5へと導かれ、分岐器6を介して各室内機3A,3Bの分岐液側配管5A,5Bへと分流される。 This liquid refrigerant is guided from the outdoor unit 2 to the liquid side pipe 5, and is branched to the branch liquid side pipes 5A and 5B of the indoor units 3A and 3B via the branch unit 6.

分岐液側配管5A,5Bに分流された液冷媒は、各室内機3A,3Bに流入し、室内膨張弁31で断熱膨張され、気液二相流となって室内熱交換器30に流入される。室内熱交換器30では、室内ファン32により循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。一方、冷媒はガス化され、分岐ガス側配管4A,4Bを経て分岐器6に至り、他の室内機からの冷媒ガスとガス側配管4で合流される。 The liquid refrigerant divided into the branch liquid side pipes 5A and 5B flows into the indoor units 3A and 3B, is adiabatically expanded by the indoor expansion valve 31, becomes a gas-liquid two-phase flow, and flows into the indoor heat exchanger 30. It In the indoor heat exchanger 30, the indoor air circulated by the indoor fan 32 and the refrigerant are heat-exchanged, the indoor air is cooled, and the indoor air is cooled. On the other hand, the refrigerant is gasified, reaches the branching device 6 via the branch gas side pipes 4A and 4B, and joins with the refrigerant gas from another indoor unit in the gas side pipe 4.

ガス側配管4で合流された冷媒ガスは、再び室外機2に戻り、四方切換弁12を経て、圧縮機10に吸入される。この冷媒は、圧縮機10において再び圧縮され、以上のサイクルを繰り返すことによって冷房運転が行われる。 The refrigerant gas merged in the gas side pipe 4 returns to the outdoor unit 2 again, passes through the four-way switching valve 12, and is sucked into the compressor 10. This refrigerant is compressed again in the compressor 10, and the cooling operation is performed by repeating the above cycle.

マルチ型空気調和システム1は、制御装置40を備えている。
制御装置40は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な非一時的な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。
制御装置40は、室外機2に備えられているとする。
The multi-type air conditioning system 1 includes a control device 40.
The control device 40 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable non-transitory storage medium. Then, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing/arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or delivered via wired or wireless communication means. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
The control device 40 is provided in the outdoor unit 2.

例えば、図1のマルチ型空気調和システム1において、室外機2の最大能力が9.0kW、室内機3Aの定格能力が2.5kW、室内機3Bの定格能力が7.1kWであるとする。室内機3A及び3Bの定格能力の和9.6kWに対し、室外機2の最大能力9.0kWの方が値が小さい状態を例とする。
従来の制御では、室内機3A及び3Bがそれぞれ定格能力に対応する要求能力を室外機2に要求した場合、室内機3A及び3Bの各室内熱交換器30の容量、風量、室内膨張弁31の開度および圧縮機10の能力等に基づき冷媒流量が分配され、圧縮機10が最大能力の場合、9.0kWの能力は、例えば室内機3Aへ4kW程度、室内機3Bへ5kW程度それぞれ分配される。このように、実際に分配される能力が定格能力の比とは異なるため、冷房運転の場合は室内機3Aが設置された居室は過冷となり、室内機3Bが設置された居室は不冷となり、ユーザが想定する定格能力に見合った能力を提供できていなかった。
For example, in the multi-type air conditioning system 1 of FIG. 1, it is assumed that the outdoor unit 2 has a maximum capacity of 9.0 kW, the indoor unit 3A has a rated capacity of 2.5 kW, and the indoor unit 3B has a rated capacity of 7.1 kW. An example is a case where the maximum capacity of the outdoor unit 2 of 9.0 kW is smaller than the sum of the rated capacities of the indoor units 3A and 3B of 9.6 kW.
In the conventional control, when the indoor units 3A and 3B request the required capacity corresponding to the rated capacity to the outdoor unit 2, the capacity of each indoor heat exchanger 30 of the indoor units 3A and 3B, the air volume, and the indoor expansion valve 31 are controlled. The refrigerant flow rate is distributed based on the opening degree and the capacity of the compressor 10, and when the compressor 10 has the maximum capacity, the capacity of 9.0 kW is distributed to the indoor unit 3A by about 4 kW and the indoor unit 3B by about 5 kW, for example. It In this way, since the capacity to be actually distributed is different from the ratio of the rated capacities, the room in which the indoor unit 3A is installed is overcooled and the room in which the indoor unit 3B is installed is uncooled during the cooling operation. , The user was not able to provide the capacity commensurate with the rated capacity assumed by the user.

そこで、本実施形態では、能力振り分け制御により、能力が必要な居室の室内機への能力の振り分けを行うものとする。
図2には、本開示の幾つかの実施形態に係る空気調和システムの制御の一態様のフローチャートが示されている。
まず、能力振り分けモードが設定される(S201)。たとえば、能力振り分けモードは、運転中の各室内機3の要求能力が、室外機2の最大能力を上回る場合に設定されるとしてもよい。また、能力振り分けモードの実施有無については、ユーザによる設定がリモコンなどを介して行われてもよいし、設置時に制御装置に対し予め行われていてもよい。
制御装置40は、各室内機3に設けられた室内膨張弁31の開度を調整することで、能力の振り分けを行う。
Therefore, in the present embodiment, it is assumed that the ability is assigned to the indoor units of the living room that need the ability by the ability assignment control.
FIG. 2 shows a flowchart of one aspect of control of the air conditioning system according to some embodiments of the present disclosure.
First, the ability allocation mode is set (S201). For example, the capacity allocation mode may be set when the required capacity of each indoor unit 3 in operation exceeds the maximum capacity of the outdoor unit 2. In addition, whether or not to execute the ability allocation mode may be set by the user via a remote controller or may be set in advance for the control device at the time of installation.
The control device 40 distributes the capacity by adjusting the opening degree of the indoor expansion valve 31 provided in each indoor unit 3.

能力振り分けモードが設定されると、制御装置40は、各室内温度センサ90が検知した室内温度と、室外温度センサ50が検知した室外温度との差(内外温度差)を、運転中の室内機3を有する各居室ごとに算出する(S202)。 When the capacity distribution mode is set, the control device 40 causes the difference between the indoor temperature detected by each indoor temperature sensor 90 and the outdoor temperature detected by the outdoor temperature sensor 50 (inside/outside temperature difference) to be the indoor unit in operation. It is calculated for each room having 3 (S202).

次に、制御装置40は、S202で算出した各居室の内外温度差のうち、最も大きい内外温度差(最大温度差)の居室および最も小さい内外温度差(最少温度差)の居室を特定する(S203)。ここで、内外温度差の最大温度差をΔTmax、最小温度差をΔTminとする。本実施形態では、例えば室内機3Aを有する居室Aの内外温度差がΔTmin、室内機3Bを有する居室Bの内外温度差がΔTmaxであるとする。 Next, the control device 40 identifies the room with the largest inside/outside temperature difference (maximum temperature difference) and the room with the smallest inside/outside temperature difference (minimum temperature difference) among the inside/outside temperature differences of each room calculated in S202 ( S203). Here, the maximum temperature difference between the inside and outside temperatures is ΔTmax, and the minimum temperature difference is ΔTmin. In the present embodiment, for example, it is assumed that the temperature difference between the inside and outside of the living room A having the indoor unit 3A is ΔTmin and the difference between the inside and outside temperature of the living room B having the indoor unit 3B is ΔTmax.

次に、制御装置40は、最小温度差ΔTminの居室Aにおいて、ユーザが設定した設定温度と室内温度との差(設定温度差)の絶対値が、第1閾値以下か否かを判定する(S204)。第1閾値は、最小温度差の居室Aの実際の室内温度が、ユーザの所望する設定温度に近いか否かを判定するために設けられた値であり、例えば3℃(すなわち、±3℃以内)が設定される。 Next, the control device 40 determines whether or not the absolute value of the difference between the set temperature set by the user and the indoor temperature (set temperature difference) in the living room A having the minimum temperature difference ΔTmin is less than or equal to the first threshold value ( S204). The first threshold value is a value provided to determine whether the actual room temperature of the living room A having the minimum temperature difference is close to the set temperature desired by the user, and is, for example, 3° C. (that is, ±3° C.). Within) is set.

ステップS204において、設定温度差の絶対値が第1閾値以下であると判定される場合は、最小温度差の居室Aの実際の室内温度がユーザの所望する設定温度に近いため、他の室内機3へ能力を振り分け可能であると判断できるため、ステップS205へ遷移し、能力振り分け制御を実行する。
一方、ステップS204において、設定温度差の絶対値が第1閾値より大きいと判定される場合は、最小温度差の居室Aの実際の室内温度がユーザの所望する設定温度には到達していないとして、引き続き現在の能力のまま運転を行うとしてステップS202へ戻る。
If it is determined in step S204 that the absolute value of the set temperature difference is less than or equal to the first threshold value, the actual indoor temperature of the living room A with the minimum temperature difference is close to the set temperature desired by the user, and therefore another indoor unit Since it can be determined that the ability can be distributed to 3, the ability transition control is performed in step S205.
On the other hand, when it is determined in step S204 that the absolute value of the set temperature difference is larger than the first threshold value, it is determined that the actual room temperature of the living room A having the minimum temperature difference does not reach the set temperature desired by the user. Then, the operation is continued with the current capacity, and the process returns to step S202.

〔暖房運転時の能力振り分け制御〕
図3には、本開示の幾つかの実施形態に係る空気調和システムの暖房時の能力振り分け制御の一態様のフローチャートが示されている。
暖房時に、図2のステップS204において設定温度差の絶対値が第1閾値以下であると判定されると、能力振り分け制御が実行される(図2のS205)。
能力振り分け制御が実行されると、最大温度差ΔTmaxの居室Bの室内機3Bに対し、最大能力が振り分けられる(S301)。
ここで、室内機3の最大能力は、前述した定格能力とは異なる値である。室内機3の定格能力は、ある定められた条件下で計測された能力を示す値である。一方、室内機3は、室内熱交換器30などを最大能力で運転することで、定格能力よりも値の大きい最大値の能力(最大能力)を出力することができる。例えば、室内機3Bの定格能力が7.1kWであるのに対し、室内機3Bの最大能力は8.0kWであるとする。
この場合、ステップS301では、室内機3Bに対し、8.0kWの能力が振り分けられるとする。
[Capability distribution control during heating operation]
FIG. 3 shows a flowchart of one aspect of the capacity distribution control during heating of the air conditioning system according to some embodiments of the present disclosure.
During heating, if it is determined in step S204 of FIG. 2 that the absolute value of the set temperature difference is equal to or less than the first threshold value, the capacity allocation control is executed (S205 of FIG. 2).
When the capacity allocation control is executed, the maximum capacity is allocated to the indoor unit 3B of the living room B having the maximum temperature difference ΔTmax (S301).
Here, the maximum capacity of the indoor unit 3 is a value different from the above-mentioned rated capacity. The rated capacity of the indoor unit 3 is a value indicating the capacity measured under certain predetermined conditions. On the other hand, the indoor unit 3 can output the maximum capacity (maximum capacity) larger than the rated capacity by operating the indoor heat exchanger 30 and the like with the maximum capacity. For example, assume that the rated capacity of the indoor unit 3B is 7.1 kW, while the maximum capacity of the indoor unit 3B is 8.0 kW.
In this case, in step S301, the capacity of 8.0 kW is allocated to the indoor unit 3B.

次に、制御装置40は、居室Bの室内温度が、所定時間以内にユーザが設定した設定温度に到達したか否かを判定する(S302)。
まず制御装置40は、居室Bの室内温度が設定温度に到達するまで所定時間(例えば30分)の間、室内機3Bに最大能力を振り分ける。居室Bの室内温度が所定時間以内に設定温度に到達した場合は、ステップS302の判定はYであるとして、ステップS303へ遷移する。
一方、所定時間以内に室内温度が設定温度に到達しなかった場合は、再度能力の振り分けが可能かどうかを判定するため、Xへ遷移し、図2のステップS204へ戻る。
Next, the control device 40 determines whether or not the indoor temperature of the living room B has reached the set temperature set by the user within a predetermined time (S302).
First, the control device 40 allocates the maximum capacity to the indoor unit 3B for a predetermined time (for example, 30 minutes) until the indoor temperature of the living room B reaches the set temperature. When the indoor temperature of the living room B reaches the set temperature within the predetermined time, the determination of step S302 is Y, and the process proceeds to step S303.
On the other hand, when the indoor temperature does not reach the set temperature within the predetermined time, the process proceeds to X and returns to step S204 of FIG. 2 in order to determine again whether the ability can be distributed.

ステップS302において、居室Bの室内温度が所定時間以内に設定温度に到達した場合は、居室Bの室内機3Bへの能力の振り分けを停止してもよいとして、能力振り分け制御を停止し(S303)、Yへ遷移して図2のステップS202へ戻る。 In step S302, when the room temperature of the living room B reaches the set temperature within the predetermined time, it is possible to stop the distribution of the capacity of the living room B to the indoor unit 3B, and the capacity distribution control is stopped (S303). , Y, and returns to step S202 in FIG.

一方、能力振り分け制御が実行されると、最小温度差ΔTminの居室Aの室内機3Aに対し、最大温度差ΔTmaxの居室Bの室内機3Bの能力振り分け制御前の運転能力から最大能力へ増加した増分の分だけ能力を低減した運転能力が振り分けられる(S304)。本実施形態の場合は、室内機3Bの制御前の運転能力5.0kWが最大能力8.0kWへ増加しその増分は3.0kWである。よって室内機3Aの運転能力は、能力振り分け制御前の運転能力4.0kWから3.0kWを低減した1.0kWとなる。
また室外機2の最大能力を分配する場合は、次のように分配するとしてもよい。例えば室外機2の最大能力から最大温度差ΔTmaxの居室Bの室内機3Bに振り分けられた能力を差し引いた残りの能力が振り分けられる(S304)。本実施形態の場合は、室外機2の最大能力9.0kWから室内機3Bに振り分けられた能力8.0kWを差し引いた残りの1.0kWが振り分けられることになる。
室内機3Aは、定格能力2.5kWに対し1.0kWの能力の分配となり、室内温度は設定温度から徐々に乖離することとなる。
On the other hand, when the capacity allocation control is executed, the operating capacity before the capacity allocation control of the indoor unit 3B in the room B having the maximum temperature difference ΔTmax is increased to the maximum capacity with respect to the indoor unit 3A in the room A having the minimum temperature difference ΔTmin. The driving ability whose ability is reduced by the increment is distributed (S304). In the case of this embodiment, the operating capacity before control of the indoor unit 3B of 5.0 kW is increased to the maximum capacity of 8.0 kW, and the increment thereof is 3.0 kW. Therefore, the operating capacity of the indoor unit 3A becomes 1.0 kW, which is 3.0 kW reduced from the operating capacity before the capacity allocation control of 4.0 kW.
Moreover, when distributing the maximum capacity of the outdoor unit 2, you may distribute as follows. For example, the remaining capacity obtained by subtracting the capacity allocated to the indoor unit 3B of the living room B having the maximum temperature difference ΔTmax from the maximum capacity of the outdoor unit 2 is allocated (S304). In the case of the present embodiment, the remaining capacity of 1.0 kW obtained by subtracting the capacity of 8.0 kW allocated to the indoor unit 3B from the maximum capacity of 9.0 kW of the outdoor unit 2 is allocated.
The indoor unit 3A distributes the capacity of 1.0 kW to the rated capacity of 2.5 kW, and the indoor temperature gradually deviates from the set temperature.

次に制御装置40は、居室Aの設定温度と室内温度との差(設定温度差)が第2閾値より小さいか否かを判定する(S305)。第2閾値は、最小温度差の居室Aの実際の室内温度に対し、設定温度からの乖離を許容する限界値を示す値であり、例えば5℃が設定される。 Next, the control device 40 determines whether the difference between the set temperature of the living room A and the room temperature (set temperature difference) is smaller than the second threshold value (S305). The second threshold value is a value that indicates a limit value that allows the deviation from the set temperature with respect to the actual room temperature of the living room A having the minimum temperature difference, and is set to, for example, 5°C.

ステップS305において、設定温度差が第2閾値より小さいと判定される場合は、居室Aの実際の室内温度が設定温度からの乖離の限界値を超えていないと判断できるため、ステップS306へ遷移し、室内機3Aの室内ファン32を弱風量で運転する、または、室内機3Aを停止する。ステップS306で設定が変更されると、ステップS305へ戻り、居室Aの室内温度が設定温度から乖離していると判断されるまで判定を行う。 When it is determined in step S305 that the set temperature difference is smaller than the second threshold value, it can be determined that the actual room temperature of the living room A does not exceed the limit value of the deviation from the set temperature, and thus the process proceeds to step S306. The indoor fan 32 of the indoor unit 3A is operated with a weak air volume, or the indoor unit 3A is stopped. When the setting is changed in step S306, the process returns to step S305, and determination is performed until it is determined that the room temperature of the living room A deviates from the set temperature.

一方、ステップS305において、設定温度差が第2閾値以上であると判定される場合は、居室Aの実際の室内温度が設定温度から大きく乖離し、室内の温度環境が悪化していると判断できるため、ステップS303へ遷移し、能力振り分け制御を停止する。
能力振り分け制御が停止されると、Yへ遷移して図2のステップS202へ戻る。
On the other hand, when it is determined in step S305 that the set temperature difference is equal to or greater than the second threshold value, it can be determined that the actual indoor temperature of the living room A deviates greatly from the set temperature and the indoor temperature environment deteriorates. Therefore, the process proceeds to step S303 to stop the ability allocation control.
When the ability allocation control is stopped, the process shifts to Y and returns to step S202 in FIG.

〔冷房運転時の能力振り分け制御〕
図4には、本開示の幾つかの実施形態に係る空気調和システムの冷房時の能力振り分け制御の一態様のフローチャートが示されている。
冷房時に、図2のステップS204において設定温度差の絶対値が第1閾値以下であると判定されると、能力振り分け制御が実行される(図2のS205)。
能力振り分け制御が実行されると、最大温度差ΔTmaxの居室Bの室内機3Bに対し、最大能力が振り分けられる(S401)。ここで、室内機3の最大能力は、前述した定格能力とは異なる値である。室内機3の定格能力は、ある定められた条件下で計測された能力を示す値である。一方、室内機3は、室内熱交換器30などを最大能力で運転することで、定格能力よりも値の大きい最大値の能力(最大能力)を出力することができる。例えば、室内機3Bの定格能力が7.1kWに対し、最大能力は8.0kWであるとする。
この場合、ステップS401では、室内機3Bに対し、8.0kWの能力が振り分けられるとする。
[Capability distribution control during cooling operation]
FIG. 4 shows a flowchart of one aspect of the capacity distribution control during cooling of the air conditioning system according to some embodiments of the present disclosure.
During cooling, if it is determined in step S204 of FIG. 2 that the absolute value of the set temperature difference is equal to or less than the first threshold value, the capacity allocation control is executed (S205 of FIG. 2).
When the capacity allocation control is executed, the maximum capacity is allocated to the indoor unit 3B of the living room B having the maximum temperature difference ΔTmax (S401). Here, the maximum capacity of the indoor unit 3 is a value different from the above-mentioned rated capacity. The rated capacity of the indoor unit 3 is a value indicating the capacity measured under certain predetermined conditions. On the other hand, the indoor unit 3 can output the maximum capacity (maximum capacity) larger than the rated capacity by operating the indoor heat exchanger 30 and the like with the maximum capacity. For example, it is assumed that the indoor unit 3B has a rated capacity of 7.1 kW and a maximum capacity of 8.0 kW.
In this case, in step S401, the capacity of 8.0 kW is allocated to the indoor unit 3B.

次に、制御装置40は、居室Bの室内温度が、所定時間以内にユーザが設定した設定温度に到達したか否かを判定する(S402)。
制御装置40は、居室Bの室内温度が設定温度に到達するまで所定時間(例えば30分)の間、室内機3Bに最大能力を振り分ける。居室Bの室内温度が所定時間以内に設定温度に到達した場合は、ステップS402の判定はYであるとして、ステップS403へ遷移する。
一方、所定時間以内に室内温度が設定温度に到達しなかった場合は、再度能力の振り分けが可能かどうかを判定するため、Xへ遷移し、図2のステップS204へ戻る。
Next, the control device 40 determines whether or not the room temperature of the living room B has reached the set temperature set by the user within a predetermined time (S402).
The control device 40 allocates the maximum capacity to the indoor unit 3B for a predetermined time (for example, 30 minutes) until the indoor temperature of the living room B reaches the set temperature. When the indoor temperature of the living room B reaches the set temperature within the predetermined time, the determination in step S402 is Y, and the process proceeds to step S403.
On the other hand, when the indoor temperature does not reach the set temperature within the predetermined time, the process proceeds to X and returns to step S204 of FIG. 2 in order to determine again whether the ability can be distributed.

ステップS402において、居室Bの室内温度が所定時間以内に設定温度に到達した場合は、居室Bへの能力の振り分けを停止してもよいとして、能力振り分け制御を停止し(S403)、Yへ遷移して図2のステップS202へ戻る。 In step S402, when the room temperature of the living room B reaches the set temperature within the predetermined time, it is possible to stop the distribution of the ability to the living room B, and the ability distribution control is stopped (S403), and the process proceeds to Y. Then, the process returns to step S202 in FIG.

一方、能力振り分け制御が実行されると、最小温度差ΔTminの居室Aの室内機3Aに対し、最大温度差ΔTmaxの居室Bの室内機3Bの能力振り分け制御前の運転能力から最大能力へ増加した増分の分だけ能力を低減した運転能力が振り分けられる(S404)。本実施形態の場合は、室内機3Bの制御前の運転能力5.0kWが最大能力8.0kWへ増加しその増分は3.0kWである。よって室内機3Aの運転能力は、能力振り分け制御前の運転能力4.0kWから3.0kWを低減した1.0kWとなる。
また室外機2の最大能力を分配する場合は、次のように分配するとしてもよい。例えば室外機2の最大能力から最大温度差ΔTmaxの居室Bの室内機3Bに振り分けられた能力を差し引いた残りの能力が振り分けられる(S404)。本実施形態の場合は、室外機2の最大能力9.0kWから室内機3Bに振り分けられた能力8.0kWを差し引いた残りの1.0kWが振り分けられることになる。
室内機3Aは、定格能力2.5kWに対し1.0kWの能力の分配となり、室内温度は設定温度から徐々に乖離することとなる。
On the other hand, when the capacity allocation control is executed, the operating capacity before the capacity allocation control of the indoor unit 3B in the room B having the maximum temperature difference ΔTmax is increased to the maximum capacity with respect to the indoor unit 3A in the room A having the minimum temperature difference ΔTmin. The driving ability whose ability is reduced by the increment is distributed (S404). In the case of this embodiment, the operating capacity before control of the indoor unit 3B of 5.0 kW is increased to the maximum capacity of 8.0 kW, and the increment thereof is 3.0 kW. Therefore, the operating capacity of the indoor unit 3A becomes 1.0 kW, which is 3.0 kW reduced from the operating capacity before the capacity allocation control of 4.0 kW.
Moreover, when distributing the maximum capacity of the outdoor unit 2, you may distribute as follows. For example, the remaining capacity obtained by subtracting the capacity allocated to the indoor unit 3B of the living room B having the maximum temperature difference ΔTmax from the maximum capacity of the outdoor unit 2 is allocated (S404). In the case of the present embodiment, the remaining capacity of 1.0 kW obtained by subtracting the capacity of 8.0 kW allocated to the indoor unit 3B from the maximum capacity of 9.0 kW of the outdoor unit 2 is allocated.
The indoor unit 3A distributes the capacity of 1.0 kW to the rated capacity of 2.5 kW, and the indoor temperature gradually deviates from the set temperature.

次に制御装置40は、居室Aの室内温度と設定温度との差(設定温度差)が第2閾値より小さいか否かを判定する(S405)。第2閾値は、最小温度差の居室Aの実際の室内温度に対し、設定温度からの乖離を許容する限界値を示す値であり、例えば5℃が設定される。 Next, the control device 40 determines whether the difference between the room temperature of the living room A and the set temperature (set temperature difference) is smaller than the second threshold value (S405). The second threshold value is a value that indicates a limit value that allows the deviation from the set temperature with respect to the actual room temperature of the living room A having the minimum temperature difference, and is set to, for example, 5°C.

ステップS405において、設定温度差が第2閾値より小さいと判定される場合は、居室Aの実際の室内温度が設定温度からの乖離の限界値を超えていないと判断できるため、ステップS406へ遷移し、室内機3Aの室内ファン32をユーザによって設定された設定風量で運転する。ステップS406で設定が変更されると、ステップS405へ戻り、居室Aの室内温度が設定温度から乖離していると判断されるまで判定を行う。 When it is determined in step S405 that the set temperature difference is smaller than the second threshold, it can be determined that the actual room temperature of the living room A does not exceed the limit value of the deviation from the set temperature, and thus the process proceeds to step S406. The indoor fan 32 of the indoor unit 3A is operated at the set air volume set by the user. When the setting is changed in step S406, the process returns to step S405, and the determination is performed until it is determined that the indoor temperature of the living room A deviates from the set temperature.

一方、ステップS405において、設定温度差が第2閾値以上であると判定される場合は、居室Aの実際の室内温度が設定温度から大きく乖離し、室内の温度環境が悪化していると判断できるため、ステップS403へ遷移し、能力振り分け制御を停止する。
能力振り分け制御が停止されると、Yへ遷移して図2のステップS202へ戻る。
On the other hand, when it is determined in step S405 that the set temperature difference is equal to or larger than the second threshold value, it can be determined that the actual room temperature of the living room A deviates greatly from the set temperature and the indoor temperature environment deteriorates. Therefore, the process proceeds to step S403, and the ability allocation control is stopped.
When the ability allocation control is stopped, the process shifts to Y and returns to step S202 in FIG.

以上、説明してきたように、本実施形態に係る空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラムによれば、以下の作用効果を奏する。
本態様によれば、室内温度と室外温度との差が大きく能力を必要とする室内機3に対し、室内温度と室外温度との差が小さく能力を比較的必要としない室内機3の余剰能力を分配することができる。そのため、能力を必要とする室内機3が設置された居室を所望の温度環境に早急に近づけることができる。
As described above, according to the air conditioning system control device, the air conditioning system, the air conditioning system control method, and the air conditioning system control program according to the present embodiment, the following operational effects are achieved.
According to this aspect, the surplus capacity of the indoor unit 3 in which the difference between the indoor temperature and the outdoor temperature is small and the capacity is relatively unnecessary, as compared with the indoor unit 3 in which the difference between the indoor temperature and the outdoor temperature is large and the capacity is required. Can be distributed. Therefore, the living room in which the indoor unit 3 requiring the capability is installed can be brought close to the desired temperature environment immediately.

また本態様によれば、最小温度差の居室における設定温度と室内温度との差である設定温度差が第1閾値以下であれば、能力振り分け制御を行うことから、最小温度差の居室の設定温度差が小さく、所望の温度環境に近い場合は、最小温度差の居室の室内機3の余剰能力を他に分配することができる。また、最小温度差の居室の設定温度差が大きく、室内機3の能力を必要とする場合は、能力を他に分配することなく引き続き室内機3を運転することができる。 Further, according to this aspect, if the set temperature difference, which is the difference between the set temperature in the room with the minimum temperature difference and the room temperature, is equal to or less than the first threshold value, the capacity allocation control is performed, so that the setting of the room with the minimum temperature difference is performed. When the temperature difference is small and is close to the desired temperature environment, the surplus capacity of the indoor unit 3 in the living room having the minimum temperature difference can be distributed to other units. Further, when the set temperature difference of the living room having the minimum temperature difference is large and the capacity of the indoor unit 3 is required, the indoor unit 3 can be continuously operated without distributing the capacity to other parts.

また本態様によれば、能力振り分け制御では、最大温度差の居室の室内機3に対し、その室内機3の最大能力を振り分け、最小温度差の居室の室内機3に対し、最大温度差の室内機3の制御前の運転能力から最大能力へ増加した増分の分だけ能力を低減した運転能力を振り分けることで、最小温度差の室内機3の余剰能力を最大温度差の室内機3へ分配することができる。最大温度差の室内機3は最大能力で運転することから、その室内機3が設置された居室を所望の温度環境に早急に近づけることができる。 Further, according to this aspect, in the capacity distribution control, the maximum capacity of the indoor unit 3 is distributed to the indoor unit 3 of the living room having the maximum temperature difference, and the maximum temperature difference of the indoor unit 3 of the living room having the minimum temperature difference is distributed. The surplus capacity of the indoor unit 3 having the minimum temperature difference is distributed to the indoor unit 3 having the maximum temperature difference by distributing the operating capacity of which the capacity is reduced by the increment increased from the operating capacity before control of the indoor unit 3 to the maximum capacity. can do. Since the indoor unit 3 having the maximum temperature difference is operated with the maximum capacity, the room in which the indoor unit 3 is installed can be immediately brought close to a desired temperature environment.

また本態様によれば、能力振り分け制御は、各室内機3に備えられる各室内膨張弁31の開度を調整することで室内機3の運転能力を制御することから、簡便に運転能力の分配を行うことができる。 Further, according to this aspect, since the capacity distribution control controls the operation capacity of the indoor unit 3 by adjusting the opening degree of each indoor expansion valve 31 provided in each indoor unit 3, the distribution of the operation capacity can be performed easily. It can be performed.

能力振り分けモードは、全ての室内機3が要求する要求能力の和が、マルチ型空気調和システム1に備えられた室外機2の最高能力を上回る場合に設定される。
一般的に、各室内機3の要求する要求能力の和が室外機2の最高能力を上回ると、運転能力が定格能力の比で分配されない場合がある。この時、各室内機3は所望の運転能力を得ることができず、各居室は、冷房運転ならば過冷や不冷となる虞がある。
そこで、各室内機3の要求する要求能力の和が室外機2の最高能力を上回る場合は、能力振り分けモードを設定することにより、内外温度差が大きく能力を必要とする室内機3に対し、内外温度差が小さく能力を比較的必要としない室内機3の余剰能力を分配することができる。そのため、能力を必要とする室内機3が設置された居室を所望の温度環境に早急に近づけ、冷房運転ならば過冷や不冷、暖房運転ならば過暖や不暖を防ぐことができる。
The capacity allocation mode is set when the sum of the required capacities required by all the indoor units 3 exceeds the maximum capacity of the outdoor unit 2 provided in the multi-type air conditioning system 1.
Generally, when the sum of the required capacities required by each indoor unit 3 exceeds the maximum capacity of the outdoor unit 2, the operating capacity may not be distributed in the ratio of the rated capacity. At this time, each indoor unit 3 cannot obtain a desired operating capacity, and there is a risk that each living room will be overcooled or uncooled during the cooling operation.
Therefore, when the sum of the required capacities required by each indoor unit 3 exceeds the maximum capacity of the outdoor unit 2, the capacity distribution mode is set so that the indoor unit 3 having a large difference between the inside temperature and the outside temperature needs the capacity. It is possible to distribute the surplus capacity of the indoor unit 3 that has a small temperature difference between the inside and the outside and relatively does not require the capacity. Therefore, the room in which the indoor unit 3 requiring the capacity is installed can be immediately brought close to a desired temperature environment, and it is possible to prevent overcooling or uncooling in the cooling operation and overheating or unheating in the heating operation.

また能力振り分け制御中において、最大温度差の居室の室内温度が所定時間以内に設定温度に到達する、または、最小温度差の居室の室内温度と設定温度との差が第1閾値よりも大きい第2閾値以上となると、能力振り分け制御が停止される。
これにより、本態様によれば、最大温度差の居室の室内機3が最大能力で運転されることで設定温度に所定時間内で到達するか、最小温度差の居室の室内機3が運転能力を抑えて運転されることで室内温度が設定温度から乖離すると、能力振り分けを必要としないとして、能力振り分け制御を停止して、通常の運転に戻すことができる。
Further, during the capacity allocation control, the indoor temperature of the living room having the maximum temperature difference reaches the set temperature within a predetermined time, or the difference between the indoor temperature of the living room having the minimum temperature difference and the set temperature is larger than the first threshold value. When the threshold value is equal to or more than 2 thresholds, the ability allocation control is stopped.
Thereby, according to this aspect, the indoor unit 3 of the living room with the maximum temperature difference reaches the set temperature within a predetermined time by operating with the maximum capacity, or the indoor unit 3 of the living room with the minimum temperature difference has the operating capacity. When the indoor temperature deviates from the set temperature due to the operation being suppressed, it is possible to stop the capacity allocation control and return to the normal operation because capacity allocation is not required.

また最小温度差の居室の室内温度と設定温度との差が第2閾値より小さい場合、暖房運転においては室内機3の室内ファン32を弱設定で運転する、または、室内機3を停止し、冷房運転においては室内機3の室内ファン32を設定値で運転する。
これにより、本態様によれば、最小温度差の居室の室内温度と設定温度との差が第2閾値より小さく、運転能力を抑えて運転しても設定温度に近い温度の場合は、暖房運転ならば室内ファン32を弱設定で運転するか、室内機3を停止することで能力を必要としない運転を行うことができる。暖房運転の場合は、室内ファン32の運転のみを行うと室温が下がりやすく、またユーザが寒さを感じやすい。よって、室内ファン32は弱運転とするか、あるいは室内機3の運転を停止する。一方、冷房運転の場合は、リモコン等で設定された風量のまま、室内ファン32の運転を行うことで温度を上がりにくくしながら能力を必要としない運転を行うことができる。
When the difference between the indoor temperature of the living room with the minimum temperature difference and the set temperature is smaller than the second threshold value, the indoor fan 32 of the indoor unit 3 is operated at a weak setting in the heating operation, or the indoor unit 3 is stopped, In the cooling operation, the indoor fan 32 of the indoor unit 3 is operated at the set value.
Thus, according to this aspect, when the difference between the indoor temperature of the living room having the minimum temperature difference and the set temperature is smaller than the second threshold value and the temperature is close to the set temperature even when the operation capacity is suppressed, the heating operation is performed. In this case, the indoor fan 32 can be operated with a weak setting or the indoor unit 3 can be stopped to perform an operation that does not require capacity. In the heating operation, if only the indoor fan 32 is operated, the room temperature is likely to drop and the user is likely to feel cold. Therefore, the indoor fan 32 is operated weakly or the operation of the indoor unit 3 is stopped. On the other hand, in the case of the cooling operation, by operating the indoor fan 32 with the air volume set by the remote controller or the like, it is possible to perform the operation that does not require the capacity while making it difficult to raise the temperature.

1 マルチ型空気調和システム(空気調和システム)
2 室外機
3、3A、3B 室内機
20 室外熱交換器
30 室内熱交換器
31 室内膨張弁
32 室内ファン(ファン)
39 室内コントローラ
40 制御装置
50 室外温度センサ
90 室内温度センサ
1 Multi-type air conditioning system (air conditioning system)
2 outdoor unit 3, 3A, 3B indoor unit 20 outdoor heat exchanger 30 indoor heat exchanger 31 indoor expansion valve 32 indoor fan (fan)
39 Indoor controller 40 Control device 50 Outdoor temperature sensor 90 Indoor temperature sensor

Claims (10)

複数の室内機を備える空気調和システムの制御装置であって、
各前記室内機の運転能力を再分配する能力振り分けモードが設定されると、
各前記室内機が設置された居室の各室内温度と室外温度との差である内外温度差をそれぞれ算出し、
前記内外温度差が最小である最小温度差の前記居室および前記内外温度差が最大である最大温度差の前記居室を特定し、
前記最小温度差の前記居室の前記室内機と、前記最大温度差の前記居室の前記室内機の前記運転能力を再分配する能力振り分け制御を行う空気調和システムの制御装置。
A control device for an air conditioning system including a plurality of indoor units,
When the capacity distribution mode for redistributing the operating capacity of each indoor unit is set,
Calculate the inside and outside temperature difference, which is the difference between the indoor temperature and the outdoor temperature of the living room in which each indoor unit is installed,
The inside/outside temperature difference is the minimum temperature difference that is the minimum, and the inside/outside temperature difference is the maximum temperature difference that is the maximum temperature difference.
A controller for an air conditioning system that performs capacity allocation control for redistributing the operating capacity of the indoor unit of the living room having the minimum temperature difference and the indoor unit of the living room having the maximum temperature difference.
前記最小温度差の前記居室における設定温度と前記室内温度との差である設定温度差が第1閾値以下であれば、前記能力振り分け制御を行う請求項1に記載の空気調和システムの制御装置。 The controller of the air conditioning system according to claim 1, wherein the capacity allocation control is performed if a set temperature difference that is a difference between the set temperature in the living room and the room temperature with the minimum temperature difference is equal to or less than a first threshold value. 前記能力振り分け制御は、
前記最大温度差の前記居室の前記室内機に対しては、該室内機の前記運転能力の最大値を振り分け、
前記最小温度差の前記居室の前記室内機に対しては、前記最大温度差の前記居室の前記室内機の前記運転能力の前記能力振り分け制御前に対する増分を低減した前記運転能力を振り分ける請求項1または請求項2に記載の空気調和システムの制御装置。
The ability allocation control is
For the indoor unit of the living room of the maximum temperature difference, the maximum value of the operating capacity of the indoor unit is distributed,
The operating capacity with reduced increment of the operating capacity of the indoor unit of the living room with the maximum temperature difference from that before the capacity distribution control is distributed to the indoor unit of the living room with the minimum temperature difference. Alternatively, the control device for the air conditioning system according to claim 2.
前記能力振り分け制御は、各前記室内機に備えられる各室内膨張弁の開度を調整することで該室内機の前記運転能力を制御する請求項1から請求項3のいずれか1項に記載の空気調和システムの制御装置。 The said ability distribution control controls the said operating capacity of the said indoor unit by adjusting the opening degree of each indoor expansion valve with which each said indoor unit is equipped. Control device for air conditioning system. 前記能力振り分けモードは、全ての前記室内機が要求する要求能力の和が、前記空気調和システムに備えられた室外機の最高能力を上回る場合に設定される請求項1から請求項4のいずれか1項に記載の空気調和システムの制御装置。 The capacity allocation mode is set when the sum of the required capacities required by all the indoor units exceeds the maximum capacity of an outdoor unit included in the air conditioning system. The control device of the air conditioning system according to item 1. 前記能力振り分け制御中において、前記最大温度差の前記居室の前記室内温度が所定時間以内に前記設定温度に到達する、または、前記最小温度差の前記居室の前記室内温度と前記設定温度との差が前記第1閾値よりも大きい第2閾値以上となると、前記能力振り分け制御が停止される請求項2から請求項5のいずれか1項に記載の空気調和システムの制御装置。 During the capacity distribution control, the indoor temperature of the living room having the maximum temperature difference reaches the set temperature within a predetermined time, or a difference between the indoor temperature of the living room and the set temperature of the minimum temperature difference. The control device for an air conditioning system according to any one of claims 2 to 5, wherein the capacity distribution control is stopped when is greater than or equal to a second threshold value that is greater than the first threshold value. 前記最小温度差の前記居室の前記室内温度と前記設定温度との差が前記第2閾値より小さい場合、暖房運転においては前記室内機のファンを弱設定で運転する、または、前記室内機を停止し、冷房運転においては前記室内機の前記ファンを設定値で運転する請求項6に記載の空気調和システムの制御装置。 When the difference between the indoor temperature of the living room and the set temperature of the minimum temperature difference is smaller than the second threshold value, in the heating operation, the fan of the indoor unit is operated with a weak setting, or the indoor unit is stopped. However, the controller of the air conditioning system according to claim 6, wherein the fan of the indoor unit is operated at a set value in the cooling operation. 複数の室内機と、
請求項1から請求項7のいずれか1項に記載の制御装置と、
を備えた、空気調和システム。
Multiple indoor units,
A control device according to any one of claims 1 to 7,
An air conditioning system equipped with.
複数の室内機を備える空気調和システムの制御方法であって、
各前記室内機の運転能力を再分配する能力振り分けモードが設定される工程と、
各前記室内機が設置された居室の各室内温度と室外温度との差である内外温度差をそれぞれ算出する工程と、
前記内外温度差が最小である最小温度差の前記居室および前記内外温度差が最大である最大温度差の前記居室を特定する工程と、
前記最小温度差の前記居室の前記室内機と、前記最大温度差の前記居室の前記室内機の前記運転能力を再分配する能力振り分け工程とを有する空気調和システムの制御方法。
A method for controlling an air conditioning system including a plurality of indoor units, comprising:
A step of setting a capacity allocation mode for redistributing the operating capacity of each indoor unit,
A step of calculating the inside and outside temperature difference, which is the difference between the indoor temperature and the outdoor temperature of the living room in which each indoor unit is installed,
A step of identifying the living room of the minimum temperature difference that the inside and outside temperature difference is the minimum and the living room of the maximum temperature difference that the inside and outside temperature difference is the maximum;
A method of controlling an air conditioning system, comprising: a capacity allocation step of redistributing the operating capacity of the indoor unit of the living room having the minimum temperature difference and the indoor unit of the living room having the maximum temperature difference.
複数の室内機を備える空気調和システムの制御プログラムであって、
各前記室内機の運転能力を再分配する能力振り分けモードが設定されるステップと、
各前記室内機が設置された居室の各室内温度と室外温度との差である内外温度差をそれぞれ算出するステップと、
前記内外温度差が最小である最小温度差の前記居室および前記内外温度差が最大である最大温度差の前記居室を特定するステップと、
前記最小温度差の前記居室の前記室内機と、前記最大温度差の前記居室の前記室内機の前記運転能力を再分配する能力振り分け制御ステップとを有する空気調和システムの制御プログラム。
A control program for an air conditioning system including a plurality of indoor units,
A step of setting a capacity distribution mode for redistributing the operating capacity of each indoor unit;
A step of calculating an inside and outside temperature difference, which is a difference between the indoor temperature and the outdoor temperature of the living room in which each indoor unit is installed,
A step of specifying the living room having the minimum temperature difference in which the inside/outside temperature difference is the minimum and the maximum temperature difference having the maximum inside/outside temperature difference;
A control program for an air conditioning system, comprising: a capacity allocation control step of redistributing the operating capacity of the indoor unit of the living room having the minimum temperature difference and the indoor unit of the living room having the maximum temperature difference.
JP2018235539A 2018-12-17 2018-12-17 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system Pending JP2020098049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018235539A JP2020098049A (en) 2018-12-17 2018-12-17 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235539A JP2020098049A (en) 2018-12-17 2018-12-17 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Publications (1)

Publication Number Publication Date
JP2020098049A true JP2020098049A (en) 2020-06-25

Family

ID=71105849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235539A Pending JP2020098049A (en) 2018-12-17 2018-12-17 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system

Country Status (1)

Country Link
JP (1) JP2020098049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144863A1 (en) * 2022-01-25 2023-08-03 三菱電機株式会社 Control device, control method, and air conditioning system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261454A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Method of controlling operation of multi-room air-conditioner on priority control basis
JPH03217746A (en) * 1990-01-24 1991-09-25 Hitachi Ltd Multiroom type air-conditioner
JPH04165249A (en) * 1990-10-29 1992-06-11 Matsushita Electric Ind Co Ltd Multiple-room type air conditioner
JPH07180924A (en) * 1993-12-24 1995-07-18 Toshiba Corp Air conditioner
JPH08327122A (en) * 1995-06-05 1996-12-13 Toshiba Corp Air conditioner
JPH1038358A (en) * 1996-07-22 1998-02-13 Sanyo Electric Co Ltd Air conditioner
JPH11248282A (en) * 1998-02-26 1999-09-14 Matsushita Electric Ind Co Ltd Multi-room air conditioner
JP2000266388A (en) * 1999-03-17 2000-09-29 Mitsubishi Electric Corp Controller and control method for multi-type refrigeration cycle system
JP2005207696A (en) * 2004-01-26 2005-08-04 Matsushita Electric Ind Co Ltd Multi-room air conditioner
JP2008089266A (en) * 2006-10-04 2008-04-17 Hitachi Building Systems Co Ltd Air conditioner control unit
JP2017003134A (en) * 2015-06-04 2017-01-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air-conditioning management system
JP2018013307A (en) * 2016-07-22 2018-01-25 株式会社富士通ゼネラル Air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261454A (en) * 1988-08-29 1990-03-01 Hitachi Ltd Method of controlling operation of multi-room air-conditioner on priority control basis
JPH03217746A (en) * 1990-01-24 1991-09-25 Hitachi Ltd Multiroom type air-conditioner
JPH04165249A (en) * 1990-10-29 1992-06-11 Matsushita Electric Ind Co Ltd Multiple-room type air conditioner
JPH07180924A (en) * 1993-12-24 1995-07-18 Toshiba Corp Air conditioner
JPH08327122A (en) * 1995-06-05 1996-12-13 Toshiba Corp Air conditioner
JPH1038358A (en) * 1996-07-22 1998-02-13 Sanyo Electric Co Ltd Air conditioner
JPH11248282A (en) * 1998-02-26 1999-09-14 Matsushita Electric Ind Co Ltd Multi-room air conditioner
JP2000266388A (en) * 1999-03-17 2000-09-29 Mitsubishi Electric Corp Controller and control method for multi-type refrigeration cycle system
JP2005207696A (en) * 2004-01-26 2005-08-04 Matsushita Electric Ind Co Ltd Multi-room air conditioner
JP2008089266A (en) * 2006-10-04 2008-04-17 Hitachi Building Systems Co Ltd Air conditioner control unit
JP2017003134A (en) * 2015-06-04 2017-01-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air-conditioning management system
JP2018013307A (en) * 2016-07-22 2018-01-25 株式会社富士通ゼネラル Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144863A1 (en) * 2022-01-25 2023-08-03 三菱電機株式会社 Control device, control method, and air conditioning system

Similar Documents

Publication Publication Date Title
WO2018123361A1 (en) Multi-split air conditioner control device, multi-split air conditioner, multi-split air conditioner control method, and multi-split air conditioner control program
JP3977835B2 (en) Control method of multi air conditioner
JP5774225B2 (en) Air conditioner
JPWO2018216127A1 (en) Air conditioning system
EP2148147A2 (en) Method of controlling air conditioner
EP2835596A1 (en) Control device, method, and program, and multi-type air conditioning system comprising same
JP6609697B2 (en) Heat source system and control method of heat source system
JP2016008788A (en) Air conditioning system
JP6495064B2 (en) Air conditioning system control device, air conditioning system, air conditioning system control program, and air conditioning system control method
US11525599B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
WO2018221052A1 (en) Control device, multi-split air conditioning system provided with same, and control method, and control program
JP6120943B2 (en) Air conditioner
JP2014102053A (en) Multi-type air conditioning system
WO2019146490A1 (en) Multi-type air conditioner device and multi-type air conditioner device setup method
JP2016008743A (en) Air conditioning device and refrigerant distribution unit
EP2835595A1 (en) Control device, method, and program, and multi-type air conditioning system comprising same
JP2020098049A (en) Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system
JP6785867B2 (en) Air conditioning system
KR20160097566A (en) Air conditioner and a method for controlling the same
JP7171414B2 (en) Air conditioning system controller, air conditioning system, air conditioning system control method, and air conditioning system control program
JP6430758B2 (en) Cooling system
JP2018071864A (en) Air conditioner
WO2020079835A1 (en) Air conditioner
KR102341769B1 (en) Compressor Control Type Heat Pump System Based Thermal Difference and Its Control Method
JP2018204897A (en) Control device of multiple air conditioning device, multiple air conditioning device including the same, and its control method and control program

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314