WO2020079835A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2020079835A1
WO2020079835A1 PCT/JP2018/039035 JP2018039035W WO2020079835A1 WO 2020079835 A1 WO2020079835 A1 WO 2020079835A1 JP 2018039035 W JP2018039035 W JP 2018039035W WO 2020079835 A1 WO2020079835 A1 WO 2020079835A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
heat exchanger
bypass flow
compressor
Prior art date
Application number
PCT/JP2018/039035
Other languages
French (fr)
Japanese (ja)
Inventor
幹 佐藤
拓未 西山
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP18937404.4A priority Critical patent/EP3869114B1/en
Priority to JP2020551698A priority patent/JP7034325B2/en
Priority to PCT/JP2018/039035 priority patent/WO2020079835A1/en
Publication of WO2020079835A1 publication Critical patent/WO2020079835A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • Patent Document 1 JP2009-145032A
  • this refrigeration cycle device can quickly defrost by causing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger through the bypass circuit.
  • the defrosting time is shortened by causing the refrigerant to flow through the outdoor heat exchanger through the bypass flow path connecting the compressor discharge side and the outdoor heat exchanger inlet side.
  • a refrigerant having a low discharge temperature for example, R290, which is one of HC (hydrocarbon) refrigerants
  • the temperature difference between the refrigerant and the outdoor heat exchanger becomes small and per unit time.
  • the time required for defrosting cannot be shortened because the amount of heat exchange of is reduced.
  • the refrigerant circulates in the order of the compressor, the first heat exchanger, the first expansion valve, and the second heat exchanger, and the second circuit of the second heat exchanger.
  • the first bypass flow passage that connects the first expansion valve side pipe and the discharge side pipe of the compressor, the second bypass flow passage that connects the suction side pipe of the compressor and the discharge side pipe of the compressor, and the compressor are A first flow path selection device configured to selectively pass the discharged refrigerant through at least one of the first heat exchanger, the first bypass flow path, and the second bypass flow path.
  • the first flow path selection device selects at least the first heat exchanger.
  • the first flow path selection device selects at least the first bypass flow path after selecting at least the second bypass flow path.
  • FIG. 4 is a ph diagram showing the state of the refrigerant during the defrosting operation in the first embodiment. It is the figure which overlapped and showed the temperature distribution of the refrigerant
  • FIG. 7 is a diagram showing a difference in time from a frosting determination to the start of a defrosting operation in each of the comparative example and the first embodiment.
  • FIG. 1 is a schematic configuration diagram showing a configuration of an air conditioner 100 according to the first embodiment.
  • the air conditioner 100 further includes a compressor 1, a four-way valve 4, an extension pipe 9a, a first heat exchanger 5, an extension pipe 9b, a first expansion valve 6a, and a second heat exchanger 7.
  • a compressor 1 a four-way valve 4
  • an extension pipe 9a a first heat exchanger 5
  • an extension pipe 9b a first expansion valve 6a
  • a second heat exchanger 7 a second heat exchanger 7.
  • the first heat exchanger 5 is an indoor heat exchanger arranged indoors
  • the second heat exchanger 7 is an outdoor heat exchanger arranged outdoors.
  • the first bypass flow path B1 connects the point P2 of the first expansion valve 6a side pipe of the second heat exchanger 7 and the discharge side pipe P1 of the compressor 1 to each other.
  • a fan (not shown) for blowing air is provided on the air outlet side or the air inlet side of each of the first heat exchanger 5 and the second heat exchanger 7.
  • a line flow fan, a propeller fan, a turbo fan, a sirocco fan, or the like can be used.
  • a plurality of fans may be provided for one heat exchanger.
  • the configuration shown in FIG. 1 is the minimum component capable of cooling and heating operation, and devices such as a gas-liquid separator, a receiver and an accumulator may be added to the main circuit 30.
  • the type of the refrigerant enclosed in the air conditioner is not particularly limited.
  • an HFC (hydrofluorocarbon) refrigerant, an HFO (hydrofluoroolefin) refrigerant, an HC (hydrocarbon) refrigerant, or a non-azeotropic mixed refrigerant may be enclosed.
  • the first flow path selection device 20 selects at least the first bypass flow path B1 after selecting at least the second bypass flow path B2. As a result, the refrigerant whose temperature has risen through the second bypass flow passage B2 then flows into the second heat exchanger 7 from the first bypass flow passage B1 and defrosting is performed.
  • FIG. 2 is a flowchart for explaining the operation of each element during the defrosting operation in the first embodiment.
  • FIG. 3 is a diagram showing states of elements in each processing of the flowchart of FIG.
  • control device 50 causes the solenoid valve 3a to be opened and the solenoid valve 3b to be closed in step S100 so that the passage switching valve 8 selects the second bypass passage B2. Control the valve.
  • step S101 If it is determined in step S101 that no frost has formed (NO in S101), the process is temporarily returned to the main routine, and the processes of S100 and S101 are repeated again. When it is determined in step S101 that frost has formed (YES in S101), the process proceeds to step S102.
  • FIG. 5 is a diagram showing the flow of the refrigerant in the first defrosting stage (S102, S103) according to the first embodiment.
  • step S102 the refrigerant discharged from the compressor 1 passes through the second bypass passage B2, is decompressed by the second expansion valve 6b, and is again sucked into the compressor 1. Since the solenoid valve 3a is in the closed state, a part of the refrigerant staying in the first heat exchanger 5 and the second heat exchanger 7 is sucked out through the path indicated by the broken line arrow and is indicated by the solid line arrow. The temperature is raised in a loop.
  • the controller 50 fully opens the expansion valve 6a in step S102. This is because when the defrosting operation is switched, the refrigerant remaining in the main circuit is swiftly passed through the loop indicated by the solid arrow including the second bypass flow passage B2. Further, the control device 50 sets the opening degree of the second expansion valve 6b to the same opening degree as that of the first expansion valve 6a during the heating operation before starting the defrosting operation. This is to prevent a state where the pressure difference before and after the second expansion valve 6b becomes small and the discharge pressure and discharge temperature of the refrigerant do not rise when the opening degree of the second expansion valve 6b is too large. Moreover, when the opening degree of the second expansion valve 6b is too small, the amount of the refrigerant flowing into the suction side of the compressor 1 is prevented from becoming excessively small.
  • control device 50 obtains information for determining whether the discharge temperature of the refrigerant has reached the target value, and the discharge temperature of the refrigerant is It is determined whether or not the target value has been reached. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is set to a second threshold value T2 (for example, 100). °C) has been reached.
  • T2 for example, 100.
  • step S104 when the temperature of the refrigerant discharged from the compressor 1 does not reach the predetermined second threshold value (for example, 100 ° C.) even after a certain fixed time (for example, 60 seconds) has elapsed from the start of step S102, The process may proceed to step S104.
  • the predetermined second threshold value for example, 100 ° C.
  • a certain fixed time for example, 60 seconds
  • step S104 the control device 50 switches the selection of the passage switching valve 8 from the second bypass passage B2 to the first bypass passage B1.
  • FIG. 6 is a diagram showing the flow of the refrigerant in the defrosting second stage (S104, S105) according to the first embodiment.
  • step S104 the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the first bypass passage B1 and is introduced into the second heat exchanger 7. In this way, the second heat exchanger 7 is defrosted. Further, the refrigerant flowing out from the second heat exchanger 7 is decompressed by the second expansion valve 6b and is again sucked into the compressor 1.
  • the operating frequency of the compressor 1 in step S104 is preferably higher than that of normal heating operation. This is different from the general defrosting operation in which the refrigerant is circulated backward in the cooling direction, and since it is the defrosting operation in the overheated gas region, the flow rate of the refrigerant is small and the amount of heat used for defrosting is small. This is to prevent
  • the control device 50 determines in step S105 whether or not to finish the defrosting. Specifically, the controller 50 has a surface temperature of the second heat exchanger 7 that is equal to or higher than a predetermined third threshold value (for example, 0 ° C.) based on the detection signal output from the temperature sensor 2b. Or not. When the surface temperature of the second heat exchanger 7 is lower than the third threshold value (NO in S105), the control device 50 determines to continue the defrosting of the second heat exchanger 7, and proceeds to step S104. Return processing. On the other hand, when the surface temperature of the second heat exchanger 7 is equal to or higher than the third threshold value (YES in S105), the control device 50 determines to end the defrosting of the second heat exchanger 7. Then, the process proceeds to step S106.
  • a predetermined third threshold value for example, 0 ° C.
  • step S106 the control device 50 sets the solenoid valve 3a to the open state and the solenoid valve 3b to the closed state. At this time, the refrigerant flows as shown in FIG. 4, whereby the steady heating operation is performed.
  • the first flow path selecting device 20 selects the second bypass flow path B2 and deselects the first bypass flow path B1 and the first heat exchanger 5 (see FIG. 5, S102, S103), and then the first bypass flow passage B1 is selected and the second bypass flow passage B2 and the first heat exchanger 5 are deselected (FIG. 6, S104, S105).
  • the control device 50 controls the solenoid valve 3a, the solenoid valve 3b, and the flow path.
  • the switching valve 8 is operated to flow the entire amount of the refrigerant into the second bypass flow passage B2.
  • the control device 50 operates the flow path switching valve 8 to move the second heat exchanger through the first bypass flow path B1.
  • the second refrigerant heat exchanger 7 is defrosted by flowing the entire amount of the refrigerant into the second heat exchanger 7.
  • the refrigerant inlet side of the outdoor heat exchanger during heating tends to frost, but in the present embodiment, the second heat is passed through the first bypass passage B1.
  • a high-pressure / high-temperature refrigerant gas can flow to the inlet side of the heat exchanger 7 during heating, and the temperature difference between the refrigerant and the second heat exchanger 7 increases on the inlet side of the second heat exchanger 7 during heating, resulting in a unit time The amount of heat exchange of is increased. Therefore, defrosting can be performed in a short time.
  • the defrosting operation can be performed without circulating the refrigerant through the first heat exchanger 5 in the room, it is possible to reduce a decrease in room temperature during the defrosting operation.
  • the solenoid valve 3a when the detection result of the temperature sensor 2b becomes equal to or lower than the preset first threshold value and the second outdoor heat exchanger 7 is determined to be frosted and the defrosting operation is started, the solenoid valve 3a is operated. Is closed to prevent the refrigerant from flowing into the main circuit 30, and at the same time, the solenoid valve 3b is opened to allow the entire amount of the refrigerant to flow into the second bypass passage B2, and then the passage switching valve 8 is switched to open the first bypass passage B1. It is selected and the entire amount of the refrigerant is flown to the second heat exchanger 7. Therefore, it is not necessary to switch the four-way valve 4 during the defrosting operation.
  • FIG. 10 is a diagram showing a difference in time from the frosting determination to the start of the defrosting operation in each of the comparative example and the first embodiment.
  • FIG. 11 is a diagram showing a difference in time from the completion of defrosting to the return to heating in each of the comparative example and the first embodiment.
  • FIG. 12 is a schematic configuration diagram showing the configuration of the air conditioner 200 according to the second embodiment.
  • the air conditioner 200 includes a main circuit 30, a first bypass flow passage B1, a second bypass flow passage B2, and a first flow passage selection device 20A.
  • the air conditioner 200 further includes a compressor 1, a four-way valve 4, an extension pipe 9a, a first heat exchanger 5, an extension pipe 9b, a first expansion valve 6a, and a second heat exchanger 7.
  • a compressor 1 a four-way valve 4
  • an extension pipe 9a a first heat exchanger 5
  • an extension pipe 9b a first expansion valve 6a
  • a second heat exchanger 7 a second heat exchanger 7.
  • the first heat exchanger 5 is an indoor heat exchanger arranged indoors
  • the second heat exchanger 7 is an outdoor heat exchanger arranged outdoors.
  • the refrigerant in the main circuit 30 is the compressor 1, the four-way valve 4, the extension pipe 9a, the first heat exchanger 5, the extension pipe 9b, the first expansion valve 6a, the second heat exchanger 7, the four-way valve. It circulates in the order of 4 and returns to the compressor 1.
  • the second bypass flow passage B2 connects the suction side pipe (point P4) of the compressor 1 and the discharge side pipe (point P1) of the compressor 1.
  • the first flow path selection device 20A is configured to selectively pass the refrigerant discharged from the compressor 1 through at least one of the first heat exchanger 5, the first bypass flow path B1, and the second bypass flow path B2. To be done.
  • the first flow path selection device 20A is configured to selectively pass the refrigerant discharged from the compressor 1 through the pipe C0 or the branch pipe B0.
  • the first flow path selection device 20A is also configured to be able to distribute the refrigerant to the first bypass flow path B1 and the second bypass flow path B2 at an arbitrary ratio.
  • the first flow passage selection device 20A selects the second bypass flow passage B2 and deselects the first bypass flow passage B1 and the first heat exchanger 5 (Fig. 16) Next, the first bypass flow passage B1 and the second bypass flow passage B2 are selected and the first heat exchanger 5 is deselected (FIG. 18).
  • the air conditioner 200 according to the second embodiment shown in FIG. 12 further includes a second expansion valve 6c, a third bypass flow path B3, a third expansion valve 6d, and a second flow path selection device.
  • the second expansion valve 6c is arranged in the middle of the second bypass flow passage B2.
  • the third bypass flow passage B3 is a flow passage that branches from the pipe C1 through which the refrigerant that has passed through the second heat exchanger 7 flows to reach the suction side of the compressor 1.
  • the third expansion valve 6d is arranged in the middle of the third bypass flow passage B3.
  • the channel switching valve 8b that selectively connects the pipe C2 or the third bypass channel B3 can be used.
  • the pipe C2 is a pipe that connects the pipe C1 to the suction side of the compressor 1 without passing through the third bypass flow passage B3.
  • the air conditioner 200 of the second embodiment has the same basic configuration as the air conditioner 100 of the first embodiment, but differs in the following first to fourth points.
  • the main circuit 30 has the flow path switching valve 8b, and the expansion valve 6b is removed.
  • the flow path switching valve 8 for selecting the first bypass flow path B1 and the second bypass flow path B2 is replaced by the flow rate adjusting valve 10.
  • the second expansion valve 6c is provided in the second bypass flow passage B2.
  • the third bypass flow passage B3 having the third expansion valve 6d is provided.
  • the flow rate adjusting valve 10 is configured to be able to freely adjust the amount of the refrigerant distributed in the first bypass flow passage B1 and the second bypass flow passage B2.
  • the flow rate adjusting valve 10 may have any configuration, but for example, an electronic expansion valve may be provided in each of the two-way branch passages through which the refrigerant flows.
  • the air conditioner 200 further includes a control device 50 and temperature sensors 2a and 2b.
  • the temperature sensor 2a detects the temperature of the refrigerant discharged from the compressor 1.
  • the temperature sensor 2b detects the surface temperature of the second heat exchanger 7 at a position close to the point P2d side which is the refrigerant outlet of the second heat exchanger 7 during the heating operation.
  • the control device 50 is based on the temperature detected by the temperature sensors 2a and 2b and a command from the user, and the compressor 1, the four-way valve 4, the first expansion valve 6a, the flow path selection device 20, the second expansion valve 6b and not shown. Control the fan. Since the basic configuration of control device 50 is similar to that of the first embodiment, description thereof will not be repeated.
  • the type of the refrigerant enclosed in the air conditioner is not particularly limited.
  • HFC refrigerant, HFO refrigerant, HC refrigerant, or non-azeotropic mixed refrigerant may be enclosed.
  • FIG. 13 is a flowchart for explaining the operation of each element during the defrosting operation in the second embodiment.
  • FIG. 14 is a diagram showing states of elements in each process of the flowchart of FIG.
  • step S200 the control device 50 controls the solenoid valve 3a so that the solenoid valve 3a is in the open state and the solenoid valve 3b is in the closed state, and the passage switching valve 8b controls these valves so as to select the pipe C2. To do.
  • step S201 the control device 50 acquires information for determining whether the second heat exchanger 7 is frosted, and then the second heat exchanger. It is determined whether or not No. 7 is frosted. Specifically, the control device 50 acquires the detection result of the temperature sensor 2b, and based on the detection result, the surface temperature of the second heat exchanger 7 has a predetermined first threshold value (for example, ⁇ 3). C)) or less. When the surface temperature of the second heat exchanger 7 is equal to or lower than the first threshold value, the control device 50 determines that the second heat exchanger 7 is frosted.
  • a predetermined first threshold value for example, ⁇ 3. C
  • step S201 If it is determined in step S201 that frost has not formed (NO in S201), the process is temporarily returned to the main routine, and the processes of S200 and S201 are repeated. When it is determined in step S201 that frost has formed (YES in S201), the process proceeds to step S202.
  • step S202 the control device 50 closes the solenoid valve 3a and opens the solenoid valve 3b, and operates the flow rate adjusting valve 10 so that the entire amount of the refrigerant flows into the second bypass flow passage B2. Further, the control device 50 switches the selection of the flow path switching valve 8b from the pipe C2 to the third bypass flow path, and fully opens the expansion valve 6d.
  • FIG. 16 is a diagram showing the flow of the refrigerant in the first stage (S202, S203) during defrosting of the second embodiment.
  • the refrigerant discharged from the compressor 1 passes through the second bypass passage B2, is decompressed by the second expansion valve 6c, and is sucked into the compressor 1 again.
  • step S202 the first expansion valve 6a and the expansion valve 6d are fully opened. This is because when the defrosting operation is switched, the refrigerant remaining in the main circuit 30 is swiftly flowed through the loop indicated by the solid arrow including the second bypass flow passage B2. Further, the opening degree of the second expansion valve 6c is set to the same opening degree as that of the first expansion valve 6a during the heating operation before starting the defrosting operation. This is to prevent a state where the pressure difference before and after the second expansion valve 6c becomes small and the discharge pressure and discharge temperature of the refrigerant do not rise when the opening degree of the second expansion valve 6c is too large. Moreover, when the opening degree of the second expansion valve 6c is too small, the amount of the refrigerant flowing in on the suction side of the compressor 1 is prevented from becoming excessively small.
  • control device 50 obtains information for determining whether or not the discharge temperature of the refrigerant has reached the target value, and the discharge temperature of the refrigerant is It is determined whether or not the target value has been reached. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is set to a second threshold value T2 (for example, 100). °C) has been reached.
  • T2 for example, 100.
  • step S203 when the rise in the discharge temperature of the refrigerant in a certain time interval (for example, 5 seconds) does not reach the predetermined third threshold value (for example, 10 ° C.), the operating frequency of the compressor 1 is changed. It may be controlled to increase.
  • FIG. 17 is a diagram showing the flow of the refrigerant in the second stage of defrosting (S204, S205) according to the second embodiment.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the first bypass passage B1 and is introduced into the second heat exchanger 7.
  • the high-temperature high-pressure refrigerant defrosts the second heat exchanger 7.
  • the refrigerant flowing out from the second heat exchanger 7 is decompressed by the third expansion valve 6d and is again sucked into the compressor 1.
  • step S206 the control device 50 operates the flow rate adjusting valve 10 so that the refrigerant is distributed to the first bypass passage B1 and the second bypass passage B2.
  • control device 50 determines in step S207 whether or not to finish the defrosting. Specifically, the control device 50 determines whether the surface temperature of the second heat exchanger 7 is equal to or higher than a predetermined third threshold value (for example, 0 ° C.) based on the detection signal output from the temperature sensor 2b. Determine whether or not. The control device 50 determines to finish the defrosting of the second heat exchanger 7 when the surface temperature of the second heat exchanger 7 is equal to or higher than the third threshold value.
  • a predetermined third threshold value for example, 0 ° C.
  • the control device 50 sets the solenoid valve 3a to the open state, the solenoid valve 3b to the closed state, and selects the flow path switching valve 8b in the third step S208.
  • the bypass flow path B3 is switched to the pipe C2.
  • the time from the start of defrosting to the heating return is ⁇ T3 in comparison with the conventional case. It can be shortened to ⁇ T4, and a quick heating effect can be obtained when the heating operation is returned.
  • the air conditioner 300 includes a main circuit 30, a first bypass flow passage B1, a second bypass flow passage B2, and a first flow passage selection device 20B.
  • the second bypass flow passage B2 connects the suction side pipe of the compressor 1 and the discharge side pipe of the compressor 1 via the first flow passage selecting device 20B.
  • the air conditioner 100 further includes a second expansion valve 6e.
  • the second expansion valve 6e is provided in the middle of the second bypass flow passage B2 in FIG.
  • the air conditioner 300 is configured to connect the first bypass flow passage B1 and the first expansion valve 6a to either the first heat exchange portion 7a or the second heat exchange portion 7b, and the third flow passage selection device 20C. Is further provided.
  • the second flow path selection device 20C includes solenoid valves 3c, 3d, 3e, 3f.
  • the solenoid valve 3c opens and closes the flow path connecting the first expansion valve 6a and the first heat exchange section 7a.
  • the solenoid valve 3d opens and closes a flow path that connects the first expansion valve 6a and the second heat exchange unit 7b.
  • the solenoid valve 3e opens and closes the flow path connecting the first bypass flow path B1 and the first heat exchange section 7a.
  • the solenoid valve 3f opens and closes the flow path that connects the first bypass flow path B1 and the second heat exchange unit 7b.
  • the first flow path selection device 20B is configured to selectively flow the refrigerant discharged from the compressor 1 into at least one of the first heat exchanger 5, the first bypass flow path B1, and the second bypass flow path B2. To be done.
  • the first flow path selection device 20B selectively causes the refrigerant discharged from the compressor 1 to flow through either the first heat exchanger 5 or the branch pipe B0, and also flows through the branch pipe B0. Is distributed to the first bypass flow passage B1 and the second bypass flow passage B2.
  • the first flow path selection device 20B distributes the refrigerant to the main circuit 30 and the second bypass flow path B2 during the defrosting operation (FIGS. 27 and 31), Then, while flowing the refrigerant through the main circuit 30 to either the first heat exchange section 7a or the second heat exchange section 7b, either the first heat exchange section 7a or the second heat exchange section 7b through the first bypass flow passage B1.
  • the refrigerant is passed to the other side (FIGS. 28 and 32).
  • the third flow passage selecting device 20C connects the first bypass flow passage B1 to either one of the first heat exchange portion 7a and the second heat exchange portion 7b and sets the first expansion valve 6a to the first expansion valve 6a during the defrosting operation. It is connected to either the other of the 1st heat exchange part 7a and the 2nd heat exchange part 7b (FIG. 28, FIG. 32).
  • the air conditioner 300 of the third embodiment has the same basic configuration as that of the first embodiment, but has a flow rate adjusting valve 10b in the main circuit 30, the expansion valve 6b is removed, the solenoid valve 3c, the solenoid.
  • the valve 3d is provided, the second heat exchanger 7 is provided with the divided first heat exchange portion 7a and second heat exchange portion 7b, and the first heat exchange portion 7a and the second heat exchange portion 7b are provided, respectively.
  • a fan for blowing air is provided on each of the air outlet side and the air inlet side of the second heat exchanger 7 and the first heat exchanger 5 (not shown).
  • Each fan may be a line flow fan, a propeller fan, a turbo fan, a sirocco fan, or the like.
  • a configuration may be used in which a plurality of fans are used for one heat exchanger.
  • the first heat exchange section 7a and the second heat exchange section 7b may be arranged side by side in the horizontal direction or may be arranged side by side in the vertical direction.
  • the above-mentioned configuration is the minimum component capable of cooling and heating operation, and a gas-liquid separator, a receiver, an accumulator and the like may be further added to the main circuit 30.
  • the temperature sensor 2c included in the first heat exchange unit 7a and the temperature sensor 2d included in the second heat exchange unit 7b are provided at a position on the outlet side of the refrigerant during heating operation (point P10 side). Has been.
  • the type of refrigerant enclosed in the air conditioner is not limited.
  • the refrigerant HFC refrigerant, HFO refrigerant, HC refrigerant, or non-azeotropic mixed refrigerant may be enclosed.
  • FIG. 24 is a flowchart for explaining the operation of each element during the defrosting operation of the first heat exchange unit 7a in the third embodiment.
  • FIG. 25 is a diagram showing states of elements in each processing of the flowchart of FIG. FIG. 25 shows the open / closed state of the solenoid valves 3c, 3d, 3b, 3e, 3f in each process of FIG. It is shown.
  • the processes of the frost formation determination (S301), the constant discharge temperature arrival determination (S303), and the defrosting end determination (S305) of the flowchart of FIG. 24 are the same as those of S101, S103, and S105 of the first embodiment, respectively.
  • the processing (S300, S302, S304, S306) involving the operation of is different from that of the first embodiment.
  • control described in FIGS. 24 and 25 is a control for defrosting the first heat exchange unit 7a from the heating operation, and in the case of defrosting the second heat exchange unit 7b, the control illustrated in FIGS. This will be described with reference to FIG.
  • step S300 the control device 50 causes the solenoid valve 3c to be open, the solenoid valve 3d to be open, the solenoid valve 3b to be closed, the solenoid valve 3e to be closed, and the solenoid valve 3f to be closed. Therefore, the flow path switching valve 8 selects the first bypass flow path B1, and the flow rate adjustment valve 10b controls these valves so that the entire amount of the refrigerant flows into the main circuit 30.
  • FIG. 26 is a diagram showing a refrigerant flow during heating (S300, S301, S306) according to the third embodiment.
  • the refrigerant is discharged from the compressor 1, and the flow rate adjusting valve 10b, the four-way valve 4, the first heat exchanger 5, the first expansion valve 6a, the second heat exchanger 7, the four-way valve 4 are provided. And then returns to the compressor 1.
  • the refrigerant is divided into two by the flow path selection device 20C, and is parallel to the path of the first heat exchange section 7a and the expansion valve 6f and the path of the second heat exchange section 7b and the expansion valve 6g. And flow at the point P10.
  • step S301 the control device 50 acquires information for determining whether the first heat exchange unit 7a is frosted, and then the first heat exchange unit. It is determined whether 7a is frosted. Specifically, the control device 50 acquires the detection result of the temperature sensor 2c, and based on the detection result, the surface temperature of the first heat exchanging portion 7a has a predetermined first threshold value (for example, ⁇ 3 ° C.) or less is determined. The controller 50 determines that the first heat exchange unit 7a is frosted when the surface temperature of the first heat exchange unit 7a is equal to or lower than the first threshold value. When it is determined that frost is formed, the control device 50 advances the process to step S302. If it is determined that frost has not formed, the processes of steps S302 to S306 are not executed, and the processes of steps S300 and S301 are repeated.
  • a predetermined first threshold value for example, ⁇ 3 ° C.
  • step S302 in the control device 50, the electromagnetic valve 3c is closed, the electromagnetic valve 3b is opened, the flow path switching valve 8 selects the second bypass flow path B2, and the flow rate adjustment valve 10 supplies the refrigerant to the main circuit 30.
  • Each valve is controlled so as to be distributed to the pipe C0 and the second bypass flow passage B2.
  • the solenoid valves 3e and 3f are maintained in the state of step S300 and are both closed. Further, the state of step S300 is maintained, and the solenoid valve 3d is controlled to be in the open state.
  • the opening degree of the expansion valve 6e is set to the same opening degree as that of the expansion valve 6a in step S302. This is because the refrigerant flowing through the pipe C1 of the main circuit 30 and the refrigerant flowing through the second bypass passage B2 are merged at the same pressure at the point P11.
  • step S303 the control device 50 acquires information for determining whether the discharge temperature of the refrigerant has reached the target value, and whether the discharge temperature of the refrigerant has reached the target value. To determine. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is set to a second threshold value T2 (for example, 100). °C) is reached. When the discharge temperature of the refrigerant has reached the second threshold value T2 in step S303, the control device 50 advances the process to step S304.
  • a second threshold value T2 for example, 100.
  • step S302 and S303 the density of the refrigerant sucked into the compressor 1 may decrease with time. In that case, since the mass flow rate of the refrigerant sucked into the compressor 1 decreases, the discharge temperature of the refrigerant may not easily rise with time. Therefore, in step S303, when the increase in the discharge temperature of the refrigerant at a constant time interval (for example, 5 second intervals) does not reach the predetermined third threshold value (for example, 10 ° C.), the operating frequency of the compressor 1 May be controlled.
  • a constant time interval for example, 5 second intervals
  • the predetermined third threshold value for example, 10 ° C.
  • FIG. 28 is a diagram showing the flow of the refrigerant in the second stage (S304, S305) during the defrosting operation of the first heat exchange section 7a.
  • a part of the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the first bypass passage B1 and is introduced into the first heat exchange section 7a. In this way, the first heat exchange section 7a is defrosted.
  • the refrigerant flowing out of the first heat exchange section 7a is decompressed by the expansion valve 6f.
  • step S306 the control device 50 causes the solenoid valve 3c to be in the open state, the solenoid valve 3d to be in the open state, the solenoid valve 3b to be in the closed state, and the solenoid valve 3e to be in the closed state. Control each valve so that At this time, the flow path switching valve 8 remains unchanged. As a result, the refrigerant flows as shown in FIG. 26, and the steady heating operation is performed.
  • FIG. 29 is a flow chart for explaining the operation of each element during the defrosting operation of the second heat exchange section 7b in the third embodiment.
  • FIG. 30 is a diagram showing states of elements in each processing of the flowchart of FIG. In FIG. 30, the open / closed states of the solenoid valves 3c, 3d, 3b, the solenoid valve 3e, and the solenoid valve 3f in each process of FIG. The distribution state is shown.
  • step S300 the control device 50 causes the solenoid valve 3c to be open, the solenoid valve 3d to be open, the solenoid valve 3b to be closed, the solenoid valve 3e to be closed, and the solenoid valve 3f to be closed. Therefore, the flow path switching valve 8 selects the first bypass flow path B1, and the flow rate adjustment valve 10b controls these valves so that the entire amount of the refrigerant flows into the main circuit 30. As a result, the refrigerant flows as shown in FIG.
  • step S301A the control device 50 acquires information for determining whether or not the second heat exchange unit 7b is frosted, and determines whether or not the second heat exchange unit 7b is frosted. To judge. Specifically, the control device 50 acquires the detection result of the temperature sensor 2d, and based on the detection result, the surface temperature of the second heat exchanging portion 7b has a predetermined first threshold value (for example, ⁇ 3 ° C.) or less is determined. The control device 50 determines that the second heat exchange unit 7b is frosted when the surface temperature of the second heat exchange unit 7b is equal to or lower than the first threshold value. In this case, the control device 50 advances the process to step S302A.
  • a predetermined first threshold value for example, ⁇ 3 ° C.
  • step S302A in the control device 50, the electromagnetic valve 3d is closed, the electromagnetic valve 3b is opened, the flow path switching valve 8 selects the second bypass flow path B2, and the flow rate adjustment valve 10 supplies the refrigerant to the main circuit 30.
  • Each valve is controlled so as to be distributed to the pipe C0 and the second bypass flow passage B2.
  • the solenoid valves 3e and 3f are maintained in the state of step S300 and are both closed. Further, the state of step S300 is maintained and the solenoid valve 3c is controlled to be in the open state.
  • FIG. 31 is a diagram showing a refrigerant flow in the first stage (S302A, S303A) during the defrosting operation of the second heat exchange section 7b.
  • a part of the refrigerant discharged from the compressor 1 flows to the main circuit 30 and the first heat exchange section 7a to continue the heating operation, and another part of the refrigerant flows to the second bypass flow.
  • the pressure is reduced by the expansion valve 6e and is again sucked into the compressor 1.
  • the opening degree of the expansion valve 6e is set to the same opening degree as that of the expansion valve 6a in step S302A. This is because the refrigerant flowing through the pipe C1 of the main circuit 30 and the refrigerant flowing through the second bypass passage B2 are merged at the same pressure at the point P11.
  • step S303A the control device 50 acquires information for determining whether or not the discharge temperature of the refrigerant has reached the target value, and determines whether the discharge temperature of the refrigerant has reached the target value. To determine. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is a second threshold value set in advance (for example, 100 ° C.). ) Is reached. When the discharge temperature of the refrigerant has reached the second threshold value in step S303A, the control device 50 advances the process to step S304A.
  • step S302A and S303A the density of the refrigerant sucked into the compressor 1 may decrease with time. In that case, since the mass flow rate of the refrigerant sucked into the compressor 1 decreases, the discharge temperature of the refrigerant may not easily rise with time. For this reason, in step S303A, when the refrigerant discharge temperature rise at a constant time interval (for example, 5 second intervals) is less than a predetermined third threshold value (for example, 10 ° C.), the operating frequency of the compressor 1 is increased. You may control.
  • a constant time interval for example, 5 second intervals
  • a predetermined third threshold value for example, 10 ° C.
  • the temperature of the refrigerant discharged from the compressor 1 reaches a predetermined second threshold value (for example, 100 ° C.) even after a certain fixed time (for example, 60 seconds) has elapsed from the time when the process of step S302A was started. If not, the process may proceed to step S304A.
  • a predetermined second threshold value for example, 100 ° C.
  • a certain fixed time for example, 60 seconds
  • step S304A the control device 50 controls each valve so that the solenoid valve 3f is opened and the passage switching valve 8 selects the first bypass passage B1.
  • the solenoid valves 3b, 3c, 3d, 3e and the flow rate adjusting valve 10b the state of step S302A is maintained.
  • the control device 50 determines in step S305A whether or not to finish the defrosting. Specifically, the control device 50 determines whether the surface temperature of the second heat exchange section 7b is equal to or higher than a predetermined third threshold value (for example, 0 ° C.) based on the detection signal output from the temperature sensor 2d. Determine whether or not. The control device 50 determines that the defrosting is ended when the surface temperature of the second heat exchange section 7b is equal to or higher than the third threshold value. When determining to end the defrosting, the control device 50 advances the process to step S306.
  • a predetermined third threshold value for example, 0 ° C.
  • step S306 the control device 50 causes the solenoid valve 3c to be in the open state, the solenoid valve 3d to be in the open state, the solenoid valve 3b to be in the closed state, and the solenoid valve 3e to be in the closed state. Control each valve so that As a result, the refrigerant flows as shown in FIG. 26, and the steady heating operation is performed.
  • the heat exchange section on the windward side is more likely to frost than the heat exchange section on the leeward side, and the heat exchange section on the leeward side does not need to be defrosted in many cases.
  • the heat exchanging part that preferentially defrosts in this way will be described as the first heat exchanging part 7a.
  • FIG. 33 is a flowchart for explaining an example of a process of defrosting the first heat exchanging unit 7a prior to the second heat exchanging unit 7b in the third embodiment. Note that the numbers of the respective steps are given the same numbers as the steps of FIGS. 24 and 29, and detailed description will not be repeated.
  • control device 50 causes the refrigerant to flow in parallel to first heat exchange unit 7a and second heat exchange unit 7b, and performs normal heating operation. Then, the control device 50 determines whether or not frost is formed on the first heat exchange unit 7a in step S301.
  • step S301 When it is determined in step S301 that there is frost formation (YES in S301), in steps S302 and S303, the control device 50 continues the heating using the second heat exchange section 7b with a part of the refrigerant while remaining.
  • the refrigerant temperature increasing process is performed to cause the refrigerant to flow through the second bypass flow path B2 and circulate to increase the temperature.
  • step S301 when it is determined that there is no frost formation, and when the processes of steps S304 and S305 are executed and the defrosting of the first heat exchange unit 7a is completed, subsequently in step S301A, the control device 50 causes the second heat The presence or absence of frost on the exchange section 7b is determined.
  • step S302A and S303A the control device 50 continues heating while using the first heat exchange section 7a with some of the refrigerant, while remaining.
  • the refrigerant temperature increasing process is performed to cause the refrigerant to flow through the second bypass flow path B2 and circulate to increase the temperature.
  • control device 50 continues the heating using the first heat exchange unit 7a with a part of the refrigerant, and the remaining refrigerant with the second heat exchange unit via the first bypass flow passage B1. 7b to defrost the second heat exchange section 7b.
  • step S306 If it is determined in step S301A that there is no frost formation, or if the processing of steps S304A and S305A has been executed and the defrosting of the second heat exchange section 7b has been completed, then the processing of step S306 proceeds.
  • the control device 50 changes the setting of each valve so that the refrigerant flows in parallel to the first heat exchange section 7a and the second heat exchange section 7b so that the normal heating operation is performed, and the processing is performed. Return to the main routine.
  • the refrigerant is distributed to the main circuit 30 and the second bypass flow passage B2, and then the refrigerant is distributed to the main circuit 30 and the first bypass flow passage B1 to flow the refrigerant.
  • the heating operation can be continued even during the defrosting operation.
  • the heating operation can be continued even during the defrosting operation, it is possible to reduce the decrease in room temperature during the defrosting operation and improve comfort.
  • the air conditioner of the present disclosure includes a first bypass flow path B1 that connects the discharge side of the compressor 1 and the heating-side inlet side of the outdoor second heat exchanger 7, the discharge side of the compressor 1, and the suction side of the compressor 1. And a second bypass flow path B2 connecting the two.
  • the control device 50 operates the flow path selection devices 20, 20A, 20B to bypass the refrigerant to the second bypass. Defrosting is performed by causing the refrigerant to flow through the flow path B2 and then through the first bypass flow path B1 to the outdoor second heat exchanger 7.
  • the discharge temperature of the refrigerant in the compressor 1 can be made higher than usual.
  • the temperature of the refrigerant is higher than that during the normal heating operation, and the outdoor first. 2 can be flowed to the heat exchanger 7.
  • the defrosting operation is performed in a state where the temperature of the refrigerant is higher than normal, the temperature difference between the refrigerant and the frosted heat exchanger becomes large in the entire second heat exchanger 7 outside the unit, and Since the amount of heat exchange is increased, defrosting can be performed in a short time.
  • frost is likely to form on the refrigerant inlet side of the outdoor heat exchanger during heating.
  • a high-pressure / high-temperature refrigerant gas can flow to the heating refrigerant inlet side of the second heat exchanger 7 through the first bypass passage B1. Therefore, the temperature difference between the refrigerant and the frosted heat exchanger on the refrigerant inlet side of the second heat exchanger 7 during heating increases, and the amount of heat exchange per unit time increases, so defrosting is performed in a short time. be able to.
  • defrosting is performed in a gas region in a more overheated state as compared with general defrosting by switching the cooling operation. For this reason, the degree of superheat (SH) of the refrigerant sucked into the compressor 1 becomes large, and liquid back to the compressor 1 does not easily occur, so that the reliability of the compressor 1 can be improved.
  • SH superheat
  • the refrigerant does not pass through the extension pipes 9a and 9b, the first heat exchanger 5 in the room, and the like during the defrosting operation, as compared with the general defrosting operation by switching the cooling operation. Therefore, heat dissipation loss can be reduced.
  • the defrosting operation can be performed without the refrigerant passing through the first heat exchanger 5 in the room, as compared with the general defrosting operation by switching the cooling operation. No heat absorption occurs in the heat exchanger 5, and it is possible to reduce the decrease in room temperature during the defrosting operation.
  • the flow path selection devices 20, 20A, 20B when starting the defrosting operation, the flow path selection devices 20, 20A, 20B are operated to prevent the refrigerant from flowing into the main circuit 30, and to transfer the refrigerant to the second bypass flow path B2. Then, the refrigerant is allowed to flow to the outdoor second heat exchanger 7 through the first bypass flow path B1. This eliminates the need to switch the four-way valve during defrosting operation, and it is not necessary to stop the compressor in order to create the pressure state required to switch the four-way valve. You can
  • the four-way valve is switched when the heating operation is returned by operating the flow path selection devices 20, 20A, 20B and flowing the entire amount of the refrigerant into the main circuit 30. Absent. For this reason, it is not necessary to stop the compressor in order to create the pressure state necessary for switching the four-way valve.Therefore, it is necessary to shorten the time to return to heating operation as compared to the defrosting operation by switching cooling operation in general. You can

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner (100) comprises: a main circuit (30); a first bypass channel (B1) by which a second heat exchanger (7) pipe on the side of a first expansion valve (6a) and a discharge side pipe of a compressor (1) communicate; a second bypass channel (B2) by which an intake side pipe of the compressor (1) and the discharge side pipe of the compressor (1) communicate; and a first channel selection device (20) that is configured to allow refrigerant discharged by the compressor (1) to flow in at least one of a first heat exchanger (5), the first bypass channel (B1), and the second bypass channel (B2), selectively. During heating operations, the first channel selection device (20) selects at least the first heat exchanger (5). During defrost operations, the first channel selection device (20) selects at least the second bypass channel (B2) and then selects at least the first bypass channel (B1). Due to this configuration, an air conditioner can be provided that is capable of defrosting in a short time.

Description

空調装置Air conditioner
 本発明は、空調装置に関する。 The present invention relates to an air conditioner.
 従来、圧縮機吐出側と室外熱交換器入口側とを結ぶバイパス回路を備えた冷凍サイクル装置が知られている(特許文献1:特開2009-145032号)。この冷凍サイクル装置は、室外熱交換器が着霜した際に、圧縮機から吐出される冷媒を、バイパス回路を通じて室外熱交換器に流すことによって、速やかに除霜を行なうことができる。 Conventionally, a refrigeration cycle apparatus including a bypass circuit connecting a compressor discharge side and an outdoor heat exchanger inlet side is known (Patent Document 1: JP2009-145032A). When the outdoor heat exchanger is frosted, this refrigeration cycle device can quickly defrost by causing the refrigerant discharged from the compressor to flow to the outdoor heat exchanger through the bypass circuit.
特開2009-145032号JP-A-2009-145032
 上記特開2009-145032号公報に記載の冷凍サイクル装置は、圧縮機吐出側と室外熱交換器入口側を結ぶバイパス流路を通じて室外熱交換器に冷媒を流すことによって除霜時間を短くすることができる。しかし、吐出温度が低い冷媒(例えば、HC(ハイドロカーボン)冷媒の一つであるR290)が冷媒回路に封入されている場合には、冷媒と室外熱交換器の温度差が小さくなり単位時間あたりの熱交換量が減少するため、除霜に必要な時間を短くできないといった問題がある。 In the refrigeration cycle apparatus described in JP 2009-145032 A, the defrosting time is shortened by causing the refrigerant to flow through the outdoor heat exchanger through the bypass flow path connecting the compressor discharge side and the outdoor heat exchanger inlet side. You can However, when a refrigerant having a low discharge temperature (for example, R290, which is one of HC (hydrocarbon) refrigerants) is enclosed in the refrigerant circuit, the temperature difference between the refrigerant and the outdoor heat exchanger becomes small and per unit time. There is a problem that the time required for defrosting cannot be shortened because the amount of heat exchange of is reduced.
 この発明は、上記の課題を解決するためになされたものであって、その目的は、使用する冷媒を問わずに短時間で除霜可能な空調装置を提供することである。 The present invention has been made to solve the above problems, and an object thereof is to provide an air conditioner capable of defrosting in a short time regardless of the refrigerant used.
 本開示に係る空調装置は、暖房運転時において、冷媒が、圧縮機、第1熱交換器、第1膨張弁、第2熱交換器の順に循環する主回路と、第2熱交換器の第1膨張弁側配管と圧縮機の吐出側配管とを連通させる第1バイパス流路と、圧縮機の吸入側配管と圧縮機の吐出側配管とを連通させる第2バイパス流路と、圧縮機が吐出する冷媒を第1熱交換器、第1バイパス流路、第2バイパス流路のうち少なくとも1つに選択的に通すように構成された第1流路選択装置とを備える。暖房運転時において、第1流路選択装置は、少なくとも第1熱交換器を選択する。除霜運転時において、第1流路選択装置は、少なくとも第2バイパス流路を選択した後に、少なくとも第1バイパス流路を選択する。 In the air conditioner according to the present disclosure, during heating operation, the refrigerant circulates in the order of the compressor, the first heat exchanger, the first expansion valve, and the second heat exchanger, and the second circuit of the second heat exchanger. The first bypass flow passage that connects the first expansion valve side pipe and the discharge side pipe of the compressor, the second bypass flow passage that connects the suction side pipe of the compressor and the discharge side pipe of the compressor, and the compressor are A first flow path selection device configured to selectively pass the discharged refrigerant through at least one of the first heat exchanger, the first bypass flow path, and the second bypass flow path. During the heating operation, the first flow path selection device selects at least the first heat exchanger. During the defrosting operation, the first flow path selection device selects at least the first bypass flow path after selecting at least the second bypass flow path.
 本発明によれば、通常暖房時よりも冷媒を昇温させた後に、バイパス流路によって着霜した熱交換器に冷媒を導入するため、除霜時間が短縮される。 According to the present invention, the defrosting time is shortened because the refrigerant is introduced into the heat exchanger that has been frosted by the bypass flow path after the temperature of the refrigerant is raised compared to that during normal heating.
実施の形態1に係る空調装置100の構成を示す概略構成図である。1 is a schematic configuration diagram showing a configuration of an air conditioner 100 according to Embodiment 1. 実施の形態1における除霜運転時の各要素の動作を説明するためのフローチャートである。7 is a flowchart for explaining the operation of each element during defrosting operation in the first embodiment. 図2のフローチャートの各処理における要素の状態を示す図である。It is a figure which shows the state of the element in each process of the flowchart of FIG. 実施の形態1の暖房時(S100,S101,S106)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant at the time of heating (S100, S101, S106) of Embodiment 1. 実施の形態1の除霜時第1段階(S102,S103)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant in the defrosting 1st step (S102, S103) of Embodiment 1. 実施の形態1の除霜時第2段階(S104,S105)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the defrosting 2nd step (S104, S105) of Embodiment 1. 冷媒の流れを冷房運転方向に逆転させる一般的な除霜を実行する比較例の冷媒の状態を示すp-h線図である。It is a ph diagram which shows the state of the refrigerant of the comparative example which performs the general defrosting which reverses the flow of the refrigerant to the cooling operation direction. 実施の形態1における除霜運転時の冷媒の状態を示すp-h線図である。FIG. 4 is a ph diagram showing the state of the refrigerant during the defrosting operation in the first embodiment. 第2熱交換器7における比較例の除霜運転と実施の形態1の除霜運転での冷媒の温度分布を重ねて示した図である。It is the figure which overlapped and showed the temperature distribution of the refrigerant | coolant in the defrosting operation of the comparative example in the 2nd heat exchanger 7, and the defrosting operation of Embodiment 1. 比較例と実施の形態1の各々における着霜判断から除霜運転を開始するまでの時間の違いを示す図である。FIG. 7 is a diagram showing a difference in time from a frosting determination to the start of a defrosting operation in each of the comparative example and the first embodiment. 比較例と実施の形態1の各々における除霜終了から暖房復帰までの時間の違いを示す図である。FIG. 7 is a diagram showing a difference in time from the end of defrosting to the return to heating in each of the comparative example and the first embodiment. 実施の形態2に係る空調装置200の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the air conditioning apparatus 200 which concerns on Embodiment 2. 実施の形態2における除霜運転時の各要素の動作を説明するためのフローチャートである。9 is a flowchart for explaining the operation of each element during a defrosting operation in the second embodiment. 図13のフローチャートの各処理における要素の状態を示す図である。It is a figure which shows the state of the element in each process of the flowchart of FIG. 実施の形態2の暖房時(S200,S201,S208)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant at the time of heating (S200, S201, S208) of Embodiment 2. 実施の形態2の除霜時第1段階(S202,S203)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant in the defrosting 1st step (S202, S203) of Embodiment 2. 実施の形態2の除霜時第2段階(S204,S205)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the defrosting 2nd step (S204, S205) of Embodiment 2. 実施の形態2の除霜時第3段階(S206,S207)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant in the defrosting 3rd step (S206, S207) of Embodiment 2. 実施の形態2において、除霜終了間際に第2バイパス流路B2に冷媒を分配し始めた時点の冷媒の状態を表すp-h線図である。In Embodiment 2, it is a ph diagram showing the state of the refrigerant at the time when the refrigerant starts to be distributed to the second bypass flow passage B2 just before the end of defrosting. 実施の形態2において、第2バイパス流路B2に冷媒を分配開始後、ある時間が経過した時点の冷媒の状態を表すp-h線図である。FIG. 9 is a ph diagram showing a state of the refrigerant at a point in time when a certain time has elapsed after the refrigerant was started to be distributed to the second bypass flow passage B2 in the second embodiment. 冷房運転によって除霜を実行する比較例の除霜開始から暖房復帰までの冷媒の吐出温度の時間的変化を示す図である。It is a figure which shows the time change of the discharge temperature of the refrigerant from the defrosting start of a comparative example which performs defrosting by cooling operation to heating return. 実施の形態2における除霜開始から暖房復帰までの冷媒の吐出温度の時間的変化を示す図である。FIG. 9 is a diagram showing a temporal change in discharge temperature of the refrigerant from the start of defrosting to the return to heating in the second embodiment. 実施の形態3に係る空調装置300の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the air conditioning apparatus 300 which concerns on Embodiment 3. 実施の形態3における第1熱交換部7aの除霜運転時の各要素の動作を説明するためのフローチャートである。11 is a flowchart for explaining the operation of each element during defrosting operation of the first heat exchange unit 7a in the third embodiment. 図24のフローチャートの各処理における要素の状態を示す図である。It is a figure which shows the state of the element in each process of the flowchart of FIG. 実施の形態3の暖房時(S300,S301,S306)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant at the time of heating (S300, S301, S306) of Embodiment 3. 第1熱交換部7aの除霜運転時第1段階(S302,S303)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant in the 1st stage (S302, S303) at the time of the defrosting operation of the 1st heat exchange part 7a. 第1熱交換部7aの除霜運転時第2段階(S304,S305)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant in the 2nd step (S304, S305) at the time of the defrosting operation of the 1st heat exchange part 7a. 実施の形態3における第2熱交換部7bの除霜運転時の各要素の動作を説明するためのフローチャートである。11 is a flowchart for explaining the operation of each element during the defrosting operation of the second heat exchange section 7b in the third embodiment. 図29のフローチャートの各処理における要素の状態を示す図である。FIG. 30 is a diagram showing states of elements in each process of the flowchart of FIG. 29. 第2熱交換部7bの除霜運転時第1段階(S302A,S303A)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant in the 1st stage (S302A, S303A) at the time of the defrosting operation of the 2nd heat exchange part 7b. 第2熱交換部7bの除霜運転時第2段階(S304A,S305A)における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the 2nd stage (S304A, S305A) at the time of the defrosting operation of the 2nd heat exchange part 7b. 実施の形態3において、第1熱交換部7aを第2熱交換部7bよりも優先させて除霜を行なう処理の例を説明するためのフローチャートである。13 is a flowchart for explaining an example of a process of performing defrosting by prioritizing the first heat exchange section 7a over the second heat exchange section 7b in the third embodiment.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the embodiments. In the drawings, the same or corresponding parts will be denoted by the same reference characters and description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に係る空調装置100の構成を示す概略構成図である。
Embodiment 1.
FIG. 1 is a schematic configuration diagram showing a configuration of an air conditioner 100 according to the first embodiment.
 図1を参照して、空調装置100は、主回路30と、第1バイパス流路B1と、第2バイパス流路B2と、第1流路選択装置20とを備える。 Referring to FIG. 1, the air conditioner 100 includes a main circuit 30, a first bypass flow passage B1, a second bypass flow passage B2, and a first flow passage selecting device 20.
 空調装置100は、さらに、圧縮機1と、四方弁4と、延長配管9aと、第1熱交換器5と、延長配管9bと、第1膨張弁6aと、第2熱交換器7とを備える。通常は、第1熱交換器5は、室内に配置される室内熱交換器であり、第2熱交換器7は、室外に配置される室外熱交換器である。 The air conditioner 100 further includes a compressor 1, a four-way valve 4, an extension pipe 9a, a first heat exchanger 5, an extension pipe 9b, a first expansion valve 6a, and a second heat exchanger 7. Prepare Usually, the first heat exchanger 5 is an indoor heat exchanger arranged indoors, and the second heat exchanger 7 is an outdoor heat exchanger arranged outdoors.
 暖房運転時、冷媒は、主回路30において、圧縮機1、四方弁4、延長配管9a、第1熱交換器5、延長配管9b、第1膨張弁6a、第2熱交換器7、四方弁4の順に循環し、圧縮機1に戻る。 During the heating operation, the refrigerant in the main circuit 30 is the compressor 1, the four-way valve 4, the extension pipe 9a, the first heat exchanger 5, the extension pipe 9b, the first expansion valve 6a, the second heat exchanger 7, the four-way valve. It circulates in the order of 4 and returns to the compressor 1.
 第1バイパス流路B1は、第2熱交換器7の第1膨張弁6a側配管の点P2と圧縮機1の吐出側配管の点P1とを連通させる。 The first bypass flow path B1 connects the point P2 of the first expansion valve 6a side pipe of the second heat exchanger 7 and the discharge side pipe P1 of the compressor 1 to each other.
 第2バイパス流路B2は、圧縮機1の吸入側配管の点P3と圧縮機1の吐出側配管の点P1とを連通させる。 The second bypass flow path B2 connects the point P3 of the suction side pipe of the compressor 1 and the point P1 of the discharge side pipe of the compressor 1.
 第1流路選択装置20は、圧縮機1が吐出する冷媒を第1熱交換器5、第1バイパス流路B1、第2バイパス流路B2のうち少なくとも1つに選択的に通すように構成される。実施の形態1では、第1流路選択装置20は、圧縮機1が吐出する冷媒を第1熱交換器5、第1バイパス流路B1、第2バイパス流路B2のうち1つに選択的に通すように構成される。 The first flow path selection device 20 is configured to selectively pass the refrigerant discharged from the compressor 1 through at least one of the first heat exchanger 5, the first bypass flow path B1, and the second bypass flow path B2. To be done. In the first embodiment, the first flow path selection device 20 selectively selects the refrigerant discharged from the compressor 1 into one of the first heat exchanger 5, the first bypass flow path B1, and the second bypass flow path B2. Configured to pass through.
 空調装置100は、第2膨張弁6bをさらに備える。第2膨張弁6bは、図1では、第2バイパス流路B2と圧縮機1の吸入側配管との間に配置される。なお、第2膨張弁6bは、第2バイパス流路B2の途中に設けても良い。 The air conditioner 100 further includes a second expansion valve 6b. The second expansion valve 6b is arranged between the second bypass passage B2 and the suction side pipe of the compressor 1 in FIG. The second expansion valve 6b may be provided in the middle of the second bypass flow passage B2.
 図1に示す第1流路選択装置20は、圧縮機1の吐出側配管の点P1と第1熱交換器5との間の配管C0に設けられる電磁弁3aと、第1バイパス流路B1および第2バイパス流路B2に共用される主回路30からの分岐管B0に設けられる電磁弁3bと、分岐管B0を第1バイパス流路B1および第2バイパス流路B2のいずれか一方に接続する流路切換弁8とを含む。 The first flow path selecting device 20 shown in FIG. 1 includes a solenoid valve 3a provided in a pipe C0 between a point P1 of the discharge side pipe of the compressor 1 and the first heat exchanger 5, and a first bypass flow passage B1. And an electromagnetic valve 3b provided in a branch pipe B0 from the main circuit 30 shared by the second bypass flow passage B2 and the branch pipe B0 connected to either one of the first bypass flow passage B1 and the second bypass flow passage B2. And a flow path switching valve 8 for switching.
 分岐管B0およびバイパス流路B1によって、圧縮機1の吐出側と電磁弁3aの間の点P1と、第1膨張弁6aと第2熱交換器7の入口側間の点P2とが接続される。また、分岐管B0およびバイパス流路B2によって、四方弁4と第2膨張弁6bとの間の点P3と点P1とが接続される。 The branch pipe B0 and the bypass flow passage B1 connect the point P1 between the discharge side of the compressor 1 and the solenoid valve 3a and the point P2 between the first expansion valve 6a and the inlet side of the second heat exchanger 7. It Further, the branch pipe B0 and the bypass flow passage B2 connect the point P3 and the point P1 between the four-way valve 4 and the second expansion valve 6b.
 また、第1熱交換器5および第2熱交換器7の各々の空気の出口側または入口側には、図示しないが、空気を送風するためのファンが設けられる。なお、各ファンは、ラインフローファン、プロペラファン、ターボファン、シロッコファン等を用いることができる。また、1つの熱交換器に対し複数個のファン設けてもよい。また、図1に示す構成は冷暖房運転が可能な最小構成要素であり、気液分離器、レシーバー、アキュームレータ等の機器を主回路30に追加してもよい。 A fan (not shown) for blowing air is provided on the air outlet side or the air inlet side of each of the first heat exchanger 5 and the second heat exchanger 7. As each fan, a line flow fan, a propeller fan, a turbo fan, a sirocco fan, or the like can be used. Also, a plurality of fans may be provided for one heat exchanger. Further, the configuration shown in FIG. 1 is the minimum component capable of cooling and heating operation, and devices such as a gas-liquid separator, a receiver and an accumulator may be added to the main circuit 30.
 空調装置100は、制御装置50と、温度センサ2a,2bとをさらに含む。温度センサ2aは、圧縮機1が吐出する冷媒の温度を検出する。温度センサ2bは、暖房運転時に第2熱交換器7の冷媒出口となる点P2d側に近い位置における第2熱交換器7の表面温度を検出する。制御装置50は、温度センサ2a,2bの検出温度およびユーザからの指令に基づいて、圧縮機1、四方弁4、第1膨張弁6a、流路選択装置20、第2膨張弁6bおよび図示しないファンを制御する。 The air conditioner 100 further includes a control device 50 and temperature sensors 2a and 2b. The temperature sensor 2a detects the temperature of the refrigerant discharged from the compressor 1. The temperature sensor 2b detects the surface temperature of the second heat exchanger 7 at a position close to the point P2d side which is the refrigerant outlet of the second heat exchanger 7 during the heating operation. The control device 50 is based on the temperature detected by the temperature sensors 2a and 2b and a command from the user, and the compressor 1, the four-way valve 4, the first expansion valve 6a, the flow path selection device 20, the second expansion valve 6b and not shown. Control the fan.
 制御装置50は、プロセッサ51と、メモリ52と、入出力インターフェース53とを含む。メモリ52は、例えば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。 The control device 50 includes a processor 51, a memory 52, and an input / output interface 53. The memory 52 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory. The flash memory stores an operating system, application programs, and various data.
 なお、図1に示した制御装置50は、プロセッサ51がメモリ52に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。なお、アプリケーションプログラムの実行の際には、メモリ52に記憶されている各種のデータが参照される。 The control device 50 shown in FIG. 1 is realized by the processor 51 executing the operating system and application programs stored in the memory 52. When executing the application program, various data stored in the memory 52 is referred to.
 なお、実施の形態1では、空調装置に封入される冷媒の種類は特に限定されない。例えば、HFC(ハイドロフルオロカーボン)冷媒、HFO(ハイドロフルオロオレフィン)冷媒、HC(ハイドロカーボン)冷媒、あるいは非共沸混合冷媒などを封入しても良い。 In addition, in the first embodiment, the type of the refrigerant enclosed in the air conditioner is not particularly limited. For example, an HFC (hydrofluorocarbon) refrigerant, an HFO (hydrofluoroolefin) refrigerant, an HC (hydrocarbon) refrigerant, or a non-azeotropic mixed refrigerant may be enclosed.
 図1に示す構成の空調装置100は、暖房運転中に、室外に配置された第2熱交換器7に着霜することがある。霜を溶かすために、除霜運転が実行される。暖房運転と除霜運転では、第1流路選択装置20によって冷媒の流れが変更される。 The air conditioner 100 configured as shown in FIG. 1 may frost on the second heat exchanger 7 arranged outdoors during the heating operation. A defrosting operation is executed to melt the frost. In the heating operation and the defrosting operation, the flow of the refrigerant is changed by the first flow path selection device 20.
 暖房運転時において、第1流路選択装置20は、少なくとも第1熱交換器5を選択する。これにより、圧縮機1から吐出された高温高圧の冷媒は、第1熱交換器5で放熱され凝縮する。 During the heating operation, the first flow path selection device 20 selects at least the first heat exchanger 5. As a result, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is radiated by the first heat exchanger 5 and condensed.
 除霜運転時において、第1流路選択装置20は、少なくとも第2バイパス流路B2を選択した後に、少なくとも第1バイパス流路B1を選択する。これにより、第2バイパス流路B2を通過して温度が上昇した冷媒が、その後、第1バイパス流路B1から第2熱交換器7に流れ込み、除霜が実行される。 During the defrosting operation, the first flow path selection device 20 selects at least the first bypass flow path B1 after selecting at least the second bypass flow path B2. As a result, the refrigerant whose temperature has risen through the second bypass flow passage B2 then flows into the second heat exchanger 7 from the first bypass flow passage B1 and defrosting is performed.
 次に、上記構成の実施の形態1に係る空調装置100の動作について説明する。図2は、実施の形態1における除霜運転時の各要素の動作を説明するためのフローチャートである。図3は、図2のフローチャートの各処理における要素の状態を示す図である。 Next, the operation of the air conditioner 100 according to the first embodiment having the above configuration will be described. FIG. 2 is a flowchart for explaining the operation of each element during the defrosting operation in the first embodiment. FIG. 3 is a diagram showing states of elements in each processing of the flowchart of FIG.
 暖房運転が開始されると、ステップS100において制御装置50は、電磁弁3aが開状態、電磁弁3bが閉状態となり、流路切換弁8が第2バイパス流路B2を選択するように、これらの弁を制御する。 When the heating operation is started, the control device 50 causes the solenoid valve 3a to be opened and the solenoid valve 3b to be closed in step S100 so that the passage switching valve 8 selects the second bypass passage B2. Control the valve.
 図4は、実施の形態1の暖房時(S100,S101,S106)における冷媒の流れを示す図である。図4に示されるように、冷媒は、圧縮機1から吐出され、四方弁4、第1熱交換器5、第1膨張弁6a、第2熱交換器7、四方弁4、第2膨張弁6bの順に循環し、圧縮機1に戻る。 FIG. 4 is a diagram showing a refrigerant flow during heating (S100, S101, S106) according to the first embodiment. As shown in FIG. 4, the refrigerant is discharged from the compressor 1, and the four-way valve 4, the first heat exchanger 5, the first expansion valve 6a, the second heat exchanger 7, the four-way valve 4, the second expansion valve It circulates in the order of 6b and returns to the compressor 1.
 再び図2、図3を参照して、ステップS101において、制御装置50は、第2熱交換器7が着霜しているか否かを判定するための情報を取得して、第2熱交換器7が着霜しているか否かを判定する。具体的には、制御装置50は、温度センサ2bの検出結果を取得し、この検出結果に基づいて第2熱交換器7の表面温度が予め定められた第1のしきい値(例えば、-3℃)以下であるか否かを判定する。制御装置50は、第2熱交換器7の表面温度が第1のしきい値以下となっている場合に第2熱交換器7が着霜していると判定する。 Referring again to FIGS. 2 and 3, in step S101, the control device 50 acquires information for determining whether or not the second heat exchanger 7 is frosted, and then the second heat exchanger. It is determined whether or not No. 7 is frosted. Specifically, the control device 50 obtains the detection result of the temperature sensor 2b, and based on the detection result, the surface temperature of the second heat exchanger 7 is a predetermined first threshold value (for example, − 3 ° C.) or less is determined. The controller 50 determines that the second heat exchanger 7 is frosted when the surface temperature of the second heat exchanger 7 is equal to or lower than the first threshold value.
 ステップS101において、着霜していないと判定された場合(S101でNO)、処理はメインルーチンに一旦戻され、再びS100,S101の処理が繰返される。ステップS101において、着霜していると判定された場合(S101でYES)、ステップS102に処理が進められる。 If it is determined in step S101 that no frost has formed (NO in S101), the process is temporarily returned to the main routine, and the processes of S100 and S101 are repeated again. When it is determined in step S101 that frost has formed (YES in S101), the process proceeds to step S102.
 ステップS102では、制御装置50は、電磁弁3aを閉状態、電磁弁3bを開状態とする。流路切換弁8の選択は、第2バイパス流路B2のまま維持される。 In step S102, the control device 50 closes the solenoid valve 3a and opens the solenoid valve 3b. The selection of the flow path switching valve 8 is maintained as the second bypass flow path B2.
 図5は、実施の形態1の除霜時第1段階(S102,S103)における冷媒の流れを示す図である。図5に示すように、ステップS102では、圧縮機1から吐出された冷媒は、第2バイパス流路B2を通り、第2膨張弁6bで減圧され再び圧縮機1に吸入される。電磁弁3aが閉状態となっているため、第1熱交換器5および第2熱交換器7に滞留している冷媒の一部は、破線矢印で示す経路で吸い出され、実線矢印で示されるループで昇温される。 FIG. 5 is a diagram showing the flow of the refrigerant in the first defrosting stage (S102, S103) according to the first embodiment. As shown in FIG. 5, in step S102, the refrigerant discharged from the compressor 1 passes through the second bypass passage B2, is decompressed by the second expansion valve 6b, and is again sucked into the compressor 1. Since the solenoid valve 3a is in the closed state, a part of the refrigerant staying in the first heat exchanger 5 and the second heat exchanger 7 is sucked out through the path indicated by the broken line arrow and is indicated by the solid line arrow. The temperature is raised in a loop.
 なお、ステップS102において制御装置50は膨張弁6aを全開とする。これは除霜運転切り換え時に、第2バイパス流路B2を含む実線矢印で示されるループに、主回路に残る冷媒を速やかに流すためである。また、制御装置50は、第2膨張弁6bの開度を除霜運転に入る前の暖房運転時における第1膨張弁6aと同一の開度に設定する。これは、第2膨張弁6bの開度が大きすぎる場合に、第2膨張弁6bの前後で圧力差が小さくなり、冷媒の吐出圧力および吐出温度が上昇しない状態を防ぐためである。また、第2膨張弁6bの開度が小さすぎる場合に、圧縮機1の吸入側において流入する冷媒量が過剰に少なくなることを防ぐためである。 The controller 50 fully opens the expansion valve 6a in step S102. This is because when the defrosting operation is switched, the refrigerant remaining in the main circuit is swiftly passed through the loop indicated by the solid arrow including the second bypass flow passage B2. Further, the control device 50 sets the opening degree of the second expansion valve 6b to the same opening degree as that of the first expansion valve 6a during the heating operation before starting the defrosting operation. This is to prevent a state where the pressure difference before and after the second expansion valve 6b becomes small and the discharge pressure and discharge temperature of the refrigerant do not rise when the opening degree of the second expansion valve 6b is too large. Moreover, when the opening degree of the second expansion valve 6b is too small, the amount of the refrigerant flowing into the suction side of the compressor 1 is prevented from becoming excessively small.
 再び図2、図3を参照して、制御装置50は、ステップS103において、冷媒の吐出温度が目標値に到達しているか否かを判定するための情報を取得して、冷媒の吐出温度が目標値に到達しているか否かを判定する。具体的には、制御装置50は、温度センサ2aの検出結果を取得し、この検出結果に基づいて圧縮機1より吐出される冷媒の温度が予め定めた第2しきい値T2(例えば、100℃)に到達しているかを判断する。 Referring again to FIGS. 2 and 3, in step S103, control device 50 obtains information for determining whether the discharge temperature of the refrigerant has reached the target value, and the discharge temperature of the refrigerant is It is determined whether or not the target value has been reached. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is set to a second threshold value T2 (for example, 100). ℃) has been reached.
 なお、ステップS102,S103の処理を繰返している間は、吸入される冷媒の密度が時間とともに低下していく可能性がある。その場合、圧縮機1に吸入される冷媒の質量流量が低下するため、冷媒の吐出温度が時間とともに上昇しにくくなる可能性がある。したがって、ステップS103において、一定の時間間隔(例えば、5秒間)における冷媒の吐出温度上昇が予め定めた第3のしきい値(例えば、10℃)に満たない場合、圧縮機1の運転周波数を高める制御をしても良い。あるいは、ステップS102開始時点からある一定時間(例えば、60秒)経過しても圧縮機1から吐出される冷媒の温度が予め定めた第2しきい値(例えば、100℃)に満たない場合、ステップS104へ処理を進めても良い。 Note that the density of the sucked refrigerant may decrease with time while the processes of steps S102 and S103 are repeated. In that case, since the mass flow rate of the refrigerant sucked into the compressor 1 decreases, the discharge temperature of the refrigerant may not easily rise with time. Therefore, in step S103, when the refrigerant discharge temperature rise at a constant time interval (for example, 5 seconds) is less than a predetermined third threshold value (for example, 10 ° C.), the operating frequency of the compressor 1 is set to It may be controlled to increase. Alternatively, when the temperature of the refrigerant discharged from the compressor 1 does not reach the predetermined second threshold value (for example, 100 ° C.) even after a certain fixed time (for example, 60 seconds) has elapsed from the start of step S102, The process may proceed to step S104.
 次に、ステップS104において、制御装置50は、流路切換弁8の選択を第2バイパス流路B2から第1バイパス流路B1へ切り換える。 Next, in step S104, the control device 50 switches the selection of the passage switching valve 8 from the second bypass passage B2 to the first bypass passage B1.
 図6は、実施の形態1の除霜時第2段階(S104,S105)における冷媒の流れを示す図である。図6の矢印に示すように、ステップS104では、圧縮機1から吐出された高温高圧の冷媒は第1バイパス流路B1を流れて第2熱交換器7に導入される。このようにして第2熱交換器7の除霜が行なわれる。また第2熱交換器7より流出した冷媒は第2膨張弁6bで減圧され、再び圧縮機1に吸入される。 FIG. 6 is a diagram showing the flow of the refrigerant in the defrosting second stage (S104, S105) according to the first embodiment. As shown by the arrow in FIG. 6, in step S104, the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the first bypass passage B1 and is introduced into the second heat exchanger 7. In this way, the second heat exchanger 7 is defrosted. Further, the refrigerant flowing out from the second heat exchanger 7 is decompressed by the second expansion valve 6b and is again sucked into the compressor 1.
 なお、ステップS104における圧縮機1の運転周波数は、通常の暖房運転より高い周波数とすることが望ましい。これは、冷媒を冷房方向に逆循環させる一般的な除霜運転と異なり、過熱状態のガス領域での除霜運転となるため、冷媒の流量が小さくなり除霜に使われる熱量が小さくなることを防ぐためである。 Note that the operating frequency of the compressor 1 in step S104 is preferably higher than that of normal heating operation. This is different from the general defrosting operation in which the refrigerant is circulated backward in the cooling direction, and since it is the defrosting operation in the overheated gas region, the flow rate of the refrigerant is small and the amount of heat used for defrosting is small. This is to prevent
 再び図2に戻って、制御装置50は、ステップS105において、除霜を終了するか否かを判定する。具体的には、制御装置50は、温度センサ2bから出力される検出信号に基づいて第2熱交換器7の表面温度が予め定めた第3のしきい値(例えば、0℃)以上であるか否かを判定する。制御装置50は、第2熱交換器7の表面温度が第3のしきい値より低い場合には(S105でNO)、第2熱交換器7の除霜を継続すると判定し、ステップS104に処理を戻す。一方、制御装置50は、第2熱交換器7の表面温度が第3のしきい値以上となっている場合には(S105でYES)、第2熱交換器7の除霜を終了すると判定し、ステップS106に処理を進める。 Returning to FIG. 2 again, the control device 50 determines in step S105 whether or not to finish the defrosting. Specifically, the controller 50 has a surface temperature of the second heat exchanger 7 that is equal to or higher than a predetermined third threshold value (for example, 0 ° C.) based on the detection signal output from the temperature sensor 2b. Or not. When the surface temperature of the second heat exchanger 7 is lower than the third threshold value (NO in S105), the control device 50 determines to continue the defrosting of the second heat exchanger 7, and proceeds to step S104. Return processing. On the other hand, when the surface temperature of the second heat exchanger 7 is equal to or higher than the third threshold value (YES in S105), the control device 50 determines to end the defrosting of the second heat exchanger 7. Then, the process proceeds to step S106.
 ステップS106では、制御装置50は、電磁弁3aを開状態、電磁弁3bを閉状態に設定する。この時、冷媒は、図4に示すように流れ、これにより、定常暖房運転が行なわれる。 In step S106, the control device 50 sets the solenoid valve 3a to the open state and the solenoid valve 3b to the closed state. At this time, the refrigerant flows as shown in FIG. 4, whereby the steady heating operation is performed.
 以上説明したように、除霜運転時において、第1流路選択装置20は、第2バイパス流路B2を選択するともに第1バイパス流路B1および第1熱交換器5を非選択とし(図5、S102,S103)、次いで、第1バイパス流路B1を選択するともに第2バイパス流路B2および第1熱交換器5を非選択とする(図6、S104,S105)。 As described above, during the defrosting operation, the first flow path selecting device 20 selects the second bypass flow path B2 and deselects the first bypass flow path B1 and the first heat exchanger 5 (see FIG. 5, S102, S103), and then the first bypass flow passage B1 is selected and the second bypass flow passage B2 and the first heat exchanger 5 are deselected (FIG. 6, S104, S105).
 次に、実施の形態1に空調装置100によって得られる効果について説明する。
 制御装置50は、温度センサ2bの検出結果が予め定めた第1のしきい値以下となり第2熱交換器7が着霜したと判断された際に、電磁弁3a、電磁弁3b、流路切換弁8を操作し、第2バイパス流路B2へ冷媒の全量を流す。制御装置50は、次いで温度センサ2aの検知結果が予め設定した第2のしきい値以上に到達した際に、流路切換弁8を操作し、第1バイパス流路B1を通じて第2熱交換器7に冷媒の全量を流し、第2熱交換器7の除霜を行なう。
Next, effects obtained by the air conditioner 100 according to the first embodiment will be described.
When it is determined that the detection result of the temperature sensor 2b is less than or equal to the first threshold value set in advance and the second heat exchanger 7 is frosted, the control device 50 controls the solenoid valve 3a, the solenoid valve 3b, and the flow path. The switching valve 8 is operated to flow the entire amount of the refrigerant into the second bypass flow passage B2. Next, when the detection result of the temperature sensor 2a reaches or exceeds the preset second threshold value, the control device 50 operates the flow path switching valve 8 to move the second heat exchanger through the first bypass flow path B1. The second refrigerant heat exchanger 7 is defrosted by flowing the entire amount of the refrigerant into the second heat exchanger 7.
 第2バイパス流路B2へ冷媒を流すことによって、図5の実線矢印に示すループにおいて冷媒の温度が上昇するため、冷媒の吐出温度を通常暖房運転時より高くすることができる。 By causing the refrigerant to flow into the second bypass flow passage B2, the temperature of the refrigerant rises in the loop indicated by the solid arrow in FIG. 5, so the refrigerant discharge temperature can be made higher than that during normal heating operation.
 また、冷媒の吐出温度を高めることで、流路切換弁8を第1バイパス流路B1へ切り換えた際に、冷媒を通常より温度を高めた状態で第2熱交換器7へ流すことができる。 Further, by increasing the discharge temperature of the refrigerant, when the flow path switching valve 8 is switched to the first bypass flow path B1, the refrigerant can be made to flow to the second heat exchanger 7 in a state where the temperature is higher than usual. .
 図7は、冷媒の流れを冷房運転方向に逆転させる一般的な除霜を実行する比較例の冷媒の状態を示すp-h線図である。図8は、実施の形態1における除霜運転時の冷媒の状態を示すp-h線図である。図7に示す、冷媒の流れを冷房運転方向に逆転させる一般的な除霜に比べて、図8に示す本実施の形態の除霜運転では、エンタルピーが高く、より過熱状態のガス領域での除霜運転となる。 FIG. 7 is a ph diagram showing the state of the refrigerant of a comparative example that executes general defrosting in which the flow of the refrigerant is reversed in the cooling operation direction. FIG. 8 is a ph diagram showing the state of the refrigerant during the defrosting operation in the first embodiment. Compared with the general defrosting in which the flow of the refrigerant is reversed in the cooling operation direction shown in FIG. 7, in the defrosting operation of the present embodiment shown in FIG. 8, the enthalpy is high and in the gas region in a more overheated state. It will be a defrosting operation.
 図9は、第2熱交換器7における比較例の除霜運転と実施の形態1の除霜運転での冷媒の温度分布を重ねて示した図である。図9のTa´-Tb´に示される実施の形態1の除霜運転では、図9のTa-Tbに示される比較例の除霜運転よりも、冷媒と第2熱交換器7の温度差が大きくなり、単位時間あたりの熱交換量が増大するため、短時間で除霜を行なうことができる。 FIG. 9 is a diagram in which the temperature distributions of the refrigerant in the defrosting operation of the comparative example and the defrosting operation of the first embodiment in the second heat exchanger 7 are overlapped and shown. In the defrosting operation of the first embodiment shown in Ta′-Tb ′ of FIG. 9, the temperature difference between the refrigerant and the second heat exchanger 7 is higher than that in the defrosting operation of the comparative example shown in Ta-Tb of FIG. Is increased and the amount of heat exchange per unit time is increased, so that defrosting can be performed in a short time.
 また、上記の冷媒の吐出温度を高め、短時間で除霜を行なうことができるという効果は、HFC冷媒、HFO冷媒、HC冷媒、非共沸混合冷媒等、空調装置に封入される冷媒種を問わない。このため、GWP(Global Warming Potential)の低い冷媒(例えばHC冷媒の一つであるR290(GWP3))を用いることによって、冷凍サイクル内のGWP総量値を削減することができる。 Further, the effect of increasing the discharge temperature of the above-mentioned refrigerant and capable of performing defrosting in a short time is that the refrigerant species to be enclosed in the air conditioner such as HFC refrigerant, HFO refrigerant, HC refrigerant, non-azeotropic mixed refrigerant, etc. It doesn't matter. Therefore, by using a refrigerant with a low GWP (Global Warming Potential) (for example, R290 (GWP3) which is one of the HC refrigerants), it is possible to reduce the total GWP value in the refrigeration cycle.
 また、非共沸混合冷媒が空調装置に封入されている場合、室外熱交換器の暖房時冷媒入口側が着霜しやすくなるが、本実施の形態では、第1バイパス流路B1を通じて第2熱交換器7の暖房時入口側に高圧・高温の冷媒ガスを流すことができ、第2熱交換器7の暖房時入口側で冷媒と第2熱交換器7の温度差が大きくなり単位時間あたりの熱交換量が増大する。このため、短時間で除霜を行なうことができる。 Further, when the non-azeotropic mixed refrigerant is enclosed in the air conditioner, the refrigerant inlet side of the outdoor heat exchanger during heating tends to frost, but in the present embodiment, the second heat is passed through the first bypass passage B1. A high-pressure / high-temperature refrigerant gas can flow to the inlet side of the heat exchanger 7 during heating, and the temperature difference between the refrigerant and the second heat exchanger 7 increases on the inlet side of the second heat exchanger 7 during heating, resulting in a unit time The amount of heat exchange of is increased. Therefore, defrosting can be performed in a short time.
 また、冷媒の流れを冷房運転方向に逆転させる一般的な除霜に比べて、より過熱状態のガス領域での除霜を行なうことで、吸入SHが大きくなり圧縮機1への液バックが起こりにくくなるため、圧縮機1の信頼性を向上させることができる(図7、図8)。 Further, compared with general defrosting in which the flow of the refrigerant is reversed in the cooling operation direction, defrosting in a gas region in a more overheated state increases suction SH and causes liquid back to the compressor 1. Since it becomes difficult, the reliability of the compressor 1 can be improved (FIGS. 7 and 8).
 また、冷媒の流れを冷房運転方向に逆転させる一般的な除霜と比較して、除霜運転時に延長配管9a、延長配管9b、および室内の第1熱交換器5を冷媒が流通しないため、放熱ロスを小さくすることができる。 Further, compared with general defrosting in which the flow of the refrigerant is reversed in the cooling operation direction, since the refrigerant does not flow through the extension pipe 9a, the extension pipe 9b, and the indoor first heat exchanger 5 during the defrosting operation, The heat radiation loss can be reduced.
 また、室内の第1熱交換器5に冷媒を流通させずに除霜運転が可能なため、除霜運転中の室温低下を軽減することができる。 Further, since the defrosting operation can be performed without circulating the refrigerant through the first heat exchanger 5 in the room, it is possible to reduce a decrease in room temperature during the defrosting operation.
 実施の形態1では、温度センサ2bの検知結果が予め設定した第1しきい値以下となり、室外の第2熱交換器7が着霜したと判断し除霜運転を開始する際、電磁弁3aを閉にして主回路30の冷媒流入を無くし、同時に電磁弁3bを開にして冷媒の全量を第2バイパス流路B2に流し、次いで流路切換弁8を切り換えて第1バイパス流路B1を選択し、冷媒の全量を第2熱交換器7へ流す。このため除霜運転時に四方弁4の切り換えを行なう必要がない。 In the first embodiment, when the detection result of the temperature sensor 2b becomes equal to or lower than the preset first threshold value and the second outdoor heat exchanger 7 is determined to be frosted and the defrosting operation is started, the solenoid valve 3a is operated. Is closed to prevent the refrigerant from flowing into the main circuit 30, and at the same time, the solenoid valve 3b is opened to allow the entire amount of the refrigerant to flow into the second bypass passage B2, and then the passage switching valve 8 is switched to open the first bypass passage B1. It is selected and the entire amount of the refrigerant is flown to the second heat exchanger 7. Therefore, it is not necessary to switch the four-way valve 4 during the defrosting operation.
 図10は、比較例と実施の形態1の各々における着霜判断から除霜運転を開始するまでの時間の違いを示す図である。本実施の形態では、四方弁4の切り換えに必要な圧力状態を作り出すために時刻t1~t2の間圧縮機1を停止させる必要がなくなる。したがって、図10に示すように、比較例と比べて除霜開始までの時間をΔT1短くすることができる。 FIG. 10 is a diagram showing a difference in time from the frosting determination to the start of the defrosting operation in each of the comparative example and the first embodiment. In the present embodiment, it is not necessary to stop the compressor 1 between times t1 and t2 in order to create the pressure state necessary for switching the four-way valve 4. Therefore, as shown in FIG. 10, the time until the start of defrosting can be shortened by ΔT1 as compared with the comparative example.
 また、温度センサ2aの検知結果が予め設定した第2しきい値以上となり室外の第2熱交換器7の除霜が終了し暖房運転へ復帰する際、電磁弁3bを閉、電磁弁3aを開にし、第1バイパス流路B1から主回路30へ冷媒の流れを変更する。このため、暖房運転復帰時に四方弁4の切り換えを行なう必要がない。 When the detection result of the temperature sensor 2a becomes equal to or higher than the preset second threshold value and the defrosting of the outdoor second heat exchanger 7 is completed and the heating operation is restored, the solenoid valve 3b is closed and the solenoid valve 3a is turned on. It is opened to change the flow of the refrigerant from the first bypass flow passage B1 to the main circuit 30. Therefore, it is not necessary to switch the four-way valve 4 when returning to the heating operation.
 図11は、比較例と実施の形態1の各々における除霜終了から暖房復帰までの時間の違いを示す図である。本実施の形態では、四方弁4の切り換えに必要な圧力状態を作り出すために時刻t11~t12の間圧縮機1を停止させる必要がなくなる。したがって、図11に示すように、比較例と比べて暖房運転復帰までの時間をΔT2短くすることができる。 FIG. 11 is a diagram showing a difference in time from the completion of defrosting to the return to heating in each of the comparative example and the first embodiment. In the present embodiment, it is not necessary to stop the compressor 1 between times t11 and t12 in order to create the pressure state necessary for switching the four-way valve 4. Therefore, as shown in FIG. 11, the time required to return to the heating operation can be shortened by ΔT2 as compared with the comparative example.
 実施の形態2.
 図12は、実施の形態2に係る空調装置200の構成を示す概略構成図である。
Embodiment 2.
FIG. 12 is a schematic configuration diagram showing the configuration of the air conditioner 200 according to the second embodiment.
 図2を参照して、空調装置200は、主回路30と、第1バイパス流路B1と、第2バイパス流路B2と、第1流路選択装置20Aとを備える。 Referring to FIG. 2, the air conditioner 200 includes a main circuit 30, a first bypass flow passage B1, a second bypass flow passage B2, and a first flow passage selection device 20A.
 空調装置200は、さらに、圧縮機1と、四方弁4と、延長配管9aと、第1熱交換器5と、延長配管9bと、第1膨張弁6aと、第2熱交換器7とを備える。通常は、第1熱交換器5は、室内に配置される室内熱交換器であり、第2熱交換器7は、室外に配置される室外熱交換器である。 The air conditioner 200 further includes a compressor 1, a four-way valve 4, an extension pipe 9a, a first heat exchanger 5, an extension pipe 9b, a first expansion valve 6a, and a second heat exchanger 7. Prepare Usually, the first heat exchanger 5 is an indoor heat exchanger arranged indoors, and the second heat exchanger 7 is an outdoor heat exchanger arranged outdoors.
 暖房運転時、冷媒は、主回路30において、圧縮機1、四方弁4、延長配管9a、第1熱交換器5、延長配管9b、第1膨張弁6a、第2熱交換器7、四方弁4の順に循環し、圧縮機1に戻る。 During the heating operation, the refrigerant in the main circuit 30 is the compressor 1, the four-way valve 4, the extension pipe 9a, the first heat exchanger 5, the extension pipe 9b, the first expansion valve 6a, the second heat exchanger 7, the four-way valve. It circulates in the order of 4 and returns to the compressor 1.
 第1バイパス流路B1は、第2熱交換器7の第1膨張弁6a側配管(点P2)と圧縮機1の吐出側配管(点P1)とを連通させする。 The first bypass flow passage B1 connects the first expansion valve 6a side pipe (point P2) of the second heat exchanger 7 and the discharge side pipe (point P1) of the compressor 1 to each other.
 第2バイパス流路B2は、圧縮機1の吸入側配管(点P4)と圧縮機1の吐出側配管(点P1)とを連通させる。 The second bypass flow passage B2 connects the suction side pipe (point P4) of the compressor 1 and the discharge side pipe (point P1) of the compressor 1.
 第1流路選択装置20Aは、圧縮機1が吐出する冷媒を第1熱交換器5、第1バイパス流路B1、第2バイパス流路B2のうち少なくとも1つに選択的に通すように構成される。実施の形態2では、第1流路選択装置20Aは、圧縮機1が吐出する冷媒を配管C0または分岐管B0に選択的に通すように構成される。第1流路選択装置20Aは、また、第1バイパス流路B1、第2バイパス流路B2に任意の比率で冷媒を分配することが可能に構成される。 The first flow path selection device 20A is configured to selectively pass the refrigerant discharged from the compressor 1 through at least one of the first heat exchanger 5, the first bypass flow path B1, and the second bypass flow path B2. To be done. In the second embodiment, the first flow path selection device 20A is configured to selectively pass the refrigerant discharged from the compressor 1 through the pipe C0 or the branch pipe B0. The first flow path selection device 20A is also configured to be able to distribute the refrigerant to the first bypass flow path B1 and the second bypass flow path B2 at an arbitrary ratio.
 実施の形態2では、除霜運転時において、第1流路選択装置20Aは、第2バイパス流路B2を選択するともに第1バイパス流路B1および第1熱交換器5を非選択とし(図16)、次いで、第1バイパス流路B1および第2バイパス流路B2を選択するともに第1熱交換器5を非選択とする(図18)。 In the second embodiment, during the defrosting operation, the first flow passage selection device 20A selects the second bypass flow passage B2 and deselects the first bypass flow passage B1 and the first heat exchanger 5 (Fig. 16) Next, the first bypass flow passage B1 and the second bypass flow passage B2 are selected and the first heat exchanger 5 is deselected (FIG. 18).
 図12に示す実施の形態2に係る空調装置200は、第2膨張弁6cと、第3バイパス流路B3と、第3膨張弁6dと、第2流路選択装置とをさらに備える。 The air conditioner 200 according to the second embodiment shown in FIG. 12 further includes a second expansion valve 6c, a third bypass flow path B3, a third expansion valve 6d, and a second flow path selection device.
 第2膨張弁6cは、第2バイパス流路B2の途中に配置される。暖房運転において、第3バイパス流路B3は、第2熱交換器7を通過した冷媒が流れる配管C1から分岐し圧縮機1の吸入側に至る流路である。第3膨張弁6dは、第3バイパス流路B3の途中に配置される。第2流路選択装置としては、配管C2または第3バイパス流路B3を選択的に接続する流路切換弁8bを用いることができる。配管C2は、第3バイパス流路B3を経由せずに配管C1を圧縮機1の吸入側に連通させる配管である。 The second expansion valve 6c is arranged in the middle of the second bypass flow passage B2. In the heating operation, the third bypass flow passage B3 is a flow passage that branches from the pipe C1 through which the refrigerant that has passed through the second heat exchanger 7 flows to reach the suction side of the compressor 1. The third expansion valve 6d is arranged in the middle of the third bypass flow passage B3. As the second channel selection device, the channel switching valve 8b that selectively connects the pipe C2 or the third bypass channel B3 can be used. The pipe C2 is a pipe that connects the pipe C1 to the suction side of the compressor 1 without passing through the third bypass flow passage B3.
 実施の形態2の空調装置200は、基本構成は実施の形態1の空調装置100と同じであるが、以下の第1~第4の点が異なる。まず第1に、主回路30に流路切換弁8bを有し、膨張弁6bが除去されている。第2に、第1バイパス流路B1,第2バイパス流路B2の選択を行なう流路切換弁8が流量調整弁10に置き換えられている。第3に、第2バイパス流路B2に第2膨張弁6cが設けられている。第4に、第3膨張弁6dを有する第3バイパス流路B3が設けられている。流量調整弁10は、第1バイパス流路B1,第2バイパス流路B2分配する冷媒の量を自在に調整可能に構成される。流量調整弁10はどのような構成であっても良いが、例えば、冷媒が流れる2方向の分岐路の各々に電子膨張弁を設けたものであっても良い。 The air conditioner 200 of the second embodiment has the same basic configuration as the air conditioner 100 of the first embodiment, but differs in the following first to fourth points. First of all, the main circuit 30 has the flow path switching valve 8b, and the expansion valve 6b is removed. Secondly, the flow path switching valve 8 for selecting the first bypass flow path B1 and the second bypass flow path B2 is replaced by the flow rate adjusting valve 10. Thirdly, the second expansion valve 6c is provided in the second bypass flow passage B2. Fourthly, the third bypass flow passage B3 having the third expansion valve 6d is provided. The flow rate adjusting valve 10 is configured to be able to freely adjust the amount of the refrigerant distributed in the first bypass flow passage B1 and the second bypass flow passage B2. The flow rate adjusting valve 10 may have any configuration, but for example, an electronic expansion valve may be provided in each of the two-way branch passages through which the refrigerant flows.
 なお、図12において実施の形態1と同一の構成要素については、同一の符号を付している。また、実施の形態1と同様に、第1熱交換器5および第2熱交換器7の各々の空気の出口側または入口側には、それぞれ空気を送風するためのファンが設けられている(図示せず)。なお、ファンとしては、ラインフローファン、プロペラファン、ターボファン、シロッコファン等を用いることができる。また、1つの熱交換器に対し複数個のファンを用いた構成にしてもよい。また、図12に示す構成は冷暖房運転が可能な最小構成要素であり、気液分離器、レシーバー、アキュームレータ等の機器を主回路30に追加してもよい。 Note that, in FIG. 12, the same components as those in the first embodiment are designated by the same reference numerals. Further, similar to the first embodiment, a fan for blowing air is provided on the air outlet side or the air inlet side of each of the first heat exchanger 5 and the second heat exchanger 7 ( (Not shown). As the fan, a line flow fan, a propeller fan, a turbo fan, a sirocco fan, or the like can be used. Further, a configuration may be used in which a plurality of fans are used for one heat exchanger. Further, the configuration shown in FIG. 12 is the minimum component capable of cooling and heating operation, and devices such as a gas-liquid separator, a receiver and an accumulator may be added to the main circuit 30.
 空調装置200は、制御装置50と、温度センサ2a,2bとをさらに含む。温度センサ2aは、圧縮機1の吐出する冷媒の温度を検出する。温度センサ2bは、暖房運転時に第2熱交換器7の冷媒出口となる点P2d側に近い位置における第2熱交換器7の表面温度を検出する。制御装置50は、温度センサ2a,2bの検出温度およびユーザからの指令に基づいて、圧縮機1、四方弁4、第1膨張弁6a、流路選択装置20、第2膨張弁6bおよび図示しないファンを制御する。制御装置50の基本構成は、実施の形態1と同様であるので説明は繰返さない。 The air conditioner 200 further includes a control device 50 and temperature sensors 2a and 2b. The temperature sensor 2a detects the temperature of the refrigerant discharged from the compressor 1. The temperature sensor 2b detects the surface temperature of the second heat exchanger 7 at a position close to the point P2d side which is the refrigerant outlet of the second heat exchanger 7 during the heating operation. The control device 50 is based on the temperature detected by the temperature sensors 2a and 2b and a command from the user, and the compressor 1, the four-way valve 4, the first expansion valve 6a, the flow path selection device 20, the second expansion valve 6b and not shown. Control the fan. Since the basic configuration of control device 50 is similar to that of the first embodiment, description thereof will not be repeated.
 なお、実施の形態2では、空調装置に封入される冷媒の種類は特に限定されない。例えば、HFC冷媒、HFO冷媒、HC冷媒、あるいは非共沸混合冷媒などを封入しても良い。 In addition, in the second embodiment, the type of the refrigerant enclosed in the air conditioner is not particularly limited. For example, HFC refrigerant, HFO refrigerant, HC refrigerant, or non-azeotropic mixed refrigerant may be enclosed.
 次に、上記構成の実施の形態2に係る空調装置200の動作について説明する。図13は、実施の形態2における除霜運転時の各要素の動作を説明するためのフローチャートである。図14は、図13のフローチャートの各処理における要素の状態を示す図である。 Next, the operation of the air conditioner 200 according to the second embodiment having the above configuration will be described. FIG. 13 is a flowchart for explaining the operation of each element during the defrosting operation in the second embodiment. FIG. 14 is a diagram showing states of elements in each process of the flowchart of FIG.
 実施の形態2で実行される除霜運転は、着霜判断(S201)、一定吐出温度到達判断(S203)、除霜終了判断(S205)において実施の形態1の着霜判断(S101)、一定吐出温度到達判断(S103)、除霜終了判断(S105)と同じである。ただし、実施の形態2では、弁の操作を伴う処理(S200、S202、S204、S206、S207)および除霜の一定段階進行判断(S205)を行なう点において実施の形態1と異なる。 The defrosting operation executed in the second embodiment includes the frosting determination (S201), the constant discharge temperature reaching determination (S203), and the defrosting end determination (S205) in the first embodiment. It is the same as the discharge temperature arrival determination (S103) and the defrosting end determination (S105). However, the second embodiment differs from the first embodiment in that a process involving valve operation (S200, S202, S204, S206, S207) and a defrosting constant stage progress determination (S205) are performed.
 暖房運転が開始されると、ステップS200において制御装置50は、電磁弁3aが開状態、電磁弁3bが閉状態となり、流路切換弁8bは配管C2を選択するように、これらの弁を制御する。 When the heating operation is started, in step S200, the control device 50 controls the solenoid valve 3a so that the solenoid valve 3a is in the open state and the solenoid valve 3b is in the closed state, and the passage switching valve 8b controls these valves so as to select the pipe C2. To do.
 図15は、実施の形態2の暖房時(S200,S201,S208)における冷媒の流れを示す図である。図15に示されるように、冷媒は、圧縮機1から吐出され、四方弁4、第1熱交換器5、第1膨張弁6a、第2熱交換器7、四方弁4、流路切換弁8bの順に循環し、圧縮機1に戻る。 FIG. 15 is a diagram showing a refrigerant flow during heating (S200, S201, S208) according to the second embodiment. As shown in FIG. 15, the refrigerant is discharged from the compressor 1, and the four-way valve 4, the first heat exchanger 5, the first expansion valve 6a, the second heat exchanger 7, the four-way valve 4, the flow path switching valve. It circulates in the order of 8b and returns to the compressor 1.
 再び図13、図14を参照して、ステップS201では、制御装置50は、第2熱交換器7が着霜しているか否かを判定するための情報を取得して、第2熱交換器7が着霜しているか否かを判定する。具体的には、制御装置50は、温度センサ2bの検出結果を取得し、この検出結果に基づいて第2熱交換器7の表面温度が予め定めた第1のしきい値(例えば、-3℃)以下であるか否かを判定する。第2熱交換器7の表面温度が第1のしきい値以下となっている場合に、制御装置50は第2熱交換器7が着霜していると判定する。 Referring again to FIG. 13 and FIG. 14, in step S201, the control device 50 acquires information for determining whether the second heat exchanger 7 is frosted, and then the second heat exchanger. It is determined whether or not No. 7 is frosted. Specifically, the control device 50 acquires the detection result of the temperature sensor 2b, and based on the detection result, the surface temperature of the second heat exchanger 7 has a predetermined first threshold value (for example, −3). C)) or less. When the surface temperature of the second heat exchanger 7 is equal to or lower than the first threshold value, the control device 50 determines that the second heat exchanger 7 is frosted.
 ステップS201において、着霜していないと判定された場合(S201でNO)、処理はメインルーチンに一旦戻され、再びS200,S201の処理が繰返される。ステップS201において、着霜していると判定された場合(S201でYES)、ステップS202に処理が進められる。 If it is determined in step S201 that frost has not formed (NO in S201), the process is temporarily returned to the main routine, and the processes of S200 and S201 are repeated. When it is determined in step S201 that frost has formed (YES in S201), the process proceeds to step S202.
 ステップS202では、制御装置50は、電磁弁3aを閉状態、電磁弁3bを開状態とし、冷媒の全量が第2バイパス流路B2に流れるように流量調整弁10を操作する。また、制御装置50は、流路切換弁8bを配管C2から第3バイパス流路に選択を切換えるとともに、膨張弁6dを全開とする。 In step S202, the control device 50 closes the solenoid valve 3a and opens the solenoid valve 3b, and operates the flow rate adjusting valve 10 so that the entire amount of the refrigerant flows into the second bypass flow passage B2. Further, the control device 50 switches the selection of the flow path switching valve 8b from the pipe C2 to the third bypass flow path, and fully opens the expansion valve 6d.
 図16は、実施の形態2の除霜時第1段階(S202,S203)における冷媒の流れを示す図である。図16に示すように、圧縮機1から吐出された冷媒は、第2バイパス流路B2を通り、第2膨張弁6cで減圧され再び圧縮機1に吸入される。 FIG. 16 is a diagram showing the flow of the refrigerant in the first stage (S202, S203) during defrosting of the second embodiment. As shown in FIG. 16, the refrigerant discharged from the compressor 1 passes through the second bypass passage B2, is decompressed by the second expansion valve 6c, and is sucked into the compressor 1 again.
 電磁弁3aが閉状態、膨張弁6dが開状態となっているため、第1熱交換器5および第2熱交換器7に滞留している冷媒の一部は、破線矢印で示す経路で吸い出され、実線矢印で示されるループで昇温される。 Since the solenoid valve 3a is closed and the expansion valve 6d is open, a part of the refrigerant staying in the first heat exchanger 5 and the second heat exchanger 7 is sucked through the path indicated by the dashed arrow. Then, the temperature is raised in the loop indicated by the solid arrow.
 なお、ステップS202において第1膨張弁6aおよび膨張弁6dは全開とする。これは除霜運転切換時に、第2バイパス流路B2を含む実線矢印で示されるループに、主回路30に残る冷媒を速やかに流すためである。また、第2膨張弁6cの開度は除霜運転に入る前の暖房運転時における第1膨張弁6aと同一の開度に設定する。これは、第2膨張弁6cの開度が大きすぎる場合に、第2膨張弁6cの前後で圧力差が小さくなり、冷媒の吐出圧力・吐出温度が上昇しない状態を防ぐためである。また、第2膨張弁6cの開度が小さすぎる場合に、圧縮機1の吸入側において流入する冷媒量が過剰に少なくなることを防ぐためである。 Incidentally, in step S202, the first expansion valve 6a and the expansion valve 6d are fully opened. This is because when the defrosting operation is switched, the refrigerant remaining in the main circuit 30 is swiftly flowed through the loop indicated by the solid arrow including the second bypass flow passage B2. Further, the opening degree of the second expansion valve 6c is set to the same opening degree as that of the first expansion valve 6a during the heating operation before starting the defrosting operation. This is to prevent a state where the pressure difference before and after the second expansion valve 6c becomes small and the discharge pressure and discharge temperature of the refrigerant do not rise when the opening degree of the second expansion valve 6c is too large. Moreover, when the opening degree of the second expansion valve 6c is too small, the amount of the refrigerant flowing in on the suction side of the compressor 1 is prevented from becoming excessively small.
 再び図13、図14を参照して、制御装置50は、ステップS203において、冷媒の吐出温度が目標値に到達しているか否かを判定するための情報を取得して、冷媒の吐出温度が目標値に到達しているか否かを判定する。具体的には、制御装置50は、温度センサ2aの検出結果を取得し、この検出結果に基づいて圧縮機1より吐出される冷媒の温度が予め定めた第2しきい値T2(例えば、100℃)に到達しているかを判断する。 Referring again to FIGS. 13 and 14, in step S203, control device 50 obtains information for determining whether or not the discharge temperature of the refrigerant has reached the target value, and the discharge temperature of the refrigerant is It is determined whether or not the target value has been reached. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is set to a second threshold value T2 (for example, 100). ℃) has been reached.
 なお、ステップS202,S203の処理を繰返している間は、吸入される冷媒の密度が時間とともに低下していく可能性がある。その場合、圧縮機1に吸入される冷媒の質量流量が低下するため、冷媒の吐出温度が時間とともに上昇しにくくなる可能性がある。したがって、ステップS203において、一定の時間間隔(例えば、5秒間)における冷媒の吐出温度上昇が予め定めた第3のしきい値(例えば、10℃)に満たない場合、圧縮機1の運転周波数を高める制御をしても良い。あるいは、ステップS202開始時点からある一定時間(例えば、60秒)経過しても圧縮機1から吐出される冷媒の温度が予め定めた第2しきい値(例えば、100℃)に満たない場合、ステップS204へ処理を進めても良い。 Note that, while repeating the processing of steps S202 and S203, the density of the sucked refrigerant may decrease with time. In that case, since the mass flow rate of the refrigerant sucked into the compressor 1 decreases, the discharge temperature of the refrigerant may not easily rise with time. Therefore, in step S203, when the rise in the discharge temperature of the refrigerant in a certain time interval (for example, 5 seconds) does not reach the predetermined third threshold value (for example, 10 ° C.), the operating frequency of the compressor 1 is changed. It may be controlled to increase. Alternatively, when the temperature of the refrigerant discharged from the compressor 1 does not reach a predetermined second threshold value (for example, 100 ° C.) even after a certain fixed time (for example, 60 seconds) has elapsed from the start of step S202, The process may proceed to step S204.
 次に、制御装置50は、ステップS204において、冷媒の全量が第1バイパス流路B1に流れるよう流量調整弁10を操作する。このとき、流路切換弁8bは第3バイパス流路B3を選択した状態のままである。 Next, in step S204, the control device 50 operates the flow rate adjusting valve 10 so that the entire amount of the refrigerant flows into the first bypass flow passage B1. At this time, the flow path switching valve 8b remains in the state where the third bypass flow path B3 is selected.
 図17は、実施の形態2の除霜時第2段階(S204,S205)における冷媒の流れを示す図である。図17に示すように、圧縮機1から吐出された高温高圧の冷媒は、第1バイパス流路B1を流れて第2熱交換器7に導入される。この高温高圧の冷媒によって、第2熱交換器7の除霜が行なわれる。また第2熱交換器7より流出した冷媒は、第3膨張弁6dで減圧され、再び圧縮機1に吸入される。 FIG. 17 is a diagram showing the flow of the refrigerant in the second stage of defrosting (S204, S205) according to the second embodiment. As shown in FIG. 17, the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the first bypass passage B1 and is introduced into the second heat exchanger 7. The high-temperature high-pressure refrigerant defrosts the second heat exchanger 7. Further, the refrigerant flowing out from the second heat exchanger 7 is decompressed by the third expansion valve 6d and is again sucked into the compressor 1.
 次に、制御装置50は、ステップS205において、除霜が一定段階まで進行したかを判定する。具体的には、制御装置50は、温度センサ2bから出力される検出信号に基づいて第2熱交換器7の表面温度が予め定めた第4のしきい値(例えば、-0.5℃)以上であるか否かを判定する。なお、第2熱交換器7の表面温度が第4のしきい値以上となっている場合に、制御装置50は、第2熱交換器7の除霜が一定段階進行したと判定する。 Next, in step S205, the control device 50 determines whether defrosting has progressed to a certain level. Specifically, the control device 50 causes the surface temperature of the second heat exchanger 7 to have a predetermined fourth threshold value (eg, −0.5 ° C.) based on the detection signal output from the temperature sensor 2b. It is determined whether or not the above. In addition, when the surface temperature of the second heat exchanger 7 is equal to or higher than the fourth threshold value, the control device 50 determines that the defrosting of the second heat exchanger 7 has progressed to a certain stage.
 次に、制御装置50は、ステップS206において、冷媒が第1バイパス流路B1と第2バイパス流路B2に分配されるように流量調整弁10を操作する。 Next, in step S206, the control device 50 operates the flow rate adjusting valve 10 so that the refrigerant is distributed to the first bypass passage B1 and the second bypass passage B2.
 図18は、実施の形態2の除霜時第3段階(S206,S207)における冷媒の流れを示す図である。図18に示すように、圧縮機1から吐出された冷媒の一部は、第1バイパス流路B1を流れて第2熱交換器7に導入され、第2熱交換器7の除霜が継続される。また第2熱交換器7から流出した冷媒は、第3膨張弁6dで減圧され、再び圧縮機1に吸入される。また、圧縮機1から吐出された冷媒の一部は、第2バイパス流路B2を通り、第2膨張弁6cで減圧され、再び圧縮機1に吸入される。 FIG. 18 is a diagram showing the flow of the refrigerant in the third defrosting stage (S206, S207) according to the second embodiment. As shown in FIG. 18, a part of the refrigerant discharged from the compressor 1 flows through the first bypass passage B1 and is introduced into the second heat exchanger 7, and the defrosting of the second heat exchanger 7 continues. To be done. Further, the refrigerant flowing out from the second heat exchanger 7 is decompressed by the third expansion valve 6d and is again sucked into the compressor 1. Further, a part of the refrigerant discharged from the compressor 1 passes through the second bypass passage B2, is decompressed by the second expansion valve 6c, and is sucked into the compressor 1 again.
 次に、制御装置50は、ステップS207において、除霜を終了するか否かを判定する。具体的には、制御装置50は、温度センサ2bから出力される検出信号に基づいて第2熱交換器7の表面温度が予め定めた第3しきい値(例えば、0℃)以上であるか否かを判定する。なお、制御装置50は、第2熱交換器7の表面温度が第3しきい値以上となっている場合に第2熱交換器7の除霜を終了すると判定する。 Next, the control device 50 determines in step S207 whether or not to finish the defrosting. Specifically, the control device 50 determines whether the surface temperature of the second heat exchanger 7 is equal to or higher than a predetermined third threshold value (for example, 0 ° C.) based on the detection signal output from the temperature sensor 2b. Determine whether or not. The control device 50 determines to finish the defrosting of the second heat exchanger 7 when the surface temperature of the second heat exchanger 7 is equal to or higher than the third threshold value.
 除霜を終了すると判定された場合(S207でYES)、制御装置50はステップS208において、電磁弁3aを開状態、電磁弁3bを閉状態とするとともに、流路切換弁8bの選択を第3バイパス流路B3から配管C2に切り換える。これにより、図15に示すように冷媒が流れる定常暖房運転が行なわれる。 When it is determined to finish the defrosting (YES in S207), the control device 50 sets the solenoid valve 3a to the open state, the solenoid valve 3b to the closed state, and selects the flow path switching valve 8b in the third step S208. The bypass flow path B3 is switched to the pipe C2. As a result, the steady heating operation in which the refrigerant flows is performed as shown in FIG.
 なお、除霜時間は多少長くなるが、ステップS204、S205の処理を省略しても良い。また、ステップS204の処理とステップS206の処理を入れ替えても良い。 Note that the defrosting time will be somewhat longer, but the processes of steps S204 and S205 may be omitted. Further, the process of step S204 and the process of step S206 may be interchanged.
 次に、実施の形態2に係る空調装置200が奏する効果について説明する。
 図19は、実施の形態2において、除霜終了間際に第2バイパス流路B2に冷媒を分配し始めた時点の冷媒の状態を表すp-h線図である。この時の冷媒分配量に応じて、圧縮機1の吸入温度Tsは上昇を開始する。図20は、実施の形態2において、第2バイパス流路B2に冷媒を分配開始後、ある時間が経過した時点の冷媒の状態を表すp-h線図である。ある時間が経過した後の吸入温度Ts´の上昇に伴い吐出温度Td´も上昇する。これにより吐出温度Td´が高い状態で暖房運転に復帰することが可能となる。
Next, effects of the air conditioner 200 according to the second embodiment will be described.
FIG. 19 is a ph diagram showing the state of the refrigerant at the time when the refrigerant starts to be distributed to the second bypass flow passage B2 just before the end of defrosting in the second embodiment. The suction temperature Ts of the compressor 1 starts to increase according to the refrigerant distribution amount at this time. FIG. 20 is a ph diagram showing the state of the refrigerant at a point in time when a certain time has elapsed after the refrigerant was started to be distributed to the second bypass flow passage B2 in the second embodiment. The discharge temperature Td ′ also rises as the suction temperature Ts ′ rises after a certain time has elapsed. As a result, it becomes possible to return to the heating operation while the discharge temperature Td 'is high.
 図21は、冷房運転によって除霜を実行する比較例の除霜開始から暖房復帰までの冷媒の吐出温度の時間的変化を示す図である。比較例では、時刻t22の除霜終了から時刻t23において一旦圧縮機1を停止させ四方弁を切り換えた後、時刻t24において圧縮機1を運転再開させ、時刻t25において吐出温度が目標に到達する。 FIG. 21 is a diagram showing a temporal change in the discharge temperature of the refrigerant from the start of defrosting to the return of heating in the comparative example in which defrosting is performed by the cooling operation. In the comparative example, the compressor 1 is temporarily stopped and the four-way valve is switched at time t23 from the end of defrosting at time t22, the compressor 1 is restarted at time t24, and the discharge temperature reaches the target at time t25.
 図22は、実施の形態2における除霜開始から暖房復帰までの冷媒の吐出温度の時間的変化を示す図である。実施の形態2では、除霜終了までに第2熱交換器7の除霜が一定段階進行した時刻t32において、第1バイパス流路B1と、第2バイパス流路B2の両方に冷媒を分配して流すことによって、除霜を継続しつつ冷媒の吐出温度を高めることができる。したがって、時刻t33で除霜終了の判定がされた後も冷媒の吐出温度は低下せず、時刻t34において冷媒の温度は目標吐出温度に到達する。 FIG. 22 is a diagram showing a temporal change in the discharge temperature of the refrigerant from the start of defrosting to the return to heating in the second embodiment. In the second embodiment, the refrigerant is distributed to both the first bypass flow passage B1 and the second bypass flow passage B2 at time t32 when the defrosting of the second heat exchanger 7 progresses by a certain stage by the end of the defrosting. It is possible to raise the discharge temperature of the refrigerant while continuing defrosting. Therefore, the discharge temperature of the refrigerant does not decrease even after the defrosting end determination is made at time t33, and the temperature of the refrigerant reaches the target discharge temperature at time t34.
 圧縮機1を停止させる必要がなく、かつ除霜運転終了時冷媒の吐出温度が高い状態となっているため、実施の形態2では、除霜開始から暖房復帰までの時間が従来比でΔT3からΔT4に短縮され、暖房運転復帰時に速暖効果を得ることができる。 Since it is not necessary to stop the compressor 1 and the discharge temperature of the refrigerant at the end of the defrosting operation is high, in the second embodiment, the time from the start of defrosting to the heating return is ΔT3 in comparison with the conventional case. It can be shortened to ΔT4, and a quick heating effect can be obtained when the heating operation is returned.
 実施の形態3.
 図23は、実施の形態3に係る空調装置300の構成を示す概略構成図である。
Embodiment 3.
FIG. 23 is a schematic configuration diagram showing the configuration of the air conditioner 300 according to the third embodiment.
 図23を参照して、空調装置300は、主回路30と、第1バイパス流路B1と、第2バイパス流路B2と、第1流路選択装置20Bとを備える。 Referring to FIG. 23, the air conditioner 300 includes a main circuit 30, a first bypass flow passage B1, a second bypass flow passage B2, and a first flow passage selection device 20B.
 空調装置300は、さらに、圧縮機1と、四方弁4と、延長配管9aと、第1熱交換器5と、延長配管9bと、第1膨張弁6aと、第2熱交換器7とを備える。通常は、第1熱交換器5は、室内に配置される室内熱交換器であり、第2熱交換器7は、室外に配置される室外熱交換器である。 The air conditioner 300 further includes a compressor 1, a four-way valve 4, an extension pipe 9a, a first heat exchanger 5, an extension pipe 9b, a first expansion valve 6a, and a second heat exchanger 7. Prepare Usually, the first heat exchanger 5 is an indoor heat exchanger arranged indoors, and the second heat exchanger 7 is an outdoor heat exchanger arranged outdoors.
 暖房運転時、冷媒は、主回路30において、圧縮機1、四方弁4、延長配管9a、第1熱交換器5、延長配管9b、第1膨張弁6a、第2熱交換器7、四方弁4の順に循環し、圧縮機1に戻る。 During the heating operation, the refrigerant in the main circuit 30 is the compressor 1, the four-way valve 4, the extension pipe 9a, the first heat exchanger 5, the extension pipe 9b, the first expansion valve 6a, the second heat exchanger 7, the four-way valve. It circulates in the order of 4 and returns to the compressor 1.
 第1バイパス流路B1は、第2熱交換器7の第1熱交換部7aおよび第2熱交換部7bのいずれかの第1膨張弁6a側配管を第1流路選択装置20Bおよび第3流路選択装置20Cを介して、圧縮機1の吐出側配管と連通させる。 In the first bypass flow passage B1, the first expansion valve 6a side pipe of one of the first heat exchange unit 7a and the second heat exchange unit 7b of the second heat exchanger 7 is connected to the first flow passage selecting device 20B and the third pipe. It is connected to the discharge side pipe of the compressor 1 via the flow path selection device 20C.
 第2バイパス流路B2は、第1流路選択装置20Bを介して、圧縮機1の吸入側配管と圧縮機1の吐出側配管とを連通させる。 The second bypass flow passage B2 connects the suction side pipe of the compressor 1 and the discharge side pipe of the compressor 1 via the first flow passage selecting device 20B.
 空調装置100は、第2膨張弁6eをさらに備える。第2膨張弁6eは、図23では、第2バイパス流路B2の途中に設けられる。 The air conditioner 100 further includes a second expansion valve 6e. The second expansion valve 6e is provided in the middle of the second bypass flow passage B2 in FIG.
 図23に示す実施の形態3の空調装置300において、第2熱交換器7は、第1熱交換部7aおよび第2熱交換部7bを含む。なお、第1熱交換部7aと、第2熱交換部7bの配置については、高さが小さい2つの室外熱交換器を鉛直方向に配置したものでも良いし、また風向方向に並ぶ列数が小さい2つの室外熱交換器を風上方向に1つ、風下方向に1つ配置したものであっても良い。 In the air conditioner 300 of the third embodiment shown in FIG. 23, the second heat exchanger 7 includes a first heat exchange section 7a and a second heat exchange section 7b. Regarding the arrangement of the first heat exchange section 7a and the second heat exchange section 7b, two outdoor heat exchangers having a small height may be arranged in the vertical direction, or the number of rows arranged in the wind direction may be set. Two small outdoor heat exchangers may be arranged one in the leeward direction and one in the leeward direction.
 空調装置300は、第1バイパス流路B1と第1膨張弁6aとを第1熱交換部7aおよび第2熱交換部7bのいずれかに接続するように構成された第3流路選択装置20Cをさらに備える。 The air conditioner 300 is configured to connect the first bypass flow passage B1 and the first expansion valve 6a to either the first heat exchange portion 7a or the second heat exchange portion 7b, and the third flow passage selection device 20C. Is further provided.
 第2流路選択装置20Cは、電磁弁3c,3d,3e,3fを含む。電磁弁3cは、第1膨張弁6aと第1熱交換部7aとを結ぶ流路を開閉する。電磁弁3dは、第1膨張弁6aと第2熱交換部7bとを結ぶ流路を開閉する。電磁弁3eは、第1バイパス流路B1と第1熱交換部7aとを結ぶ流路を開閉する。電磁弁3fは、第1バイパス流路B1と第2熱交換部7bとを結ぶ流路を開閉する。 The second flow path selection device 20C includes solenoid valves 3c, 3d, 3e, 3f. The solenoid valve 3c opens and closes the flow path connecting the first expansion valve 6a and the first heat exchange section 7a. The solenoid valve 3d opens and closes a flow path that connects the first expansion valve 6a and the second heat exchange unit 7b. The solenoid valve 3e opens and closes the flow path connecting the first bypass flow path B1 and the first heat exchange section 7a. The solenoid valve 3f opens and closes the flow path that connects the first bypass flow path B1 and the second heat exchange unit 7b.
 第1流路選択装置20Bは、圧縮機1が吐出する冷媒を第1熱交換器5、第1バイパス流路B1、第2バイパス流路B2のうち少なくとも1つに選択的に流すように構成される。実施の形態3では、第1流路選択装置20Bは、圧縮機1が吐出する冷媒を第1熱交換器5または分岐管B0のいずれか一方に選択的に流すとともに、分岐管B0を流れる冷媒を第1バイパス流路B1、第2バイパス流路B2に分配して流すように構成される。 The first flow path selection device 20B is configured to selectively flow the refrigerant discharged from the compressor 1 into at least one of the first heat exchanger 5, the first bypass flow path B1, and the second bypass flow path B2. To be done. In the third embodiment, the first flow path selection device 20B selectively causes the refrigerant discharged from the compressor 1 to flow through either the first heat exchanger 5 or the branch pipe B0, and also flows through the branch pipe B0. Is distributed to the first bypass flow passage B1 and the second bypass flow passage B2.
 具体的には、実施の形態3では、第1流路選択装置20Bは、除霜運転時、主回路30と第2バイパス流路B2に冷媒を分配して流し(図27、図31)、次いで主回路30を通じて第1熱交換部7aまたは第2熱交換部7bのいずれか一方に冷媒を流すとともに、第1バイパス流路B1を通じて第1熱交換部7aまたは第2熱交換部7bのいずれか他方に冷媒を流す(図28、図32)。 Specifically, in the third embodiment, the first flow path selection device 20B distributes the refrigerant to the main circuit 30 and the second bypass flow path B2 during the defrosting operation (FIGS. 27 and 31), Then, while flowing the refrigerant through the main circuit 30 to either the first heat exchange section 7a or the second heat exchange section 7b, either the first heat exchange section 7a or the second heat exchange section 7b through the first bypass flow passage B1. The refrigerant is passed to the other side (FIGS. 28 and 32).
 第3流路選択装置20Cは、除霜運転時において、第1バイパス流路B1を第1熱交換部7aおよび第2熱交換部7bのいずれか一方に接続するとともに第1膨張弁6aを第1熱交換部7aおよび第2熱交換部7bのいずれか他方に接続する(図28、図32)。 The third flow passage selecting device 20C connects the first bypass flow passage B1 to either one of the first heat exchange portion 7a and the second heat exchange portion 7b and sets the first expansion valve 6a to the first expansion valve 6a during the defrosting operation. It is connected to either the other of the 1st heat exchange part 7a and the 2nd heat exchange part 7b (FIG. 28, FIG. 32).
 実施の形態3の空調装置300は、基本構成は実施の形態1と同じであるが、主回路30に流量調整弁10bを有する点、膨張弁6bが除去されている点、電磁弁3c、電磁弁3dを有する点、第2熱交換器7が分割された第1熱交換部7aおよび第2熱交換部7bを有する点、第1熱交換部7aおよび第2熱交換部7bにそれぞれ設けられた温度センサ2cおよび2dを有する点、第1熱交換部7aおよび第2熱交換部7bにそれぞれ対応して設けられた膨張弁6fおよび6gを有する点、第1バイパス流路B1の出口に電磁弁3e、電磁弁3fを有する点、第2バイパス流路B2の途中に電磁弁6eを有する点が異なる。なお、実施の形態1と同一の構成要素については、同一の符号を付している。 The air conditioner 300 of the third embodiment has the same basic configuration as that of the first embodiment, but has a flow rate adjusting valve 10b in the main circuit 30, the expansion valve 6b is removed, the solenoid valve 3c, the solenoid. The valve 3d is provided, the second heat exchanger 7 is provided with the divided first heat exchange portion 7a and second heat exchange portion 7b, and the first heat exchange portion 7a and the second heat exchange portion 7b are provided, respectively. Having temperature sensors 2c and 2d, having expansion valves 6f and 6g provided corresponding to the first heat exchanging section 7a and the second heat exchanging section 7b, respectively, and having an electromagnetic valve at the outlet of the first bypass passage B1. They are different in that they have a valve 3e and a solenoid valve 3f, and that they have a solenoid valve 6e in the middle of the second bypass flow passage B2. The same components as those in the first embodiment are designated by the same reference numerals.
 また、第2熱交換器7、第1熱交換器5の空気の出口側または入口側には、それぞれ空気を送風するためのファンが設けられている(図示せず)。なお、各ファンは、ラインフローファン、プロペラファン、ターボファン、シロッコファン等のいずれを用いてもよい。また、1つの熱交換器に対し複数個のファンを用いた構成にしてもよい。また、第1熱交換部7a、第2熱交換部7bは水平方向並ぶように配置しても、鉛直方向に並ぶように配置してもよい。また、上記構成は冷暖房運転が可能な最小構成要素であり、気液分離器、レシーバー、アキュームレータ等をさらに主回路30に追加してもよい。 Also, a fan for blowing air is provided on each of the air outlet side and the air inlet side of the second heat exchanger 7 and the first heat exchanger 5 (not shown). Each fan may be a line flow fan, a propeller fan, a turbo fan, a sirocco fan, or the like. Further, a configuration may be used in which a plurality of fans are used for one heat exchanger. Further, the first heat exchange section 7a and the second heat exchange section 7b may be arranged side by side in the horizontal direction or may be arranged side by side in the vertical direction. Further, the above-mentioned configuration is the minimum component capable of cooling and heating operation, and a gas-liquid separator, a receiver, an accumulator and the like may be further added to the main circuit 30.
 なお、第1熱交換部7aが具備している温度センサ2c、第2熱交換部7bが具備している温度センサ2dは、暖房運転時に冷媒の出口側となる位置(点P10側)に設けられている。 The temperature sensor 2c included in the first heat exchange unit 7a and the temperature sensor 2d included in the second heat exchange unit 7b are provided at a position on the outlet side of the refrigerant during heating operation (point P10 side). Has been.
 なお、実施の形態1と同様、空調装置に封入される冷媒の種類は限定されない。冷媒としてHFC冷媒、HFO冷媒、HC冷媒、あるいは非共沸混合冷媒などを封入しても良い。 Note that, as in the first embodiment, the type of refrigerant enclosed in the air conditioner is not limited. As the refrigerant, HFC refrigerant, HFO refrigerant, HC refrigerant, or non-azeotropic mixed refrigerant may be enclosed.
 次に、実施の形態3に係る空調装置300の動作について説明する。
 図24は、実施の形態3における第1熱交換部7aの除霜運転時の各要素の動作を説明するためのフローチャートである。図25は、図24のフローチャートの各処理における要素の状態を示す図である。図25には、図24の各処理における電磁弁3c,3d,3b,3e,3fの開閉状態と、流路切換弁8における冷媒の流れ方向と、流量調整弁10bにおける冷媒の分配状態とが示されている。
Next, the operation of the air conditioner 300 according to the third embodiment will be described.
FIG. 24 is a flowchart for explaining the operation of each element during the defrosting operation of the first heat exchange unit 7a in the third embodiment. FIG. 25 is a diagram showing states of elements in each processing of the flowchart of FIG. FIG. 25 shows the open / closed state of the solenoid valves 3c, 3d, 3b, 3e, 3f in each process of FIG. It is shown.
 図24のフローチャートの着霜判断(S301)、一定吐出温度到達判断(S303)、除霜終了判断(S305)の処理は、それぞれ実施の形態1のS101,S103,S105と同じであるが、弁の操作を伴う処理(S300、S302、S304、S306)において実施の形態1と異なる。 The processes of the frost formation determination (S301), the constant discharge temperature arrival determination (S303), and the defrosting end determination (S305) of the flowchart of FIG. 24 are the same as those of S101, S103, and S105 of the first embodiment, respectively. The processing (S300, S302, S304, S306) involving the operation of is different from that of the first embodiment.
 なお、図24、図25で説明する制御は、暖房運転から第1熱交換部7aを除霜する場合の制御であり、第2熱交換部7bを除霜する場合については、後に図29~図31で説明する。 Note that the control described in FIGS. 24 and 25 is a control for defrosting the first heat exchange unit 7a from the heating operation, and in the case of defrosting the second heat exchange unit 7b, the control illustrated in FIGS. This will be described with reference to FIG.
 暖房運転が開始されると、ステップS300において制御装置50は、電磁弁3cが開状態、電磁弁3dが開状態、電磁弁3bが閉状態、電磁弁3eが閉状態、電磁弁3fが閉状態となり、流路切換弁8が第1バイパス流路B1を選択し、流量調整弁10bは冷媒の全量を主回路30に流すように、これらの弁を制御する。 When the heating operation is started, in step S300, the control device 50 causes the solenoid valve 3c to be open, the solenoid valve 3d to be open, the solenoid valve 3b to be closed, the solenoid valve 3e to be closed, and the solenoid valve 3f to be closed. Therefore, the flow path switching valve 8 selects the first bypass flow path B1, and the flow rate adjustment valve 10b controls these valves so that the entire amount of the refrigerant flows into the main circuit 30.
 図26は、実施の形態3の暖房時(S300,S301,S306)における冷媒の流れを示す図である。図26に示されるように、冷媒は、圧縮機1から吐出され、流量調整弁10b、四方弁4、第1熱交換器5、第1膨張弁6a、第2熱交換器7、四方弁4の順に循環し、圧縮機1に戻る。第2熱交換器7においては、冷媒は、流路選択装置20Cによって2分割され、第1熱交換部7aおよび膨張弁6fのパスと、第2熱交換部7bおよび膨張弁6gのパスに並行して流れ、点P10で合流する。 FIG. 26 is a diagram showing a refrigerant flow during heating (S300, S301, S306) according to the third embodiment. As shown in FIG. 26, the refrigerant is discharged from the compressor 1, and the flow rate adjusting valve 10b, the four-way valve 4, the first heat exchanger 5, the first expansion valve 6a, the second heat exchanger 7, the four-way valve 4 are provided. And then returns to the compressor 1. In the second heat exchanger 7, the refrigerant is divided into two by the flow path selection device 20C, and is parallel to the path of the first heat exchange section 7a and the expansion valve 6f and the path of the second heat exchange section 7b and the expansion valve 6g. And flow at the point P10.
 再び図24、図25を参照して、ステップS301において、制御装置50は、第1熱交換部7aが着霜しているか否かを判定するための情報を取得して、第1熱交換部7aが着霜しているか否かを判定する。具体的には、制御装置50は、温度センサ2cの検出結果を取得し、この検出結果に基づいて第1熱交換部7aの表面温度が予め定められた第1のしきい値(例えば、-3℃)以下であるか否かを判定する。制御装置50は、第1熱交換部7aの表面温度が第1のしきい値以下となっている場合に第1熱交換部7aが着霜していると判定する。着霜していると判定された場合、制御装置50はステップS302に処理を進める。着霜していないと判定された場合、ステップS302~S306の処理は実行されず、再度ステップS300、S301の処理が繰返される。 24 and 25 again, in step S301, the control device 50 acquires information for determining whether the first heat exchange unit 7a is frosted, and then the first heat exchange unit. It is determined whether 7a is frosted. Specifically, the control device 50 acquires the detection result of the temperature sensor 2c, and based on the detection result, the surface temperature of the first heat exchanging portion 7a has a predetermined first threshold value (for example, − 3 ° C.) or less is determined. The controller 50 determines that the first heat exchange unit 7a is frosted when the surface temperature of the first heat exchange unit 7a is equal to or lower than the first threshold value. When it is determined that frost is formed, the control device 50 advances the process to step S302. If it is determined that frost has not formed, the processes of steps S302 to S306 are not executed, and the processes of steps S300 and S301 are repeated.
 ステップS302において、制御装置50は、電磁弁3cが閉状態、電磁弁3bが開状態となり、流路切換弁8が第2バイパス流路B2を選択し、流量調整弁10が冷媒を主回路30の配管C0と第2バイパス流路B2とに分配するように、各弁を制御する。なお、電磁弁3e,3fは、ステップS300の状態が維持され、ともに閉状態にされる。また、ステップS300の状態が維持され、電磁弁3dは開状態に制御される。 In step S302, in the control device 50, the electromagnetic valve 3c is closed, the electromagnetic valve 3b is opened, the flow path switching valve 8 selects the second bypass flow path B2, and the flow rate adjustment valve 10 supplies the refrigerant to the main circuit 30. Each valve is controlled so as to be distributed to the pipe C0 and the second bypass flow passage B2. The solenoid valves 3e and 3f are maintained in the state of step S300 and are both closed. Further, the state of step S300 is maintained, and the solenoid valve 3d is controlled to be in the open state.
 図27は、第1熱交換部7aの除霜運転時第1段階(S302,S303)における冷媒の流れを示す図である。図27に示すように、圧縮機1から吐出された冷媒の一部は、主回路30および第2熱交換部7bに流れ暖房運転を継続し、また冷媒の他の一部は第2バイパス流路B2を通り、膨張弁6eで減圧され再び圧縮機1に吸入される。 FIG. 27 is a diagram showing a refrigerant flow in the first stage (S302, S303) during the defrosting operation of the first heat exchange section 7a. As shown in FIG. 27, a part of the refrigerant discharged from the compressor 1 flows to the main circuit 30 and the second heat exchange section 7b to continue the heating operation, and another part of the refrigerant flows to the second bypass flow. After passing through the path B2, the pressure is reduced by the expansion valve 6e and is again sucked into the compressor 1.
 なお、ステップS302において膨張弁6eの開度は、膨張弁6aと同一開度に設定する。これは、主回路30の配管C1を流れる冷媒と第2バイパス流路B2を流れる冷媒を点P11において同一の圧力で合流させるためである。 Note that the opening degree of the expansion valve 6e is set to the same opening degree as that of the expansion valve 6a in step S302. This is because the refrigerant flowing through the pipe C1 of the main circuit 30 and the refrigerant flowing through the second bypass passage B2 are merged at the same pressure at the point P11.
 続いて、制御装置50は、ステップS303において、冷媒の吐出温度が目標値に到達しているか否かを判定するための情報を取得して、冷媒の吐出温度が目標値に到達しているか否かを判定する。具体的には、制御装置50は、温度センサ2aの検出結果を取得し、この検出結果に基づいて圧縮機1より吐出される冷媒の温度が予め定めた第2しきい値T2(例えば、100℃)に到達しているか否かを判定する。ステップS303において、冷媒の吐出温度が第2しきい値T2に到達していた場合、制御装置50は、ステップS304に処理を進める。 Subsequently, in step S303, the control device 50 acquires information for determining whether the discharge temperature of the refrigerant has reached the target value, and whether the discharge temperature of the refrigerant has reached the target value. To determine. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is set to a second threshold value T2 (for example, 100). ℃) is reached. When the discharge temperature of the refrigerant has reached the second threshold value T2 in step S303, the control device 50 advances the process to step S304.
 なお、ステップS302,S303においては、圧縮機1に吸入される冷媒の密度が時間とともに低下していく可能性がある。その場合、圧縮機1に吸入される冷媒の質量流量が低下するため、冷媒の吐出温度が時間とともに上昇しにくくなる可能性がある。このため、ステップS303において、一定の時間間隔(例えば、5秒間隔)における冷媒の吐出温度上昇が予め定めた第3しきい値(例えば、10℃)に満たない場合、圧縮機1の運転周波数を高める制御をしても良い。あるいは、ステップS302の処理が開始された時点からある一定時間(例えば、60秒)経過しても圧縮機1より吐出される冷媒の温度が予め定めた第2しきい値(例えば、100℃)に満たない場合、ステップS304に処理を進めるようにしても良い。 Note that in steps S302 and S303, the density of the refrigerant sucked into the compressor 1 may decrease with time. In that case, since the mass flow rate of the refrigerant sucked into the compressor 1 decreases, the discharge temperature of the refrigerant may not easily rise with time. Therefore, in step S303, when the increase in the discharge temperature of the refrigerant at a constant time interval (for example, 5 second intervals) does not reach the predetermined third threshold value (for example, 10 ° C.), the operating frequency of the compressor 1 May be controlled. Alternatively, the temperature of the refrigerant discharged from the compressor 1 may have reached a predetermined second threshold value (eg, 100 ° C.) even after a certain period of time (eg, 60 seconds) has elapsed from the time when the process of step S302 was started. If not, the process may proceed to step S304.
 ステップS304では、制御装置50は、電磁弁3eが開状態となり、流路切換弁8が第1バイパス流路B1を選択するように、各弁を制御する。電磁弁3b,3c,3d,3f、流量調整弁10bについては、ステップS302の状態が維持される。 In step S304, the control device 50 controls each valve so that the solenoid valve 3e is opened and the passage switching valve 8 selects the first bypass passage B1. The state of step S302 is maintained for the solenoid valves 3b, 3c, 3d, 3f and the flow rate adjusting valve 10b.
 図28は、第1熱交換部7aの除霜運転時第2段階(S304,S305)における冷媒の流れを示す図である。図28に示すように、圧縮機1から吐出した高温高圧の冷媒の一部は第1バイパス流路B1を流れて第1熱交換部7aに導入される。このようにして第1熱交換部7aの除霜が行なわれる。また第1熱交換部7aから流出した冷媒は、膨張弁6fで減圧される。 FIG. 28 is a diagram showing the flow of the refrigerant in the second stage (S304, S305) during the defrosting operation of the first heat exchange section 7a. As shown in FIG. 28, a part of the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the first bypass passage B1 and is introduced into the first heat exchange section 7a. In this way, the first heat exchange section 7a is defrosted. The refrigerant flowing out of the first heat exchange section 7a is decompressed by the expansion valve 6f.
 なお、ステップS304において制御装置50は、膨張弁6fの開度を膨張弁6aの開度と同一に設定し、膨張弁6gを全開に設定する。これは、第2熱交換部7bを流れる主回路30の冷媒と第1熱交換部7aを流れる除霜に使用する冷媒を同一の圧力とし、点P10において合流させるためである。 Note that in step S304, the control device 50 sets the opening degree of the expansion valve 6f to be the same as the opening degree of the expansion valve 6a, and sets the expansion valve 6g to full open. This is because the refrigerant of the main circuit 30 flowing through the second heat exchange section 7b and the refrigerant used for defrosting flowing through the first heat exchange section 7a have the same pressure and are merged at the point P10.
 次に、制御装置50は、ステップS305において、除霜を終了するか否かを判定する。具体的には、制御装置50は、温度センサ2cから出力される検出信号に基づいて第1熱交換部7aの表面温度が予め定めた第3しきい値(例えば、0℃)以上であるか否かを判定する。なお、制御装置50は、第1熱交換部7aの表面温度が上記第3しきい値以上となっている場合に、除霜を終了すると判定する。除霜を終了すると判定した場合、制御装置50は、ステップS306に処理を進める。 Next, the control device 50 determines in step S305 whether or not to finish the defrosting. Specifically, the control device 50 determines whether the surface temperature of the first heat exchange unit 7a is equal to or higher than a predetermined third threshold value (for example, 0 ° C.) based on the detection signal output from the temperature sensor 2c. Determine whether or not. The control device 50 determines to finish the defrosting when the surface temperature of the first heat exchange section 7a is equal to or higher than the third threshold value. When determining to end the defrosting, the control device 50 advances the process to step S306.
 ステップS306では、制御装置50は、電磁弁3cが開状態、電磁弁3dが開状態、電磁弁3bが閉状態、電磁弁3eが閉状態となり、流量調整弁10bが主回路30に冷媒の全量を流すように、各弁を制御する。なお、このとき流路切換弁8は元のままである。これにより、図26に示すように冷媒が流れ、定常暖房運転が行なわれる。 In step S306, the control device 50 causes the solenoid valve 3c to be in the open state, the solenoid valve 3d to be in the open state, the solenoid valve 3b to be in the closed state, and the solenoid valve 3e to be in the closed state. Control each valve so that At this time, the flow path switching valve 8 remains unchanged. As a result, the refrigerant flows as shown in FIG. 26, and the steady heating operation is performed.
 次に、第2熱交換部7bについて除霜運転を行なう動作について説明する。
 図29は、実施の形態3における第2熱交換部7bの除霜運転時の各要素の動作を説明するためのフローチャートである。図30は、図29のフローチャートの各処理における要素の状態を示す図である。図30には、図29の各処理における電磁弁3c,3d,3b,電磁弁3e,電磁弁3fの開閉状態と、流路切換弁8における冷媒の流れ方向と、流量調整弁10bにおける冷媒の分配状態とが示されている。
Next, the operation of performing the defrosting operation on the second heat exchange unit 7b will be described.
FIG. 29 is a flow chart for explaining the operation of each element during the defrosting operation of the second heat exchange section 7b in the third embodiment. FIG. 30 is a diagram showing states of elements in each processing of the flowchart of FIG. In FIG. 30, the open / closed states of the solenoid valves 3c, 3d, 3b, the solenoid valve 3e, and the solenoid valve 3f in each process of FIG. The distribution state is shown.
 図29のフローチャートは、図24のフローチャートにおいて、ステップS301~S305がステップS301A~S305Aに置換されている。 In the flowchart of FIG. 29, steps S301 to S305 are replaced with steps S301A to S305A in the flowchart of FIG.
 暖房運転が開始されると、ステップS300において制御装置50は、電磁弁3cが開状態、電磁弁3dが開状態、電磁弁3bが閉状態、電磁弁3eが閉状態、電磁弁3fが閉状態となり、流路切換弁8が第1バイパス流路B1を選択し、流量調整弁10bは冷媒の全量を主回路30に流すように、これらの弁を制御する。その結果、図26に示すように冷媒が流れる。 When the heating operation is started, in step S300, the control device 50 causes the solenoid valve 3c to be open, the solenoid valve 3d to be open, the solenoid valve 3b to be closed, the solenoid valve 3e to be closed, and the solenoid valve 3f to be closed. Therefore, the flow path switching valve 8 selects the first bypass flow path B1, and the flow rate adjustment valve 10b controls these valves so that the entire amount of the refrigerant flows into the main circuit 30. As a result, the refrigerant flows as shown in FIG.
 続いてステップS301Aにおいて、制御装置50は、第2熱交換部7bが着霜しているか否かを判定するための情報を取得して、第2熱交換部7bが着霜しているか否かを判定する。具体的には、制御装置50は、温度センサ2dの検出結果を取得し、この検出結果に基づいて第2熱交換部7bの表面温度が予め定められた第1のしきい値(例えば、-3℃)以下であるか否かを判定する。制御装置50は、第2熱交換部7bの表面温度が第1のしきい値以下となっている場合に第2熱交換部7bが着霜していると判定する。この場合、制御装置50はステップS302Aに処理を進める。 Subsequently, in step S301A, the control device 50 acquires information for determining whether or not the second heat exchange unit 7b is frosted, and determines whether or not the second heat exchange unit 7b is frosted. To judge. Specifically, the control device 50 acquires the detection result of the temperature sensor 2d, and based on the detection result, the surface temperature of the second heat exchanging portion 7b has a predetermined first threshold value (for example, − 3 ° C.) or less is determined. The control device 50 determines that the second heat exchange unit 7b is frosted when the surface temperature of the second heat exchange unit 7b is equal to or lower than the first threshold value. In this case, the control device 50 advances the process to step S302A.
 ステップS302Aにおいて、制御装置50は、電磁弁3dが閉状態、電磁弁3bが開状態となり、流路切換弁8が第2バイパス流路B2を選択し、流量調整弁10が冷媒を主回路30の配管C0と第2バイパス流路B2とに分配するように、各弁を制御する。なお、電磁弁3e,3fは、ステップS300の状態が維持され、ともに閉状態にされる。また、ステップS300の状態が維持され、電磁弁3cは開状態に制御される。 In step S302A, in the control device 50, the electromagnetic valve 3d is closed, the electromagnetic valve 3b is opened, the flow path switching valve 8 selects the second bypass flow path B2, and the flow rate adjustment valve 10 supplies the refrigerant to the main circuit 30. Each valve is controlled so as to be distributed to the pipe C0 and the second bypass flow passage B2. The solenoid valves 3e and 3f are maintained in the state of step S300 and are both closed. Further, the state of step S300 is maintained and the solenoid valve 3c is controlled to be in the open state.
 図31は、第2熱交換部7bの除霜運転時第1段階(S302A,S303A)における冷媒の流れを示す図である。図31に示すように、圧縮機1から吐出された冷媒の一部は、主回路30および第1熱交換部7aに流れ暖房運転を継続し、また冷媒の他の一部は第2バイパス流路B2を通り、膨張弁6eで減圧され再び圧縮機1に吸入される。 FIG. 31 is a diagram showing a refrigerant flow in the first stage (S302A, S303A) during the defrosting operation of the second heat exchange section 7b. As shown in FIG. 31, a part of the refrigerant discharged from the compressor 1 flows to the main circuit 30 and the first heat exchange section 7a to continue the heating operation, and another part of the refrigerant flows to the second bypass flow. After passing through the path B2, the pressure is reduced by the expansion valve 6e and is again sucked into the compressor 1.
 なお、ステップS302Aにおいて膨張弁6eの開度は、膨張弁6aと同一開度に設定する。これは、主回路30の配管C1を流れる冷媒と第2バイパス流路B2を流れる冷媒を点P11において同一の圧力で合流させるためである。 Note that the opening degree of the expansion valve 6e is set to the same opening degree as that of the expansion valve 6a in step S302A. This is because the refrigerant flowing through the pipe C1 of the main circuit 30 and the refrigerant flowing through the second bypass passage B2 are merged at the same pressure at the point P11.
 続いて、制御装置50は、ステップS303Aにおいて、冷媒の吐出温度が目標値に到達しているか否かを判定するための情報を取得して、冷媒の吐出温度が目標値に到達しているか否かを判定する。具体的には、制御装置50は、温度センサ2aの検出結果を取得し、この検出結果に基づいて圧縮機1より吐出される冷媒の温度が予め定めた第2しきい値(例えば、100℃)に到達しているか否かを判定する。ステップS303Aにおいて、冷媒の吐出温度が第2しきい値に到達していた場合、制御装置50は、ステップS304Aに処理を進める。 Subsequently, in step S303A, the control device 50 acquires information for determining whether or not the discharge temperature of the refrigerant has reached the target value, and determines whether the discharge temperature of the refrigerant has reached the target value. To determine. Specifically, the control device 50 acquires the detection result of the temperature sensor 2a, and based on the detection result, the temperature of the refrigerant discharged from the compressor 1 is a second threshold value set in advance (for example, 100 ° C.). ) Is reached. When the discharge temperature of the refrigerant has reached the second threshold value in step S303A, the control device 50 advances the process to step S304A.
 なお、ステップS302A,S303Aにおいては、圧縮機1に吸入される冷媒の密度が時間とともに低下していく可能性がある。その場合、圧縮機1に吸入される冷媒の質量流量が低下するため、冷媒の吐出温度が時間とともに上昇しにくくなる可能性がある。このため、ステップS303Aにおいて、一定の時間間隔(例えば5秒間隔)における冷媒の吐出温度上昇が予め定めた第3しきい値(例えば10℃)に満たない場合、圧縮機1の運転周波数を高める制御をしても良い。あるいは、ステップS302Aの処理が開始された時点からある一定時間(例えば60秒)経過しても圧縮機1より吐出される冷媒の温度が予め定めた第2しきい値(例えば、100℃)に満たない場合、ステップS304Aに処理を進めるようにしても良い。 Note that, in steps S302A and S303A, the density of the refrigerant sucked into the compressor 1 may decrease with time. In that case, since the mass flow rate of the refrigerant sucked into the compressor 1 decreases, the discharge temperature of the refrigerant may not easily rise with time. For this reason, in step S303A, when the refrigerant discharge temperature rise at a constant time interval (for example, 5 second intervals) is less than a predetermined third threshold value (for example, 10 ° C.), the operating frequency of the compressor 1 is increased. You may control. Alternatively, the temperature of the refrigerant discharged from the compressor 1 reaches a predetermined second threshold value (for example, 100 ° C.) even after a certain fixed time (for example, 60 seconds) has elapsed from the time when the process of step S302A was started. If not, the process may proceed to step S304A.
 ステップS304Aでは、制御装置50は、電磁弁3fが開状態となり、流路切換弁8が第1バイパス流路B1を選択するように、各弁を制御する。電磁弁3b,3c,3d,3e、流量調整弁10bについては、ステップS302Aの状態が維持される。 In step S304A, the control device 50 controls each valve so that the solenoid valve 3f is opened and the passage switching valve 8 selects the first bypass passage B1. For the solenoid valves 3b, 3c, 3d, 3e and the flow rate adjusting valve 10b, the state of step S302A is maintained.
 図32は、第2熱交換部7bの除霜運転時第2段階(S304A,S305A)における冷媒の流れを示す図である。図32に示すように、圧縮機1から吐出した高温高圧の冷媒の一部は第1バイパス流路B1を流れて第2熱交換部7bに導入される。このようにして第2熱交換部7bの除霜が行なわれる。また第2熱交換部7bから流出した冷媒は、膨張弁6gで減圧される。 FIG. 32 is a diagram showing the flow of the refrigerant in the second stage (S304A, S305A) during the defrosting operation of the second heat exchange section 7b. As shown in FIG. 32, a part of the high-temperature high-pressure refrigerant discharged from the compressor 1 flows through the first bypass flow passage B1 and is introduced into the second heat exchange section 7b. In this way, the second heat exchange section 7b is defrosted. The refrigerant flowing out from the second heat exchange section 7b is decompressed by the expansion valve 6g.
 なお、ステップS304Aにおいて制御装置50は、膨張弁6gの開度を膨張弁6aの開度と同一に設定し、電磁弁6fを全開に設定する。これは、第1熱交換部7aを流れる主回路30の冷媒と第2熱交換部7bを流れる除霜に使用する冷媒を同一の圧力とし、点P10において合流させるためである。 Note that in step S304A, the control device 50 sets the opening degree of the expansion valve 6g to be the same as the opening degree of the expansion valve 6a, and sets the solenoid valve 6f to fully open. This is because the refrigerant of the main circuit 30 flowing through the first heat exchange section 7a and the refrigerant used for defrosting flowing through the second heat exchange section 7b have the same pressure and are merged at the point P10.
 次に、制御装置50は、ステップS305Aにおいて、除霜を終了するか否かを判定する。具体的には、制御装置50は、温度センサ2dから出力される検出信号に基づいて第2熱交換部7bの表面温度が予め定めた第3しきい値(例えば、0℃)以上であるか否かを判定する。なお、制御装置50は、第2熱交換部7bの表面温度が上記第3しきい値以上となっている場合に、除霜を終了すると判定する。除霜を終了すると判定した場合、制御装置50は、ステップS306に処理を進める。 Next, the control device 50 determines in step S305A whether or not to finish the defrosting. Specifically, the control device 50 determines whether the surface temperature of the second heat exchange section 7b is equal to or higher than a predetermined third threshold value (for example, 0 ° C.) based on the detection signal output from the temperature sensor 2d. Determine whether or not. The control device 50 determines that the defrosting is ended when the surface temperature of the second heat exchange section 7b is equal to or higher than the third threshold value. When determining to end the defrosting, the control device 50 advances the process to step S306.
 ステップS306では、制御装置50は、電磁弁3cが開状態、電磁弁3dが開状態、電磁弁3bが閉状態、電磁弁3eが閉状態となり、流量調整弁10bが主回路30に冷媒の全量を流すように、各弁を制御する。これにより、図26に示すように冷媒が流れ、定常暖房運転が行なわれる。 In step S306, the control device 50 causes the solenoid valve 3c to be in the open state, the solenoid valve 3d to be in the open state, the solenoid valve 3b to be in the closed state, and the solenoid valve 3e to be in the closed state. Control each valve so that As a result, the refrigerant flows as shown in FIG. 26, and the steady heating operation is performed.
 以上、図24および図29に示したフローチャートの処理によって、実施の形態3では第1熱交換部7a、第2熱交換部7bについて一方のみが着霜した場合は、着霜した方の熱交換部の除霜を行なう。しかし、2つの熱交換部が同時に着霜した場合は以下の優先度で除霜を行なう。 As described above, according to the processes of the flowcharts shown in FIGS. 24 and 29, in the third embodiment, when only one of the first heat exchange section 7a and the second heat exchange section 7b is frosted, the frosted heat exchange is performed. Defrost parts. However, when two heat exchange parts are frosted at the same time, defrosting is performed with the following priority.
 まず、高さが小さい2つの熱交換部が室外機の鉛直方向に配置されている場合、鉛直方向上位の熱交換部から優先的に除霜を行なう。これは、逆にすると、上側の熱交換部の除霜によって生じた水が除霜完了した下側の熱交換部にかかるので、下側の熱交換部の表面で再氷結が起こる可能性があるからである。また、風向方向の列数が小さい2つの熱交換部が風上側に1つ、風下側に1つ配置されている場合、風上側の熱交換部から優先的に除霜を行なう。これは、風下側よりも風上側の熱交換部の方が着霜しやすく、風下側の熱交換部は除霜しなくても良い場合も多いからである。このように優先して除霜する熱交換部を以下の説明では第1熱交換部7aであるとして説明する。 First, when two heat exchange units with a small height are arranged in the vertical direction of the outdoor unit, defrosting is performed preferentially from the heat exchange unit that is higher in the vertical direction. If this is reversed, the water generated by the defrosting of the upper heat exchange section will be applied to the lower heat exchange section that has completed defrosting, so re-freezing may occur on the surface of the lower heat exchange section. Because there is. In addition, when two heat exchange units having a small number of rows in the wind direction are arranged on the windward side and one on the leeward side, defrosting is preferentially performed from the heat exchange unit on the windward side. This is because the heat exchange section on the windward side is more likely to frost than the heat exchange section on the leeward side, and the heat exchange section on the leeward side does not need to be defrosted in many cases. In the following description, the heat exchanging part that preferentially defrosts in this way will be described as the first heat exchanging part 7a.
 図33は、実施の形態3において、第1熱交換部7aを第2熱交換部7bよりも優先させて除霜を行なう処理の例を説明するためのフローチャートである。なお、各ステップの番号については、図24および図29のステップと同じ番号を付し、詳細な説明については繰返さない。 FIG. 33 is a flowchart for explaining an example of a process of defrosting the first heat exchanging unit 7a prior to the second heat exchanging unit 7b in the third embodiment. Note that the numbers of the respective steps are given the same numbers as the steps of FIGS. 24 and 29, and detailed description will not be repeated.
 図33を参照して、まずステップS300において、制御装置50は、第1熱交換部7aおよび第2熱交換部7bに並行して冷媒を流し、通常の暖房運転を行なう。そして制御装置50は、ステップS301において第1熱交換部7aの着霜の有無を判定する。 Referring to FIG. 33, first, in step S300, control device 50 causes the refrigerant to flow in parallel to first heat exchange unit 7a and second heat exchange unit 7b, and performs normal heating operation. Then, the control device 50 determines whether or not frost is formed on the first heat exchange unit 7a in step S301.
 ステップS301において、着霜ありと判定された場合(S301でYES)、ステップS302,S303において、制御装置50は、一部の冷媒で第2熱交換部7bを用いた暖房を継続しつつ、残りの冷媒を第2バイパス流路B2に流して循環させ昇温させる冷媒昇温処理を実行する。 When it is determined in step S301 that there is frost formation (YES in S301), in steps S302 and S303, the control device 50 continues the heating using the second heat exchange section 7b with a part of the refrigerant while remaining. The refrigerant temperature increasing process is performed to cause the refrigerant to flow through the second bypass flow path B2 and circulate to increase the temperature.
 その後、ステップS304、S305において、制御装置50は、一部の冷媒で第2熱交換部7bを用いた暖房を継続しつつ、残りの冷媒を第1バイパス流路B1経由で第1熱交換部7aに流して第1熱交換部7aの除霜を行なう。 After that, in steps S304 and S305, the control device 50 continues the heating using the second heat exchanging unit 7b with a part of the refrigerant, and the remaining refrigerant with the first heat exchanging unit passing through the first bypass flow passage B1. 7a to defrost the first heat exchange section 7a.
 ステップS301において、着霜なしと判定された場合およびステップS304,S305の処理が実行され第1熱交換部7aの除霜が完了した場合、続いてステップS301Aにおいて、制御装置50は、第2熱交換部7bの着霜の有無を判定する。 In step S301, when it is determined that there is no frost formation, and when the processes of steps S304 and S305 are executed and the defrosting of the first heat exchange unit 7a is completed, subsequently in step S301A, the control device 50 causes the second heat The presence or absence of frost on the exchange section 7b is determined.
 ステップS301Aにおいて、着霜ありと判定された場合(S301AでYES)、ステップS302A,S303Aにおいて、制御装置50は、一部の冷媒で第1熱交換部7aを用いた暖房を継続しつつ、残りの冷媒を第2バイパス流路B2に流して循環させ昇温させる冷媒昇温処理を実行する。 When it is determined that there is frost formation in step S301A (YES in S301A), in step S302A and S303A, the control device 50 continues heating while using the first heat exchange section 7a with some of the refrigerant, while remaining. The refrigerant temperature increasing process is performed to cause the refrigerant to flow through the second bypass flow path B2 and circulate to increase the temperature.
 その後、ステップS304A、S305Aにおいて、制御装置50は、一部の冷媒で第1熱交換部7aを用いた暖房を継続しつつ、残りの冷媒を第1バイパス流路B1経由で第2熱交換部7bに流して第2熱交換部7bの除霜を行なう。 After that, in steps S304A and S305A, the control device 50 continues the heating using the first heat exchange unit 7a with a part of the refrigerant, and the remaining refrigerant with the second heat exchange unit via the first bypass flow passage B1. 7b to defrost the second heat exchange section 7b.
 ステップS301Aにおいて、着霜なしと判定された場合およびステップS304A,S305Aの処理が実行され第2熱交換部7bの除霜が完了した場合、続いてステップS306処理が進められる。ステップS306では、制御装置50は、通常の暖房運転を行なうように、第1熱交換部7aおよび第2熱交換部7bに並行して冷媒を流すように各弁の設定を変更し、処理をメインルーチンに戻す。 If it is determined in step S301A that there is no frost formation, or if the processing of steps S304A and S305A has been executed and the defrosting of the second heat exchange section 7b has been completed, then the processing of step S306 proceeds. In step S306, the control device 50 changes the setting of each valve so that the refrigerant flows in parallel to the first heat exchange section 7a and the second heat exchange section 7b so that the normal heating operation is performed, and the processing is performed. Return to the main routine.
 次に、上記構成の実施の形態3に係る空調装置の効果について、説明する。
 実施の形態3では、除霜運転時に、主回路30と第2バイパス流路B2に分配して冷媒を流し、次いで主回路30と第1バイパス流路B1に分配して冷媒を流すことによって、除霜運転中にも暖房運転を継続させることができる。
Next, effects of the air conditioner according to the third embodiment having the above configuration will be described.
In the third embodiment, during the defrosting operation, the refrigerant is distributed to the main circuit 30 and the second bypass flow passage B2, and then the refrigerant is distributed to the main circuit 30 and the first bypass flow passage B1 to flow the refrigerant. The heating operation can be continued even during the defrosting operation.
 また、除霜運転時にも暖房運転を継続させることができるので、除霜運転中の室温低下を軽減することができ、快適性が向上する。 Also, since the heating operation can be continued even during the defrosting operation, it is possible to reduce the decrease in room temperature during the defrosting operation and improve comfort.
 最後に実施の形態1~3に係る空調装置の効果についてまとめて記載する。
 本開示の空調装置は、圧縮機1の吐出側と室外の第2熱交換器7の暖房時入口側を結ぶ第1バイパス流路B1と、圧縮機1の吐出側と圧縮機1の吸入側を結ぶ第2バイパス流路B2を備える。制御装置50は、室外の第2熱交換器7の温度が予め定められた第1しきい値以下になった場合に、流路選択装置20,20A,20Bを操作し、冷媒を第2バイパス流路B2に流し、次いで第1バイパス流路B1を通じて冷媒を室外の第2熱交換器7に流し、除霜を行なう。
Finally, the effects of the air conditioners according to the first to third embodiments will be collectively described.
The air conditioner of the present disclosure includes a first bypass flow path B1 that connects the discharge side of the compressor 1 and the heating-side inlet side of the outdoor second heat exchanger 7, the discharge side of the compressor 1, and the suction side of the compressor 1. And a second bypass flow path B2 connecting the two. When the temperature of the outdoor second heat exchanger 7 becomes equal to or lower than the predetermined first threshold value, the control device 50 operates the flow path selection devices 20, 20A, 20B to bypass the refrigerant to the second bypass. Defrosting is performed by causing the refrigerant to flow through the flow path B2 and then through the first bypass flow path B1 to the outdoor second heat exchanger 7.
 第2バイパス流路B2へ冷媒を流すことによって、圧縮機1における冷媒の吐出温度を通常より高くすることができる。 By flowing the refrigerant to the second bypass flow passage B2, the discharge temperature of the refrigerant in the compressor 1 can be made higher than usual.
 また、冷媒の吐出温度を高めることで、流路選択装置20,20A,20Bを第1バイパス流路B1へ切り換えた際に、通常の暖房運転時より冷媒の温度を高めた状態で室外の第2熱交換器7へ流すことができる。 In addition, by increasing the discharge temperature of the refrigerant, when the flow path selecting devices 20, 20A, 20B are switched to the first bypass flow path B1, the temperature of the refrigerant is higher than that during the normal heating operation, and the outdoor first. 2 can be flowed to the heat exchanger 7.
 また、通常よりも冷媒の温度が高い状態での除霜運転になるため、室外の第2熱交換器7の全域において、冷媒と着霜した熱交換器との温度差が大きくなり単位時間あたりの熱交換量が増大するため、短時間で除霜を行なうことができる。 Further, since the defrosting operation is performed in a state where the temperature of the refrigerant is higher than normal, the temperature difference between the refrigerant and the frosted heat exchanger becomes large in the entire second heat exchanger 7 outside the unit, and Since the amount of heat exchange is increased, defrosting can be performed in a short time.
 また、冷媒の吐出温度を高め、短時間で除霜を行なうことができる上記の効果は、HFC冷媒、HFO冷媒、HC冷媒、非共沸混合冷媒等、空調装置に封入される冷媒種を問わないが、特に、GWPの低い冷媒(例えば、HC冷媒の一つであるR290(GWP3))を用いることで、サイクル内のGWP総量値を削減することができる。 In addition, the above-described effect that the discharge temperature of the refrigerant can be increased and defrosting can be performed in a short time depends on the kind of the refrigerant enclosed in the air conditioner, such as HFC refrigerant, HFO refrigerant, HC refrigerant, and non-azeotropic mixed refrigerant. Although not available, the total GWP value in the cycle can be reduced by using a refrigerant having a low GWP (for example, R290 (GWP3) which is one of the HC refrigerants).
 また、非共沸混合冷媒が空調装置に封入されている場合、室外熱交換器の暖房時冷媒入口側が着霜しやすくなる。これに対し本実施の形態の空調装置では、第1バイパス流路B1を通じて第2熱交換器7の暖房時冷媒入口側に高圧・高温の冷媒ガスを流すことができる。このため、第2熱交換器7の暖房時冷媒入口側で冷媒と着霜した熱交換器との温度差が大きくなり単位時間あたりの熱交換量が増大するため、短時間で除霜を行なうことができる。 Also, when the non-azeotropic mixed refrigerant is enclosed in the air conditioner, frost is likely to form on the refrigerant inlet side of the outdoor heat exchanger during heating. On the other hand, in the air conditioner of the present embodiment, a high-pressure / high-temperature refrigerant gas can flow to the heating refrigerant inlet side of the second heat exchanger 7 through the first bypass passage B1. Therefore, the temperature difference between the refrigerant and the frosted heat exchanger on the refrigerant inlet side of the second heat exchanger 7 during heating increases, and the amount of heat exchange per unit time increases, so defrosting is performed in a short time. be able to.
 また、本実施の形態の空調装置では、一般的な冷房運転切り換えによる除霜に比べて、より過熱状態のガス領域での除霜を行なう。このため、圧縮機1の吸入冷媒の過熱度(SH)が大きくなり圧縮機1への液バックが起こりにくくなるので、圧縮機1の信頼性を向上させることができる。 Further, in the air conditioner of the present embodiment, defrosting is performed in a gas region in a more overheated state as compared with general defrosting by switching the cooling operation. For this reason, the degree of superheat (SH) of the refrigerant sucked into the compressor 1 becomes large, and liquid back to the compressor 1 does not easily occur, so that the reliability of the compressor 1 can be improved.
 また、本実施の形態の空調装置では、一般的な冷房運転切り換えによる除霜運転と比較して、除霜運転時に延長配管9a,9bおよび室内の第1熱交換器5等を冷媒が通過しないため、放熱ロスを小さくすることができる。 Further, in the air conditioner according to the present embodiment, the refrigerant does not pass through the extension pipes 9a and 9b, the first heat exchanger 5 in the room, and the like during the defrosting operation, as compared with the general defrosting operation by switching the cooling operation. Therefore, heat dissipation loss can be reduced.
 また、本実施の形態の空調装置では、一般的な冷房運転切り換えによる除霜運転と比較して室内の第1熱交換器5を冷媒が通過せずに除霜運転が可能なため、第1熱交換器5での吸熱が発生せず除霜運転中の室温低下を軽減することが可能となる。 In addition, in the air conditioner of the present embodiment, the defrosting operation can be performed without the refrigerant passing through the first heat exchanger 5 in the room, as compared with the general defrosting operation by switching the cooling operation. No heat absorption occurs in the heat exchanger 5, and it is possible to reduce the decrease in room temperature during the defrosting operation.
 また、本実施の形態の空調装置では、除霜運転を開始する際、流路選択装置20,20A,20Bを操作し、主回路30への冷媒流入をなくし、冷媒を第2バイパス流路B2に流し、次いで第1バイパス流路B1を通じて冷媒を室外の第2熱交換器7に流す。これにより、除霜運転時に四方弁の切り換えを行なう必要がなくなり、四方弁の切り換えに必要な圧力状態を作り出すために圧縮機を停止させる必要がなくなるため、除霜開始までの時間を短くすることができる。 In addition, in the air conditioner of the present embodiment, when starting the defrosting operation, the flow path selection devices 20, 20A, 20B are operated to prevent the refrigerant from flowing into the main circuit 30, and to transfer the refrigerant to the second bypass flow path B2. Then, the refrigerant is allowed to flow to the outdoor second heat exchanger 7 through the first bypass flow path B1. This eliminates the need to switch the four-way valve during defrosting operation, and it is not necessary to stop the compressor in order to create the pressure state required to switch the four-way valve. You can
 また、除霜運転が終了し暖房運転へ復帰する際、流路選択装置20,20A,20Bを操作し、冷媒の全量を主回路30に流すことによって、暖房運転復帰時に四方弁の切り換えを行なわない。このため、四方弁の切り換えに必要な圧力状態を作り出すために圧縮機を停止させる必要がなくなるため、一般的な冷房運転切り換えによる除霜運転と比較して暖房運転復帰までの時間を短くすることができる。 Further, when the defrosting operation is finished and the operation is returned to the heating operation, the four-way valve is switched when the heating operation is returned by operating the flow path selection devices 20, 20A, 20B and flowing the entire amount of the refrigerant into the main circuit 30. Absent. For this reason, it is not necessary to stop the compressor in order to create the pressure state necessary for switching the four-way valve.Therefore, it is necessary to shorten the time to return to heating operation as compared to the defrosting operation by switching cooling operation in general. You can
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 1 圧縮機、2a,2b,2c,2d 温度センサ、3a,3b,3c,3d,3e,3f 電磁弁、4 四方弁、5 第1熱交換器、6a,6b,6c,6d,6e,6f,6g 膨張弁、7 第2熱交換器、7a 第1熱交換部、7b 第2熱交換部、8 切換弁、8b,20,20A,20B,20C 選択装置、9a,9b 延長配管、10,10b 流量調整弁、30 主回路、50 制御装置、51 プロセッサ、52 メモリ、53 入出力インターフェース、100,200,300 空調装置、B0 分岐管、B1,B2,B3 流路、C0,C1,C2 配管。 1 compressor, 2a, 2b, 2c, 2d temperature sensor, 3a, 3b, 3c, 3d, 3e, 3f solenoid valve, 4 four-way valve, 5 first heat exchanger, 6a, 6b, 6c, 6d, 6e, 6f , 6g expansion valve, 7 second heat exchanger, 7a 1st heat exchange section, 7b 2nd heat exchange section, 8 switching valve, 8b, 20, 20A, 20B, 20C selector, 9a, 9b extension pipes 10, 10b flow control valve, 30 main circuit, 50 control device, 51 processor, 52 memory, 53 input / output interface, 100, 200, 300 air conditioner, B0 branch pipe, B1, B2, B3 flow path, C0, C1, C2 piping .

Claims (10)

  1.  暖房運転時において、冷媒が、圧縮機、第1熱交換器、第1膨張弁、第2熱交換器の順に循環する主回路と、
     前記第2熱交換器の前記第1膨張弁側配管と前記圧縮機の吐出側配管とを連通させる第1バイパス流路と、
     前記圧縮機の吸入側配管と前記圧縮機の吐出側配管とを連通させる第2バイパス流路と、
     前記圧縮機が吐出する前記冷媒を前記第1熱交換器、前記第1バイパス流路、前記第2バイパス流路のうち少なくとも1つに選択的に通すように構成された第1流路選択装置とを備え、
     前記暖房運転時において、前記第1流路選択装置は、少なくとも前記第1熱交換器を選択し、
     除霜運転時において、前記第1流路選択装置は、少なくとも前記第2バイパス流路を選択した後に、少なくとも前記第1バイパス流路を選択する、空調装置。
    A main circuit in which the refrigerant circulates in the order of the compressor, the first heat exchanger, the first expansion valve, and the second heat exchanger during the heating operation,
    A first bypass flow passage that connects the first expansion valve side pipe of the second heat exchanger and the discharge side pipe of the compressor;
    A second bypass passage that connects the suction side pipe of the compressor and the discharge side pipe of the compressor;
    A first flow path selection device configured to selectively pass the refrigerant discharged by the compressor through at least one of the first heat exchanger, the first bypass flow path, and the second bypass flow path. With and
    During the heating operation, the first flow path selection device selects at least the first heat exchanger,
    An air conditioner in which, during the defrosting operation, the first flow path selection device selects at least the first bypass flow path after selecting at least the second bypass flow path.
  2.  除霜運転時において、前記第1流路選択装置は、前記第2バイパス流路を選択するともに前記第1バイパス流路および前記第1熱交換器を非選択とし、次いで、前記第1バイパス流路を選択するともに前記第2バイパス流路および前記第1熱交換器を非選択とする、請求項1に記載の空調装置。 During the defrosting operation, the first flow path selecting device selects the second bypass flow path and deselects the first bypass flow path and the first heat exchanger, and then the first bypass flow path. The air conditioner according to claim 1, wherein a path is selected and the second bypass flow path and the first heat exchanger are not selected.
  3.  前記第2バイパス流路の途中か、または前記第2バイパス流路と前記圧縮機の吸入側配管との間に配置される第2膨張弁をさらに備える、請求項1または2に記載の空調装置。 The air conditioner according to claim 1 or 2, further comprising a second expansion valve arranged in the middle of the second bypass flow passage or between the second bypass flow passage and a suction side pipe of the compressor. .
  4.  前記第1流路選択装置は、
     前記圧縮機の吐出側と前記第1熱交換器との間の管路に設けられる第1電磁弁と、
     前記圧縮機の吐出側と前記第1バイパス流路および前記第2バイパス流路に共用される前記主回路からの分岐管に設けられる第2電磁弁と、
     前記分岐管を前記第1バイパス流路および前記第2バイパス流路のいずれか一方に接続する流路切換弁とを含む、請求項1~3のいずれかに記載の空調装置。
    The first flow path selection device,
    A first solenoid valve provided in a conduit between the discharge side of the compressor and the first heat exchanger;
    A second solenoid valve provided in a branch pipe from the main circuit shared by the discharge side of the compressor, the first bypass passage and the second bypass passage,
    The air conditioner according to any one of claims 1 to 3, further comprising: a flow path switching valve that connects the branch pipe to either one of the first bypass flow path and the second bypass flow path.
  5.  除霜運転時において、前記第1流路選択装置は、前記第2バイパス流路を選択するともに前記第1バイパス流路および前記第1熱交換器を非選択とし、次いで、前記第1バイパス流路および前記第2バイパス流路を選択するともに前記第1熱交換器を非選択とする、請求項1に記載の空調装置。 During the defrosting operation, the first flow path selecting device selects the second bypass flow path and deselects the first bypass flow path and the first heat exchanger, and then the first bypass flow path. The air conditioner according to claim 1, wherein the first heat exchanger is deselected while selecting a passage and the second bypass passage.
  6.  前記第2バイパス流路の途中に配置される第2膨張弁と、
     前記暖房運転において、前記第2熱交換器を通過した前記冷媒が流れる第1配管から分岐し前記圧縮機の吸入側に至る第3バイパス流路と、
     前記第3バイパス流路の途中に配置される第3膨張弁と、
     第2流路選択装置とをさらに備え、
     前記第2流路選択装置は、前記第1配管を前記第3バイパス流路を経由せずに前記圧縮機の吸入側に接続する第2配管または前記第3バイパス流路を選択的に接続する、請求項1または5に記載の空調装置。
    A second expansion valve disposed in the middle of the second bypass flow path,
    In the heating operation, a third bypass flow path that branches from the first pipe through which the refrigerant that has passed through the second heat exchanger flows to the suction side of the compressor,
    A third expansion valve disposed in the middle of the third bypass flow path,
    And a second flow path selecting device,
    The second flow passage selection device selectively connects the second pipe or the third bypass flow passage that connects the first pipe to the suction side of the compressor without passing through the third bypass flow passage. The air conditioner according to claim 1 or 5.
  7.  前記第2熱交換器は、
     第1熱交換部および第2熱交換部を含み、
     前記第1流路選択装置は、除霜運転時、前記主回路と前記第2バイパス流路に前記冷媒を分配して流し、次いで前記主回路を通じて前記第1熱交換部に前記冷媒を流すとともに、前記第1バイパス流路を通じて前記第2熱交換部に前記冷媒を流す、請求項1記載の空調装置。
    The second heat exchanger,
    Including a first heat exchange section and a second heat exchange section,
    In the defrosting operation, the first flow path selecting device distributes and flows the refrigerant to the main circuit and the second bypass flow path, and then flows the refrigerant to the first heat exchange unit through the main circuit. The air conditioner according to claim 1, wherein the refrigerant flows through the second heat exchange unit through the first bypass flow path.
  8.  前記第1バイパス流路と前記第1膨張弁とを前記第1熱交換部および前記第2熱交換部のいずれかに接続するように構成された第3流路選択装置をさらに備え、
     除霜運転時において、前記第3流路選択装置は、前記第1バイパス流路を前記第1熱交換部および前記第2熱交換部のいずれか一方に接続するとともに前記第1膨張弁を前記第1熱交換部および前記第2熱交換部のいずれか他方に接続する、請求項7に記載の空調装置。
    Further comprising a third flow passage selection device configured to connect the first bypass flow passage and the first expansion valve to either the first heat exchange unit or the second heat exchange unit,
    During the defrosting operation, the third flow path selecting device connects the first bypass flow path to either one of the first heat exchange section and the second heat exchange section, and connects the first expansion valve to the first expansion valve. The air conditioner according to claim 7, which is connected to the other one of the first heat exchange section and the second heat exchange section.
  9.  前記冷媒は、HC冷媒である、請求項1~8のいずれか1項に記載の空調装置。 The air conditioner according to any one of claims 1 to 8, wherein the refrigerant is an HC refrigerant.
  10.  前記冷媒は、非共沸混合冷媒である、請求項1~8のいずれか1項に記載の空調装置。 The air conditioner according to any one of claims 1 to 8, wherein the refrigerant is a non-azeotropic mixed refrigerant.
PCT/JP2018/039035 2018-10-19 2018-10-19 Air conditioner WO2020079835A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18937404.4A EP3869114B1 (en) 2018-10-19 2018-10-19 Air conditioner
JP2020551698A JP7034325B2 (en) 2018-10-19 2018-10-19 Air conditioner
PCT/JP2018/039035 WO2020079835A1 (en) 2018-10-19 2018-10-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039035 WO2020079835A1 (en) 2018-10-19 2018-10-19 Air conditioner

Publications (1)

Publication Number Publication Date
WO2020079835A1 true WO2020079835A1 (en) 2020-04-23

Family

ID=70283761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039035 WO2020079835A1 (en) 2018-10-19 2018-10-19 Air conditioner

Country Status (3)

Country Link
EP (1) EP3869114B1 (en)
JP (1) JP7034325B2 (en)
WO (1) WO2020079835A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503819A (en) * 2020-04-29 2020-08-07 广东美的制冷设备有限公司 Control method of air conditioning system and air conditioning system
CN113465125A (en) * 2021-06-17 2021-10-01 青岛海尔空调电子有限公司 Defrosting control method of air conditioner, computer readable storage medium and control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541341A (en) * 1978-09-15 1980-03-24 Mitsubishi Electric Corp Refrigerator
JPH112477A (en) * 1997-06-11 1999-01-06 Sanyo Electric Co Ltd Cooling storage cabinet
JP2001059664A (en) * 1999-08-20 2001-03-06 Fujitsu General Ltd Air conditioner
JP2009145032A (en) 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same
WO2014083650A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air conditioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062903B2 (en) * 2012-01-09 2015-06-23 Thermo King Corporation Economizer combined with a heat of compression system
US10473353B2 (en) * 2014-04-22 2019-11-12 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner and defrosting operation method therefor
GB2565665B (en) * 2016-06-14 2020-11-11 Mitsubishi Electric Corp Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541341A (en) * 1978-09-15 1980-03-24 Mitsubishi Electric Corp Refrigerator
JPH112477A (en) * 1997-06-11 1999-01-06 Sanyo Electric Co Ltd Cooling storage cabinet
JP2001059664A (en) * 1999-08-20 2001-03-06 Fujitsu General Ltd Air conditioner
JP2009145032A (en) 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same
WO2014083650A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air conditioning device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869114A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503819A (en) * 2020-04-29 2020-08-07 广东美的制冷设备有限公司 Control method of air conditioning system and air conditioning system
CN111503819B (en) * 2020-04-29 2022-05-03 广东美的制冷设备有限公司 Control method of air conditioning system and air conditioning system
CN113465125A (en) * 2021-06-17 2021-10-01 青岛海尔空调电子有限公司 Defrosting control method of air conditioner, computer readable storage medium and control device
CN113465125B (en) * 2021-06-17 2023-05-26 青岛海尔空调电子有限公司 Defrosting control method, computer readable storage medium and control device for air conditioner

Also Published As

Publication number Publication date
JPWO2020079835A1 (en) 2021-09-24
EP3869114A1 (en) 2021-08-25
EP3869114B1 (en) 2024-03-20
JP7034325B2 (en) 2022-03-11
EP3869114A4 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP6351848B2 (en) Refrigeration cycle equipment
JP6320568B2 (en) Refrigeration cycle equipment
JP5968534B2 (en) Air conditioner
US10006647B2 (en) Air conditioning system with distributor for a plurality of indoor units
JP4122349B2 (en) Refrigeration cycle apparatus and operation method thereof
WO2018123361A1 (en) Multi-split air conditioner control device, multi-split air conditioner, multi-split air conditioner control method, and multi-split air conditioner control program
EP3062031A1 (en) Air conditioner
US20150059380A1 (en) Air-conditioning apparatus
JP2008249236A (en) Air conditioner
JP6129520B2 (en) Multi-type air conditioner and control method of multi-type air conditioner
EP2863153A1 (en) Air conditioner
CN113348333B (en) Outdoor unit of refrigeration device and refrigeration device provided with same
US11802702B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
WO2018189859A1 (en) Refrigeration cycle device and defrost operation method for refrigeration cycle device
WO2020079835A1 (en) Air conditioner
GB2552891A (en) Air conditioning device
JP7246924B2 (en) Control device for air conditioner, air conditioner, defrosting control method for air conditioner, and defrosting control program for air conditioner
JP7309075B2 (en) air conditioner
US11156393B2 (en) Air-conditioning apparatus with pressure control for defrosting and heating
US11668482B2 (en) Air conditioning system with pipe search
JP2009008346A (en) Refrigerating device
JP7183447B2 (en) refrigeration cycle equipment
JP7112057B1 (en) air conditioner
JP7214533B2 (en) air conditioner
JP2005233451A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018937404

Country of ref document: EP

Effective date: 20210519