WO2018189859A1 - Refrigeration cycle device and defrost operation method for refrigeration cycle device - Google Patents

Refrigeration cycle device and defrost operation method for refrigeration cycle device Download PDF

Info

Publication number
WO2018189859A1
WO2018189859A1 PCT/JP2017/015123 JP2017015123W WO2018189859A1 WO 2018189859 A1 WO2018189859 A1 WO 2018189859A1 JP 2017015123 W JP2017015123 W JP 2017015123W WO 2018189859 A1 WO2018189859 A1 WO 2018189859A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting operation
heat exchanger
defrosting
heating
temperature
Prior art date
Application number
PCT/JP2017/015123
Other languages
French (fr)
Japanese (ja)
Inventor
康平 名島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1913233.1A priority Critical patent/GB2574541B/en
Priority to JP2019512125A priority patent/JP6723442B2/en
Priority to PCT/JP2017/015123 priority patent/WO2018189859A1/en
Publication of WO2018189859A1 publication Critical patent/WO2018189859A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively

Definitions

  • the present invention relates to a refrigeration cycle apparatus that performs a defrosting operation for removing frost adhering to a heat exchanger, and a defrosting operation method for the refrigeration cycle apparatus.
  • an air conditioner equipped with a refrigeration cycle having a heat source side heat exchanger and a use side heat exchanger.
  • the refrigerant circulating in the refrigeration cycle dissipates heat to the air supplied to the heat exchanger on the use side that functions as a condenser, and the heated air is sent to the air-conditioning target space.
  • the heat source side heat exchanger that functions as an evaporator during heating operation may be installed outdoors. For example, if the heating operation is executed when the outside air temperature is low, such as in winter, frost may adhere to the heat exchanger on the heat source side that functions as an evaporator.
  • frost When frost grows, it may cause a decrease in refrigeration cycle capacity or a failure of the heat exchanger on the heat source side. For this reason, it is necessary to perform the defrosting operation which melt
  • the conventional technology detects the frosting state of the heat exchanger based on the rule of thumb from the temperature of the heat exchanger to be defrosted, and starts the defrosting operation.
  • the actual frosting state of the heat exchanger cannot be accurately detected only from the temperature of the heat exchanger to be defrosted.
  • heating operation may be performed in a state where the heating capacity is low due to a large amount of frost formation on the heat exchanger, or the time of the defrosting operation may be prolonged. Then, when considering the heating integration capability in a period composed of a set of heating operation and defrosting operation to be executed in succession, this heating integration capability has been reduced.
  • the present invention has been made against the background of the above-described problems, and provides a refrigeration cycle apparatus that performs a defrosting operation while suppressing a decrease in accumulated heating capacity. Moreover, the defrost operation method of the refrigerating-cycle apparatus which suppresses the fall of integrated heating capability is provided.
  • the refrigeration cycle apparatus of the present invention includes a compressor, a first heat exchanger, a plurality of expansion devices, a plurality of second heat exchangers, and a first temperature detection for detecting an ambient temperature of the first heat exchanger.
  • a storage unit that stores the heating capacity of each of the plurality of second heat exchangers, the first heat exchanger functioning as an evaporator, and at least a part of the plurality of second heat exchangers
  • a control device that performs a heating operation that functions as a condenser, and the control device is configured to detect the detected value of the first temperature detector and the condensing of the plurality of second heat exchangers during the heating operation.
  • the heating is performed.
  • the operation time of the operation reaches the first operation time
  • the first defrosting operation is started.
  • the second defrosting operation to reach the second operating time shorter than the first operation time in case of selecting the second defrosting operation.
  • a defrosting operation method for a refrigeration cycle apparatus is a defrosting operation method for a refrigeration cycle apparatus including a compressor, a first heat exchanger, a plurality of expansion devices, and a plurality of second heat exchangers, During the heating operation in which the first heat exchanger functions as an evaporator and at least a part of the plurality of second heat exchangers functions as a condenser, the ambient temperature of the first heat exchanger is detected, Based on the ambient temperature of the first heat exchanger and the total heating capacity of the plurality of second heat exchangers functioning as the condenser, the first defrosting operation and the second defrosting are performed.
  • the first defrosting operation is started when the operation time of the heating operation reaches the first operation time, and the second defrosting operation is started.
  • the operation time of the heating operation is shorter than the first operation time.
  • the operating time of the heating operation is varied.
  • the defrosting operation is started. For this reason, compared with the case where a defrost operation is started based on an empirical rule from the temperature of the heat exchanger used as a defrost object, the actual frost formation state to the 1st heat exchanger used as a defrost object is more.
  • the defrosting operation can be started at the reflected timing. Therefore, it is possible to suppress a decrease in the integrated heating capacity in a period including a set of heating operations and a defrosting operation that are continuously executed.
  • FIG. 3 is a functional block diagram of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. It is a flowchart explaining the heating operation and the defrosting operation of the refrigeration cycle apparatus according to Embodiment 1.
  • It is a figure which illustrates the integrated heating capability of the 1st defrost operation which concerns on Embodiment 1.
  • FIG. It is a figure which illustrates the integrated heating capability of the 2nd defrost operation which concerns on Embodiment 1.
  • FIG. 6 is a functional block diagram of a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 6 is a flowchart illustrating a heating operation and a defrosting operation of the refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 1 is a diagram illustrating an example of a circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1.
  • the refrigeration cycle apparatus 100 is used as an air conditioner that heats or cools the air-conditioning target space.
  • the refrigerant flow in the cooling operation is indicated by broken line arrows
  • the refrigerant flow in the heating operation is indicated by solid line arrows.
  • the refrigeration cycle apparatus 100 is configured by connecting a compressor 1, a first heat exchanger 2, a plurality of expansion devices 3a and 3b, and a plurality of second heat exchangers 4a and 4b through refrigerant pipes. It has a vapor compression refrigeration cycle.
  • the refrigerant circulating in the refrigeration cycle is, for example, a non-azeotropic refrigerant mixture in which R410A, R404A, R32, HFO1234yf, R32 and HFO1234yf, etc. are mixed at a constant ratio.
  • the refrigeration cycle apparatus 100 includes a first temperature detector 5 that detects the ambient temperature of the first heat exchanger 2.
  • the refrigeration cycle apparatus 100 of the present embodiment includes a refrigerant flow switching device 6, an accumulator 7, a check valve 8, and an outdoor fan 9.
  • the members constituting the refrigeration cycle apparatus 100 are accommodated in a case of the outdoor unit 30 that is a heat source unit or a case of the indoor units 40a and 40b that are use side units.
  • the outdoor unit 30 that is a heat source unit or a case of the indoor units 40a and 40b that are use side units.
  • a configuration in which two indoor units 40a and 40b are connected in parallel to one outdoor unit 30 is illustrated, but the number of outdoor units 30 and indoor units 40a and 40b is an example. However, the number of units shown is not limited.
  • the outdoor unit 30 is installed in a space different from the air-conditioning target space, for example, outdoors.
  • the outdoor unit 30 houses the compressor 1, the check valve 8, the refrigerant flow switching device 6, the first heat exchanger 2, the accumulator 7, and the outdoor fan 9.
  • Compressor 1 compresses the refrigerant flowing in through accumulator 7 and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the compressor 1 can be comprised by a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor etc., for example. Moreover, it is good to comprise the compressor 1 with the inverter compressor which can control capacity
  • the check valve 8 is a valve that is provided in the refrigerant pipe on the discharge side of the compressor 1 and allows the refrigerant to flow only in one direction.
  • the check valve 8 prevents the refrigerant discharged from the compressor 1 from flowing back to the compressor 1.
  • the check valve 8 is not an essential component of the refrigeration cycle apparatus 100.
  • the refrigerant flow switching device 6 has a valve provided in the refrigerant pipe on the discharge side of the compressor 1, and the first heat exchange is performed on the flow path of the refrigerant discharged from the compressor 1 by the open / close state of this valve. Switch to one of the heat exchanger 2 side and the second heat exchanger 4a, 4b side.
  • the refrigerant flow switching device 6 can be configured by a combination of a two-way valve or a three-way valve, or a four-way valve.
  • the first heat exchanger 2 acts as an evaporator during heating operation, and acts as a condenser during cooling operation. Heat exchange is performed between the refrigerant flowing through the first heat exchanger 2 and a heat exchange fluid such as air supplied to the first heat exchanger 2.
  • the 1st heat exchanger 2 can be comprised with a fin and tube type heat exchanger, a microchannel heat exchanger, etc.
  • the first heat exchanger 2 is a fin-and-tube heat exchanger will be described as an example.
  • the first temperature detector 5 detects the ambient temperature of the first heat exchanger 2.
  • the ambient temperature of the first heat exchanger 2 is the air temperature in the space where the first heat exchanger 2 is installed.
  • the first temperature detector 5 detects the outside air temperature.
  • the accumulator 7 is an excess refrigerant storage container provided in the refrigerant pipe on the suction side of the compressor 1. Due to the difference in the refrigerant flow rate between the heating operation and the cooling operation, the transient refrigerant flow change that occurs when the number of operating units of the plurality of indoor units 40a and 40b changes, or the refrigerant flow change that occurs due to load conditions, Surplus refrigerant can be generated in the refrigeration cycle.
  • the accumulator 7 stores such surplus refrigerant. In the accumulator 7, the liquid refrigerant and the gas refrigerant are separated, and the gas refrigerant is supplied to the compressor 1.
  • the accumulator 7 is not an essential component of the refrigeration cycle apparatus 100.
  • the outdoor fan 9 is an example of an apparatus that supplies the first heat exchanger 2 with a heat exchange fluid that exchanges heat with the refrigerant flowing through the first heat exchanger 2.
  • the outdoor fan 9 can be configured by a propeller fan having a plurality of blades. The outdoor fan 9 only needs to be installed in a place where air can be supplied to the first heat exchanger 2.
  • the indoor units 40a and 40b are each installed in the air-conditioning target space.
  • the indoor unit 40a houses the expansion device 3a, the second heat exchanger 4a, and the indoor fan 10a
  • the indoor unit 40b houses the expansion device 3b, the second heat exchanger 4b, and the indoor fan 10b.
  • the indoor unit 40a and the member accommodated therein are here. Explained as an example.
  • the expansion device 3a is installed in a refrigerant pipe that connects the first heat exchanger 2 and the second heat exchanger 4a, and is an apparatus that expands and depressurizes the refrigerant that passes by restricting the flow path of the refrigerant.
  • the expansion device 3a can be configured by an electric expansion valve having a valve capable of adjusting the flow rate of the refrigerant.
  • a mechanical expansion valve employing a diaphragm for the pressure receiving portion, a capillary tube, or the like can be used as the expansion device 3a.
  • the second heat exchanger 4a acts as a condenser during heating operation and acts as an evaporator during cooling operation. Heat exchange is performed between the refrigerant flowing through the second heat exchanger 4a and the air supplied to the second heat exchanger 4a to generate heating air or cooling air.
  • the 2nd heat exchanger 4a can be comprised with a fin and tube type heat exchanger, a microchannel heat exchanger, etc.
  • the second heat exchanger 4a configured by a fin-and-tube heat exchanger having a pipe through which the refrigerant flows and fins attached to the pipe will be described as an example.
  • the indoor fan 10a is a fluid transfer device that supplies air that exchanges heat with the refrigerant flowing through the second heat exchanger 4a to the second heat exchanger 4a.
  • the indoor fan 10a can be configured by a propeller fan having a plurality of blades.
  • the indoor fan 10a is installed in a place where air can be supplied to the second heat exchanger 4a.
  • Each of the plurality of second heat exchangers 4a and 4b has a predetermined heating capacity (kW) and cooling capacity (kW).
  • the heating capacity and the cooling capacity can be defined using various parameters including the size of the second heat exchangers 4a and 4b, the amount of air blown from the indoor fans 10a and 10b, and the capacity of the compressor 1.
  • the parameters used for defining the cooling capacity are not particularly limited.
  • the plurality of second heat exchangers 4a and 4b provided in the refrigeration cycle apparatus 100 may have the same heating capacity and cooling capacity or may be different from each other. This is the same even if the number of second heat exchangers is three or more.
  • FIG. 2 is a functional block diagram of the refrigeration cycle apparatus 100 according to the first embodiment.
  • the control device 20 controls actuators such as the compressor 1, the outdoor fan 9, the indoor fans 10a and 10b, the expansion devices 3a and 3b, and the refrigerant flow switching device 6 that are provided in the refrigeration cycle apparatus 100.
  • the control device 20 is connected to each actuator so that a control signal can be transmitted. Further, the control device 20 receives signals from the first temperature detector 5 and the timer 11.
  • the control device 20 controls the actuator based on signals input from the first temperature detector 5 and the timer 11.
  • each of the indoor units 40a and 40b may be provided with a remote controller that inputs the set temperature and the start and stop of the operation, and a signal from the remote controller may be input to the control device 20.
  • the control device 20 performs a cooling operation, a heating operation, and a defrosting operation, which will be described later, based on the set temperature set for each of the indoor units 40a and 40b and information on the start and stop of the
  • the control device 20 includes a processing circuit 21 and a storage unit 22.
  • the processing circuit 21 includes dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, or a processor) that executes a program stored in a storage unit.
  • a CPU also referred to as a central processing unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, or a processor
  • processing circuit 21 When the processing circuit 21 is dedicated hardware, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination of these corresponds to the processing circuit 21. To do. Each function realized by the processing circuit 21 may be realized by individual hardware, or each function may be realized by one piece of hardware.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • each function executed by the processing circuit 21 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the internal memory of the processing circuit 21.
  • the processing circuit 21 implements each function by reading and executing a program stored in the internal memory.
  • the internal memory is a non-volatile or volatile semiconductor memory such as a program memory, EPROM, or EEPROM.
  • control device 20 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • FIG. 2 shows that the control device 20 controls the actuators in an integrated manner, the control device 20 does not need to be physically configured as illustrated. That is, the specific form of distribution and integration of the control device 20 is not limited to the illustrated one, and all or a part thereof is functionally or physically distributed in arbitrary units according to various loads or usage conditions. Alternatively, they can be integrated.
  • the control apparatus 20 can be installed in the outdoor unit 30, the specific arrangement
  • the function of the control device 20 is realized by a plurality of control devices, the plurality of control devices may be distributed and arranged in each of the outdoor unit 30 and the plurality of indoor units 40a and 40b.
  • the storage unit 22 stores at least the heating capacity information 22a.
  • the heating capacity information 22a is information in which each of the plurality of second heat exchangers 4a and 4b is associated with a predetermined heating capacity.
  • storage part 22 memorize
  • the storage unit 22 is configured by, for example, a nonvolatile semiconductor memory.
  • the refrigeration cycle apparatus 100 of the present embodiment performs a cooling operation, a heating operation, and a defrosting operation.
  • a cooling operation a heating operation
  • a defrosting operation a defrosting operation
  • the cooling operation is an operation of supplying cooling air to the air-conditioning target space where the indoor units 40a and 40b are installed.
  • the refrigerant flow switching device 6 forms a refrigerant flow path in which the discharge side of the compressor 1 is connected to the first heat exchanger 2.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the first heat exchanger 2 functioning as a condenser via the refrigerant flow switching device 6.
  • the refrigerant that has flowed into the first heat exchanger 2 is condensed by exchanging heat with the air sent from the outdoor fan 9 and becomes a low-temperature and high-pressure liquid refrigerant and flows out of the first heat exchanger 2.
  • the low-temperature and high-pressure liquid refrigerant that has flowed out of the first heat exchanger 2 flows in parallel into the expansion devices 3a and 3b.
  • the low-temperature and high-pressure liquid refrigerant that has flowed into the expansion devices 3a and 3b is decompressed by the expansion devices 3a and 3b to become a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant, and flows out from the expansion devices 3a and 3b.
  • the low-temperature and low-pressure refrigerant that has flowed out of the expansion devices 3a and 3b flows into the second heat exchangers 4a and 4b that function as evaporators.
  • the refrigerant flowing into the second heat exchangers 4a and 4b evaporates by exchanging heat with the air sent from the indoor fans 10a and 10b and becomes a low-temperature and low-pressure gas refrigerant and flows out of the second heat exchangers 4a and 4b. .
  • the refrigerant absorbs heat from the air, so that air for cooling the air-conditioning target space is generated.
  • the refrigerant that has flowed out of the second heat exchangers 4a and 4b is sucked into the compressor 1 through the refrigerant flow switching device 6 and the accumulator 7. In the cooling operation, such a refrigeration cycle is repeated.
  • execution and a stop of a cooling operation can also be switched for every some indoor unit 40a, 40b. For example, when the indoor unit 40a performs a cooling operation and the indoor unit 40b stops the cooling operation, the expansion device 3a of the indoor unit 40a maintains a flow path with a predetermined opening through which the refrigerant passes, The expansion device 3b of the machine 40b closes the flow path so that the refrigerant does not flow into the second heat exchanger 4b. In this way, only a part of the plurality of indoor units 40a and 40b can perform the cooling operation.
  • the heating operation is an operation of supplying heating air to the air-conditioning target space where the indoor units 40a and 40b are installed.
  • the refrigerant flow switching device 6 forms a refrigerant flow path in which the discharge side of the compressor 1 is connected to the second heat exchangers 4a and 4b.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows in parallel into the second heat exchangers 4a and 4b functioning as condensers via the refrigerant flow switching device 6.
  • the refrigerant flowing into the second heat exchangers 4a and 4b exchanges heat with the air sent from the indoor fans 10a and 10b, condenses, and becomes a low-temperature and high-pressure liquid refrigerant and flows out from the second heat exchangers 4a and 4b. .
  • the refrigerant radiates heat to the air, thereby generating heating air in the air-conditioning target space.
  • the low-temperature and high-pressure liquid refrigerant that has flowed out of the second heat exchangers 4a and 4b flows into the expansion devices 3a and 3b, respectively.
  • the low-temperature and high-pressure liquid refrigerant that has flowed into the expansion devices 3a and 3b is decompressed by the expansion devices 3a and 3b to become a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant, and flows out from the expansion devices 3a and 3b.
  • the low-temperature and low-pressure refrigerant that has flowed out of the expansion devices 3a and 3b flows into the first heat exchanger 2 that functions as an evaporator.
  • the refrigerant that has flowed into the first heat exchanger 2 evaporates by exchanging heat with the air sent from the outdoor fan 9 and flows out of the first heat exchanger 2 as a low-temperature and low-pressure gas refrigerant.
  • the refrigerant that has flowed out of the first heat exchanger 2 is sucked into the compressor 1 through the refrigerant flow switching device 6 and the accumulator 7. In the heating operation, such a refrigeration cycle is repeated.
  • execution and a stop of heating operation can also be switched for every some indoor unit 40a, 40b.
  • the indoor unit 40a performs the heating operation and the indoor unit 40b stops the heating operation
  • the expansion device 3a of the indoor unit 40a maintains a flow path with a predetermined opening through which the refrigerant passes
  • the expansion device 3b of the machine 40b closes the flow path so that the refrigerant does not flow into the second heat exchanger 4b. By doing in this way, heating operation can be performed only for some of a plurality of indoor units 40a and 40b.
  • the defrosting operation is an operation for melting frost attached to the first heat exchanger 2 functioning as an evaporator during the heating operation.
  • the defrosting operation of the present embodiment is realized by reversing the refrigerant flow during the heating operation, that is, by making the refrigerant flow the same as that during the cooling operation described above.
  • the control device 20 stops the operation of the indoor fans 10a and 10b.
  • defrosting operation of the present embodiment There are two types of defrosting operation of the present embodiment, a first defrosting operation and a second defrosting operation.
  • the refrigerant flow is the same between the first defrosting operation and the second defrosting operation, but the conditions (timing) for starting the defrosting operation are different.
  • the first defrosting operation and the second defrosting operation have different times for the defrosting operation, and the second defrosting operation has a shorter operation time than the first defrosting operation. This will be specifically described below.
  • FIG. 3 is a flowchart for explaining the heating operation and the defrosting operation of the refrigeration cycle apparatus 100 according to the first embodiment. With reference to FIG. 3, the control which the control apparatus 20 performs in heating operation and defrost operation is demonstrated.
  • the control device 20 determines whether or not the ambient temperature of the first heat exchanger 2 belongs to a temperature range between TH2 and TH1 based on the detection value of the first temperature detector 5. To detect.
  • the relationship TH2 ⁇ TH1 is satisfied.
  • the temperature TH1 is, for example, 5 ° C.
  • the temperature TH2 is, for example, ⁇ 3 ° C.
  • Specific numerical values of the temperature TH1 and the temperature TH2 are not limited to those exemplified here, but the upper limit value and the lower limit value of the temperature range in which the amount of frost formation on the first heat exchanger 2 is likely to increase are the temperature TH1 and the temperature, respectively.
  • TH2 is determined in advance and stored in the storage unit 22.
  • the process proceeds to step S8, and if it belongs (S2; YES), a plurality of second It is detected whether or not the total heating capacity ⁇ Q j of the heat exchangers 4a and 4b during the heating operation is not less than a first value Q that is a predetermined threshold value.
  • the plurality of indoor units 40a and 40b provided in the refrigeration cycle apparatus 100 of the present embodiment can be set to execute and stop the heating operation individually.
  • the control device 20 calculates the total heating capacity ⁇ Q j by adding the heating capacities of the second heat exchangers 4a and 4b of the indoor units 40a and 40b that are performing the heating operation, and the total heating capacity The process of step S3 is executed by comparing ⁇ Q j with the first value Q.
  • the control device 20 calculates the total heating capacity ⁇ Q j based on the heating capacity information 22 a stored in the storage unit 22.
  • step S4 When the total heating capacity ⁇ Q j is greater than or equal to the first value Q (S3; YES), the process proceeds to step S4, and when it is less than the first value Q (S3; NO), the process proceeds to step S8.
  • step S8 the control device 20 detects whether or not the heating operation time is equal to or longer than a first operation time T11 that is a predetermined threshold value (S8).
  • a first operation time T11 that is a predetermined threshold value (S8).
  • the operation time of the compressor 1 in heating operation is made into heating operation time.
  • the control device 20 measures the operation time of the compressor 1 after starting the heating operation with the timer 11, and compares the measured time with the first operation time T11 to execute the process of step S8.
  • the value of the first operating time T11 is, for example, 50 minutes, but is not limited to this value.
  • step S8 when the heating operation time has reached the first operation time T11, the control device 20 starts the first defrosting operation (S9).
  • the control device 20 controls the refrigerant flow switching device 6 as described above to connect the refrigerant flow discharged from the compressor 1 to the first heat exchanger 2. To do. By doing in this way, the high temperature refrigerant
  • the control device 20 While the operation time of the first defrosting operation is less than the predetermined defrosting time T1 (S10: NO), the control device 20 continues the first defrosting operation, and the operation time of the first defrosting operation is defrosted. If it becomes more than time T1 (S10: YES), the control apparatus 20 will complete
  • the defrosting time T1 of the first defrosting operation can be longer than the defrosting time T2 of the second defrosting operation described later. Although a specific numerical value is not limited, the defrosting time T1 is, for example, 12 minutes.
  • step S4 the control device 20 detects whether the heating operation time is equal to or longer than a second operation time T12 that is a predetermined threshold (S4).
  • a second operation time T12 that is a predetermined threshold
  • the control device 20 measures the operation time of the compressor 1 after starting the heating operation with the timer 11, and compares the measured time with the second operation time T12 to execute the process of step S4.
  • the value of the second operation time T12 is shorter than the first operation time T11 shown in step S8.
  • the second operation time T12 is, for example, 40 minutes.
  • step S4 when the heating operation time becomes equal to or longer than the second operation time T12, the control device 20 starts the second defrosting operation (S5).
  • the control device 20 controls the refrigerant flow switching device 6 as described above to connect the refrigerant flow discharged from the compressor 1 to the first heat exchanger 2. To do. By doing in this way, the high temperature refrigerant
  • the control device 20 While the operation time of the second defrosting operation is less than the predetermined time T2 (S6: NO), the control device 20 continues the second defrosting operation, and the operation time of the second defrosting operation is the defrosting time T2. (S6: YES), the control device 20 ends the second defrosting operation (S7). When the second defrosting operation is finished, the control device 20 starts the heating operation (S1).
  • the defrosting time T2 of the second defrosting operation may be shorter than the defrosting time T1 of the first defrosting operation.
  • the specific numerical value is not limited, the time T2 is, for example, 4 minutes.
  • FIG. 4 is a diagram illustrating the integrated heating capacity of the first defrosting operation according to the first embodiment.
  • FIG. 5 is a diagram illustrating the integrated heating capacity of the second defrosting operation according to the first embodiment.
  • the vertical axis in FIGS. 4 and 5 indicates the heating capacity of the second heat exchangers 4a and 4b during the heating operation, and the horizontal axis indicates the time. 2 conceptually shows the change in heating capacity through defrosting operation.
  • the ambient temperature of the first heat exchanger 2 functioning as an evaporator and the total heating capacity of the second heat exchangers 4a and 4b during the heating operation.
  • the heating operation is started when the first defrosting operation is selected and when the second defrosting operation is selected.
  • the heating operation time from the start of the defrosting operation is varied.
  • the ambient temperature of the first heat exchanger 2 is within a temperature range in which the amount of frost formation tends to increase (step S2; YES), and the second heat exchange during the heating operation is performed.
  • a condition including that the total heating capacity ⁇ Q j of the devices 4a and 4b is equal to or greater than the first value Q is referred to as a first condition.
  • the heating operation and the first defrosting operation that are performed when the above-described first condition is not satisfied will be described.
  • the heating operation is interrupted and the first defrosting operation is started when the heating operation time is equal to or longer than the first operation time T11 longer than the second operation time T12.
  • the heating capacity increases and reaches a peak, and the heating capacity gradually decreases as the operation time elapses.
  • the decrease in the heating capacity is caused mainly by a decrease in the heat exchange efficiency of the first heat exchanger 2 due to frost adhering to the first heat exchanger 2.
  • the first condition is not satisfied, that is, the ambient temperature of the first heat exchanger 2 is in a temperature range in which the amount of frost formation is difficult to increase, or the total heating capacity of the second heat exchangers 4a and 4b during the heating operation If ⁇ Q j is relatively small and the heat exchange load of the first heat exchanger 2 is also small, it can be said that frost is relatively difficult to adhere to the first heat exchanger 2. For this reason, time T11 of heating operation is lengthened compared with the case where 2nd defrost operation is performed.
  • the first defrosting operation is started with the heating capacity during heating operation being 75% (average).
  • the heating capability over the period consisting of the heating operation and the subsequent defrosting operation is defined as the integrated heating capability. Since the heating capacity becomes substantially zero during the first defrosting operation, the integrated heating capacity over the period consisting of the heating operation and the subsequent first defrosting operation is 60% in the example of FIG. ing.
  • the heating operation and the second defrosting operation that are performed when the first condition described above is satisfied will be described.
  • the heating operation is interrupted and the second defrosting operation is started when the heating operation time reaches a second operation time T12 that is shorter than the first operation time T11.
  • the heating capacity increases and reaches a peak, and the heating capacity gradually decreases as the operation time elapses.
  • the decrease in the heating capacity is caused mainly by a decrease in the heat exchange efficiency of the first heat exchanger 2 due to frost adhering to the first heat exchanger 2.
  • the first condition that is, the ambient temperature of the first heat exchanger 2 is in a temperature range in which the amount of frost formation tends to increase, and the second heat exchangers 4a and 4b in the heating operation
  • the total heating capacity ⁇ Q j is relatively large and the heat exchange load of the first heat exchanger 2 is also large, the heating operation is interrupted in a relatively short time and the second defrosting operation is started.
  • the defrosting operation can be started before the amount of frost formation on the first heat exchanger 2 becomes excessive. And since the defrosting operation is started in a state where the amount of frost on the first heat exchanger 2 is relatively small, the second defrosting operation time can be shortened.
  • the second defrosting operation is started in a state where the heating capacity during the heating operation is 80% (average). During the second defrosting operation, the heating capacity becomes substantially zero.
  • the time of the second defrosting operation may be short as described above, in the example of FIG. A cumulative heating capacity of 70% is obtained throughout the period of the defrosting operation.
  • the time for the second defrosting operation is relatively short, the inclination of the rising of the heating capacity in the heating operation performed after the second defrosting operation is large, and the heating capacity can be reduced in a shorter time than in the case of FIG. Can be raised.
  • the refrigeration cycle apparatus 100 of the present embodiment includes the compressor 1, the first heat exchanger 2, the plurality of expansion devices 3a and 3b, and the plurality of second heat exchangers 4a and 4b. ing. Then, during the heating operation in which the first heat exchanger 2 functions as an evaporator and at least a part of the plurality of second heat exchangers 4a and 4b functions as a condenser, the surroundings of the first heat exchanger 2 The temperature is detected, the ambient temperature of the first heat exchanger 2, the total heating capacity of the plurality of second heat exchangers 4a and 4b functioning as a condenser, and the operation time of the heating operation, Based on the above, one of the first defrosting operation and the second defrosting operation is selected.
  • the first defrosting operation is started when the operation time of the heating operation reaches the first operation time, and when the second defrosting operation is selected, the operation of the heating operation is started.
  • the time reaches the second operation time shorter than the first operation time, the second defrosting operation is started.
  • the actual frosting state to the 1st heat exchanger 2 used as a defrost object is The defrosting operation can be started at a more reflected timing. Therefore, it is possible to suppress a decrease in the integrated heating capacity in a period including a set of heating operations and a defrosting operation that are continuously executed. In addition, after the second defrosting operation in which the operation time is relatively short, it is possible to shorten the time required for starting up the heating operation that is subsequently performed.
  • the detection value of the first temperature detector 5 that detects the ambient temperature of the first heat exchanger 2 is within the first temperature range, and the total value of the heating capacity When is greater than or equal to the first value, the second defrosting operation with a relatively short time is selected. Therefore, when the amount of frost on the first heat exchanger 2 that is a defrost target is likely to increase, the heating operation can be interrupted early and the second defrost operation can be started. It is possible to suppress a decrease in the integrated heating capacity during a period including a set of heating operation and defrosting operation that are performed.
  • Embodiment 2 FIG.
  • the 2nd temperature detector 12 which detects the surface temperature of the 1st heat exchanger 2 which functions as an evaporator at the time of heating operation and functions as a condenser at the time of defrosting operation is provided, and heating operation and defrosting are provided.
  • the detected value of the second temperature detector 12 is used in operation control.
  • the description will be focused on differences from the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a circuit configuration of the refrigeration cycle apparatus 100A according to the second embodiment.
  • a second temperature detector 12 that detects the surface temperature of the first heat exchanger 2 is provided.
  • the 2nd temperature detector 12 detects the surface temperature of the 1st heat exchanger 2 which reflects the frost formation state to the 1st heat exchanger 2 directly or indirectly.
  • the second temperature detector 12 can detect the surface temperature of the pipes constituting the first heat exchanger 2.
  • the second temperature detector 12 may detect the temperature of the refrigerant flowing in the first heat exchanger 2 and detect the surface temperature of the first heat exchanger 2 based on the temperature of the refrigerant.
  • the configuration other than the second temperature detector 12 is the same as that shown in the first embodiment.
  • FIG. 7 is a functional block diagram of the refrigeration cycle apparatus 100A according to the second embodiment.
  • the control device 20 is connected to the second temperature detector 12 so that signals can be transmitted and received.
  • the control device 20 controls the actuator based on the signal input from the second temperature detector 12 in addition to the signal input from the first temperature detector 5 and the timer 11.
  • FIG. 8 is a flowchart illustrating the heating operation and the defrosting operation of the refrigeration cycle apparatus 100A according to the second embodiment.
  • the heating operation and the defrosting operation of the present embodiment are different from the first embodiment in the condition for starting the first defrosting operation and the condition for ending the first defrosting operation.
  • the flowchart shown in FIG. 8 is different from the flowchart shown in FIG. 3 of Embodiment 1 in that the processing content of step S8A and step S12A are added.
  • the difference from FIG. 3 will be mainly described.
  • step S8A control device 20 detects whether the heating operation time is equal to or longer than a predetermined first operation time T11. Further, the control device 20 determines whether or not the surface temperature of the first heat exchanger 2 is equal to or lower than a first temperature TH3 that is a predetermined threshold, based on the detection value of the second temperature detector 12.
  • the first temperature TH3 is a temperature for determining the amount of frost formation on the first heat exchanger 2, and the temperature estimated that the amount of frost formation on the first heat exchanger 2 is likely to increase.
  • the first temperature TH3 is preferably a temperature lower than the temperature TH2 in step S2, and is, for example, ⁇ 10 ° C. although a specific numerical value is not limited.
  • the control device 20 When the heating operation time is equal to or longer than the first operation time T11 and the surface temperature of the first heat exchanger 2 is equal to or lower than the first temperature TH3 that is set in advance (S8A; YES), the control device 20 performs the first defrosting. Operation is started (S9).
  • the control device 20 ends the first defrosting operation when the surface temperature of the first heat exchanger 2 becomes equal to or higher than a second temperature TH4 that is a predetermined threshold (S12A; YES).
  • 2nd temperature TH4 is the temperature for determining the amount of frost formation to the 1st heat exchanger 2, and the temperature estimated that defrosting of the 1st heat exchanger 2 was completed is memorized beforehand. Stored in the unit 22.
  • the specific value of the second temperature TH4 is not limited, it is 10 ° C., for example.
  • the control device 20 proceeds to step S10.
  • the processing after step S10 is the same as that described in FIG.
  • the same configuration as that described in the first embodiment is provided, and the same effect as in the first embodiment can be obtained. Furthermore, in the refrigeration cycle apparatus 100A of the present embodiment, when the first defrosting operation is selected, the operation time of the heating operation becomes equal to or longer than the first operation time, and the surface temperature of the first heat exchanger 2 is the first. When the temperature is equal to or lower than 1 temperature TH3, the first defrosting operation is started. Since the first defrosting operation is started based on the surface temperature of the first heat exchanger 2 in which the frosting state on the first heat exchanger 2 is reflected in addition to the operation time of the heating operation, defrosting is necessary. The first heat exchanger 2 can be defrosted by more accurately detecting the timing.
  • the refrigeration cycle apparatus 100A of the present embodiment ends the first defrosting operation when the surface temperature of the first heat exchanger 2 becomes equal to or higher than the second temperature TH4 during the first defrosting operation. Since the end timing of the first defrosting operation is determined based on the temperature of the first heat exchanger 2 in which the defrosting state of the first heat exchanger 2, that is, the defrosting state is reflected, the defrosting is insufficient or excessive. Defrosting operation can be suppressed.
  • the control device 20 determines whether or not the surface temperature of the first heat exchanger 2 is equal to or lower than the first temperature TH3. You may determine with the surface temperature of the 1st heat exchanger 2 being below 1st temperature TH3, when time, for example, 3 minutes or more pass.
  • step S12A when the state where the surface temperature of the first heat exchanger 2 is equal to or higher than the second temperature TH4 has elapsed for a predetermined time, for example, 3 minutes or more, the process proceeds to the next step.
  • the detection values output from the first temperature detector 5 and the second temperature detector 12 may vary due to disturbances or the like. However, the detection values described above are determined based on the detection values over a predetermined time. Misjudgments caused by variations can be reduced.
  • the operation frequency of the compressor 1 may be varied according to the ambient temperature of the first heat exchanger 2 functioning as an evaporator.
  • the ambient temperature of the first heat exchanger 2 functioning as an evaporator.
  • the operating frequency of the compressor 1 is controlled to a large value as compared with the case where it is high. By doing in this way, the fall of heating capability is suppressed.
  • the refrigeration cycle apparatus and the defrosting operation method of the refrigeration cycle apparatus shown in the first and second embodiments can be applied not only to an air conditioner but also to an apparatus using another refrigeration cycle such as a refrigerator.
  • the so-called reverse cycle defrosting operation in which the refrigerant is circulated in the direction opposite to that in the heating operation has been described as an example, but the specific configuration of the defrosting operation is not limited thereto.
  • the processing related to the selection, start and end of the first defrosting operation and the second defrosting operation described in the first and second embodiments is performed by other specific configurations such as a defrosting operation using a heater or hot water. It can also be combined with frost operation.
  • the first defrosting operation shown in the first and second embodiments and the air conditioning apparatus dedicated to heating that does not have the configuration corresponding to the refrigerant flow switching device 6 and the refrigerant flows in one direction Processing related to selection, start, and end of the second defrosting operation can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The refrigeration cycle device comprises: a compressor; a first heat exchanger; a plurality of throttling devices; a plurality of second heat exchangers; a first temperature detector that detects the ambient temperature around the first heat exchanger; a storage unit that stores the heating capacity of each of the plurality of second heat exchangers; and a control device that executes a heating operation that causes the first heat exchanger to function as an evaporator and at least part of the plurality of second heat exchangers to function as condensers. During a heating operation, the control device selects either a first defrosting operation or a second defrosting operation on the basis of the value detected by the first temperature detector and the total heating capacity of the second heat exchangers functioning as condensers, and if the first defrosting operation has been selected, starts the first defrosting operation when the operation time of the heating operation reaches a first operation time, whereas if the second defrosting operation has been selected, starts the second defrosting operation when the operation time of the heating operation reaches a second operation time, which is shorter than the first operation time.

Description

冷凍サイクル装置及び冷凍サイクル装置の除霜運転方法Refrigeration cycle apparatus and defrosting operation method for refrigeration cycle apparatus
 本発明は、熱交換器に付着した霜を除く除霜運転を行う冷凍サイクル装置、及び冷凍サイクル装置の除霜運転方法に関する。 The present invention relates to a refrigeration cycle apparatus that performs a defrosting operation for removing frost adhering to a heat exchanger, and a defrosting operation method for the refrigeration cycle apparatus.
 熱源側の熱交換器と利用側の熱交換器とを有する冷凍サイクルを備えた空気調和装置がある。このような空気調和装置の暖房運転時には、冷凍サイクルを循環する冷媒が凝縮器として機能する利用側の熱交換器に供給される空気に放熱し、加熱された空気が空調対象空間に送られる。暖房運転時に蒸発器として機能する熱源側の熱交換器は、屋外に設置されることがある。例えば冬季などの外気温度が低いときに暖房運転を実行すると、蒸発器として機能する熱源側の熱交換器に、霜が付着することがある。霜が成長すると、冷凍サイクル能力の低下または熱源側の熱交換器の故障を引き起こしうる。このため、熱源側の熱交換器に付着した霜を溶かす除霜運転を所定時間おきに行う必要がある。 There is an air conditioner equipped with a refrigeration cycle having a heat source side heat exchanger and a use side heat exchanger. During the heating operation of such an air conditioner, the refrigerant circulating in the refrigeration cycle dissipates heat to the air supplied to the heat exchanger on the use side that functions as a condenser, and the heated air is sent to the air-conditioning target space. The heat source side heat exchanger that functions as an evaporator during heating operation may be installed outdoors. For example, if the heating operation is executed when the outside air temperature is low, such as in winter, frost may adhere to the heat exchanger on the heat source side that functions as an evaporator. When frost grows, it may cause a decrease in refrigeration cycle capacity or a failure of the heat exchanger on the heat source side. For this reason, it is necessary to perform the defrosting operation which melt | dissolves the frost adhering to the heat exchanger by the side of a heat source for every predetermined time.
 ここで、除霜運転を行う空気調和装置として、除霜対象である室外熱交換器に霜が付着していると思われる温度条件が予め設定されていて、暖房運転が行われているときに、室外熱交換器の温度が所定温度以下となると、除霜運転を開始する技術が提案されている(例えば、特許文献1参照)。 Here, as an air conditioner that performs a defrosting operation, when a temperature condition in which frost appears to be attached to an outdoor heat exchanger that is a defrosting target is set in advance, and a heating operation is performed A technique for starting a defrosting operation when the temperature of the outdoor heat exchanger becomes equal to or lower than a predetermined temperature has been proposed (for example, see Patent Document 1).
特開2015-218940号公報(第11頁)Japanese Patent Laying-Open No. 2015-218940 (page 11)
 従来の技術は、除霜対象となる熱交換器の温度から経験則に基づいて熱交換器の着霜状態を検出して、除霜運転を開始する。しかし、除霜対象となる熱交換器の温度のみからでは、実際の熱交換器の着霜状態を精度よく検出できていないおそれがあった。このため、熱交換器への多量の着霜のために暖房能力が低い状態で暖房運転が行われたり、除霜運転の時間が長引いたりすることがあった。そうなると、続けて実行される一組の暖房運転と除霜運転とからなる期間における暖房積算能力を考えた場合、この暖房積算能力が低下してしまっていた。 The conventional technology detects the frosting state of the heat exchanger based on the rule of thumb from the temperature of the heat exchanger to be defrosted, and starts the defrosting operation. However, there is a possibility that the actual frosting state of the heat exchanger cannot be accurately detected only from the temperature of the heat exchanger to be defrosted. For this reason, heating operation may be performed in a state where the heating capacity is low due to a large amount of frost formation on the heat exchanger, or the time of the defrosting operation may be prolonged. Then, when considering the heating integration capability in a period composed of a set of heating operation and defrosting operation to be executed in succession, this heating integration capability has been reduced.
 本発明は、上述のような課題を背景としてなされたものであり、積算暖房能力の低下を抑制した除霜運転を行う冷凍サイクル装置を提供するものである。また、積算暖房能力の低下を抑制する冷凍サイクル装置の除霜運転方法を提供するものである。 The present invention has been made against the background of the above-described problems, and provides a refrigeration cycle apparatus that performs a defrosting operation while suppressing a decrease in accumulated heating capacity. Moreover, the defrost operation method of the refrigerating-cycle apparatus which suppresses the fall of integrated heating capability is provided.
 本発明の冷凍サイクル装置は、圧縮機と、第1熱交換器と、複数の絞り装置と、複数の第2熱交換器と、前記第1熱交換器の周囲温度を検出する第1温度検出器と、前記複数の第2熱交換器のそれぞれの暖房能力を記憶する記憶部と、前記第1熱交換器を蒸発器として機能させ、前記複数の第2熱交換器のうちの少なくとも一部を凝縮器として機能させる暖房運転を行う制御装置とを備え、前記制御装置は、前記暖房運転中に、前記第1温度検出器の検出値と、前記複数の第2熱交換器のうち前記凝縮器として機能しているものの暖房能力の合計値とに基づいて、第1除霜運転と第2除霜運転とのいずれかを選択し、前記第1除霜運転を選択した場合には前記暖房運転の運転時間が第1運転時間に到達すると前記第1除霜運転を開始し、前記第2除霜運転を選択した場合には前記暖房運転の運転時間が前記第1運転時間よりも短い第2運転時間に到達すると前記第2除霜運転を開始するものである。 The refrigeration cycle apparatus of the present invention includes a compressor, a first heat exchanger, a plurality of expansion devices, a plurality of second heat exchangers, and a first temperature detection for detecting an ambient temperature of the first heat exchanger. A storage unit that stores the heating capacity of each of the plurality of second heat exchangers, the first heat exchanger functioning as an evaporator, and at least a part of the plurality of second heat exchangers A control device that performs a heating operation that functions as a condenser, and the control device is configured to detect the detected value of the first temperature detector and the condensing of the plurality of second heat exchangers during the heating operation. If either the first defrosting operation or the second defrosting operation is selected based on the total value of the heating capacity of what is functioning as a cooler, and the first defrosting operation is selected, the heating is performed. When the operation time of the operation reaches the first operation time, the first defrosting operation is started. In which the operating time of the heating operation is started the second defrosting operation to reach the second operating time shorter than the first operation time in case of selecting the second defrosting operation.
 本発明の冷凍サイクル装置の除霜運転方法は、圧縮機、第1熱交換器、複数の絞り装置及び複数の第2熱交換器を備えた冷凍サイクル装置の除霜運転方法であって、前記第1熱交換器が蒸発器として機能し、前記複数の第2熱交換器のうちの少なくとも一部が凝縮器として機能する暖房運転中に、前記第1熱交換器の周囲温度を検出し、前記第1熱交換器の周囲温度と、前記複数の第2熱交換器のうち前記凝縮器として機能しているものの暖房能力の合計値とに基づいて、第1除霜運転と第2除霜運転とのいずれかを選択し、前記第1除霜運転を選択した場合には前記暖房運転の運転時間が第1運転時間に到達すると前記第1除霜運転を開始し、前記第2除霜運転を選択した場合には前記暖房運転の運転時間が前記第1運転時間よりも短い第2運転時間に到達すると前記第2除霜運転を開始するものである。 A defrosting operation method for a refrigeration cycle apparatus according to the present invention is a defrosting operation method for a refrigeration cycle apparatus including a compressor, a first heat exchanger, a plurality of expansion devices, and a plurality of second heat exchangers, During the heating operation in which the first heat exchanger functions as an evaporator and at least a part of the plurality of second heat exchangers functions as a condenser, the ambient temperature of the first heat exchanger is detected, Based on the ambient temperature of the first heat exchanger and the total heating capacity of the plurality of second heat exchangers functioning as the condenser, the first defrosting operation and the second defrosting are performed. When the operation is selected and the first defrosting operation is selected, the first defrosting operation is started when the operation time of the heating operation reaches the first operation time, and the second defrosting operation is started. When operation is selected, the operation time of the heating operation is shorter than the first operation time. Wherein upon reaching the second operating time in which the second defrosting operation is started.
 本発明によれば、凝縮器として機能する第1熱交換器の周囲温度と、蒸発器として機能する第2熱交換器の暖房能力の合計値とに基づいて、暖房運転の運転時間を異ならせて、除霜運転を開始する。このため、除霜対象となる熱交換器の温度から経験則に基づいて除霜運転を開始する場合と比較して、除霜対象となる第1熱交換器への実際の着霜状態がより反映されたタイミングで除霜運転を開始することができる。したがって、続けて実行される一組の暖房運転と除霜運転とからなる期間における、積算暖房能力の低下を抑制することができる。 According to the present invention, based on the ambient temperature of the first heat exchanger that functions as a condenser and the total value of the heating capacity of the second heat exchanger that functions as an evaporator, the operating time of the heating operation is varied. The defrosting operation is started. For this reason, compared with the case where a defrost operation is started based on an empirical rule from the temperature of the heat exchanger used as a defrost object, the actual frost formation state to the 1st heat exchanger used as a defrost object is more. The defrosting operation can be started at the reflected timing. Therefore, it is possible to suppress a decrease in the integrated heating capacity in a period including a set of heating operations and a defrosting operation that are continuously executed.
実施の形態1に係る冷凍サイクル装置の回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の機能ブロック図である。3 is a functional block diagram of the refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の暖房運転及び除霜運転を説明するフローチャートである。It is a flowchart explaining the heating operation and the defrosting operation of the refrigeration cycle apparatus according to Embodiment 1. 実施の形態1に係る第1除霜運転の積算暖房能力を例示する図である。It is a figure which illustrates the integrated heating capability of the 1st defrost operation which concerns on Embodiment 1. FIG. 実施の形態1に係る第2除霜運転の積算暖房能力を例示する図である。It is a figure which illustrates the integrated heating capability of the 2nd defrost operation which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置の回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る冷凍サイクル装置の機能ブロック図である。6 is a functional block diagram of a refrigeration cycle apparatus according to Embodiment 2. FIG. 実施の形態2に係る冷凍サイクル装置の暖房運転及び除霜運転を説明するフローチャートである。6 is a flowchart illustrating a heating operation and a defrosting operation of the refrigeration cycle apparatus according to Embodiment 2.
 以下、図面を適宜参照しながら本発明の冷凍サイクル装置を空気調和装置に適用した場合の実施の形態について説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通する。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, an embodiment when the refrigeration cycle apparatus of the present invention is applied to an air conditioner will be described with reference to the drawings as appropriate. In the following drawings, the size relationship of each component may be different from the actual one. In the following drawings, the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置100の回路構成の一例を示す図である。冷凍サイクル装置100は、空調対象空間を暖房又は冷房する空気調和装置として利用される。図1では、冷房運転における冷媒の流れを破線矢印で、暖房運転における冷媒の流れを実線矢印で示している。
Embodiment 1 FIG.
1 is a diagram illustrating an example of a circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1. FIG. The refrigeration cycle apparatus 100 is used as an air conditioner that heats or cools the air-conditioning target space. In FIG. 1, the refrigerant flow in the cooling operation is indicated by broken line arrows, and the refrigerant flow in the heating operation is indicated by solid line arrows.
<冷凍サイクル装置100の構成>
 冷凍サイクル装置100は、圧縮機1と、第1熱交換器2と、複数の絞り装置3a、3bと、複数の第2熱交換器4a、4bとが、冷媒配管によって接続されて構成された、蒸気圧縮式の冷凍サイクルを有している。冷凍サイクルを循環する冷媒は、例えば、R410A、R404A、R32、HFO1234yfやR32とHFO1234yf等を一定の比率で混合させた非共沸混合冷媒である。また、冷凍サイクル装置100は、第1熱交換器2の周囲温度を検出する第1温度検出器5を備えている。さらに、本実施の形態の冷凍サイクル装置100は、冷媒流路切替装置6、アキュムレータ7、逆止弁8及び室外ファン9を備えている。
<Configuration of refrigeration cycle apparatus 100>
The refrigeration cycle apparatus 100 is configured by connecting a compressor 1, a first heat exchanger 2, a plurality of expansion devices 3a and 3b, and a plurality of second heat exchangers 4a and 4b through refrigerant pipes. It has a vapor compression refrigeration cycle. The refrigerant circulating in the refrigeration cycle is, for example, a non-azeotropic refrigerant mixture in which R410A, R404A, R32, HFO1234yf, R32 and HFO1234yf, etc. are mixed at a constant ratio. The refrigeration cycle apparatus 100 includes a first temperature detector 5 that detects the ambient temperature of the first heat exchanger 2. Furthermore, the refrigeration cycle apparatus 100 of the present embodiment includes a refrigerant flow switching device 6, an accumulator 7, a check valve 8, and an outdoor fan 9.
 冷凍サイクル装置100を構成する部材は、熱源機である室外機30の筐体又は利用側機である室内機40a、40bの筐体に収容されている。なお、本実施の形態では、1台の室外機30に対し、2台の室内機40a、40bが並列に接続された構成を例示するが、室外機30及び室内機40a、40bの台数は一例であって、図示の台数には限定されない。 The members constituting the refrigeration cycle apparatus 100 are accommodated in a case of the outdoor unit 30 that is a heat source unit or a case of the indoor units 40a and 40b that are use side units. In the present embodiment, a configuration in which two indoor units 40a and 40b are connected in parallel to one outdoor unit 30 is illustrated, but the number of outdoor units 30 and indoor units 40a and 40b is an example. However, the number of units shown is not limited.
(室外機30)
 室外機30は、空調対象空間とは別の空間、例えば屋外に設置される。室外機30は、圧縮機1、逆止弁8、冷媒流路切替装置6、第1熱交換器2、アキュムレータ7及び室外ファン9を収容している。
(Outdoor unit 30)
The outdoor unit 30 is installed in a space different from the air-conditioning target space, for example, outdoors. The outdoor unit 30 houses the compressor 1, the check valve 8, the refrigerant flow switching device 6, the first heat exchanger 2, the accumulator 7, and the outdoor fan 9.
 圧縮機1は、アキュムレータ7を介して流入してきた冷媒を圧縮して高温高圧のガス冷媒として吐出する。圧縮機1は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、往復圧縮機等で構成することができる。また、圧縮機1を容量制御可能なインバータ圧縮機で構成するとよい。 Compressor 1 compresses the refrigerant flowing in through accumulator 7 and discharges it as a high-temperature and high-pressure gas refrigerant. The compressor 1 can be comprised by a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor etc., for example. Moreover, it is good to comprise the compressor 1 with the inverter compressor which can control capacity | capacitance.
 逆止弁8は、圧縮機1の吐出側の冷媒配管に設けられ、冷媒を一方向にのみ流す弁である。逆止弁8は、圧縮機1から吐出された冷媒が圧縮機1へ逆流することを防ぐ。なお、逆止弁8は、冷凍サイクル装置100に必須の構成ではない。 The check valve 8 is a valve that is provided in the refrigerant pipe on the discharge side of the compressor 1 and allows the refrigerant to flow only in one direction. The check valve 8 prevents the refrigerant discharged from the compressor 1 from flowing back to the compressor 1. The check valve 8 is not an essential component of the refrigeration cycle apparatus 100.
 冷媒流路切替装置6は、圧縮機1の吐出側の冷媒配管に設けられた弁を有し、この弁の開閉状態によって、圧縮機1から吐出された冷媒の流路を、第1熱交換器2側と第2熱交換器4a、4b側のいずれか一方に切り替える。例えば、二方弁又は三方弁の組み合わせ、あるいは、四方弁等によって、冷媒流路切替装置6を構成することができる。 The refrigerant flow switching device 6 has a valve provided in the refrigerant pipe on the discharge side of the compressor 1, and the first heat exchange is performed on the flow path of the refrigerant discharged from the compressor 1 by the open / close state of this valve. Switch to one of the heat exchanger 2 side and the second heat exchanger 4a, 4b side. For example, the refrigerant flow switching device 6 can be configured by a combination of a two-way valve or a three-way valve, or a four-way valve.
 第1熱交換器2は、暖房運転時には蒸発器として作用し、冷房運転時には凝縮器として作用する。第1熱交換器2を流れる冷媒と、第1熱交換器2に供給される空気等の熱交換流体との間で、熱交換が行われる。例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器等で、第1熱交換器2を構成することができる。なお、ここでは、第1熱交換器2がフィンアンドチューブ型熱交換器である場合を例に説明する。 The first heat exchanger 2 acts as an evaporator during heating operation, and acts as a condenser during cooling operation. Heat exchange is performed between the refrigerant flowing through the first heat exchanger 2 and a heat exchange fluid such as air supplied to the first heat exchanger 2. For example, the 1st heat exchanger 2 can be comprised with a fin and tube type heat exchanger, a microchannel heat exchanger, etc. Here, a case where the first heat exchanger 2 is a fin-and-tube heat exchanger will be described as an example.
 第1温度検出器5は、第1熱交換器2の周囲温度を検出する。第1熱交換器2の周囲温度とは、第1熱交換器2が設置された空間の空気温度である。第1熱交換器2が屋外に設置される場合には、第1温度検出器5は外気温度を検出する。 The first temperature detector 5 detects the ambient temperature of the first heat exchanger 2. The ambient temperature of the first heat exchanger 2 is the air temperature in the space where the first heat exchanger 2 is installed. When the first heat exchanger 2 is installed outdoors, the first temperature detector 5 detects the outside air temperature.
 アキュムレータ7は、圧縮機1の吸入側の冷媒配管に設けられた、余剰冷媒の貯留容器である。暖房運転と冷房運転との間の冷媒流量の違い、複数の室内機40a、40bの運転台数が変化したときに生じる過渡的な冷媒流量の変化、あるいは、負荷条件によって生じる冷媒流量の変化によって、冷凍サイクル内には余剰冷媒が発生しうる。アキュムレータ7は、このような余剰冷媒を貯留する。アキュムレータ7内では、液冷媒とガス冷媒とが分離されており、ガス冷媒が圧縮機1に供給される。なお、アキュムレータ7は、冷凍サイクル装置100に必須の構成ではない。 The accumulator 7 is an excess refrigerant storage container provided in the refrigerant pipe on the suction side of the compressor 1. Due to the difference in the refrigerant flow rate between the heating operation and the cooling operation, the transient refrigerant flow change that occurs when the number of operating units of the plurality of indoor units 40a and 40b changes, or the refrigerant flow change that occurs due to load conditions, Surplus refrigerant can be generated in the refrigeration cycle. The accumulator 7 stores such surplus refrigerant. In the accumulator 7, the liquid refrigerant and the gas refrigerant are separated, and the gas refrigerant is supplied to the compressor 1. The accumulator 7 is not an essential component of the refrigeration cycle apparatus 100.
 室外ファン9は、第1熱交換器2を流れる冷媒と熱交換する熱交換流体を、第1熱交換器2に供給する装置の一例である。例えば、複数の翼を有するプロペラファンで室外ファン9を構成することができる。室外ファン9は、第1熱交換器2に空気を供給可能な場所に設置されていればよい。 The outdoor fan 9 is an example of an apparatus that supplies the first heat exchanger 2 with a heat exchange fluid that exchanges heat with the refrigerant flowing through the first heat exchanger 2. For example, the outdoor fan 9 can be configured by a propeller fan having a plurality of blades. The outdoor fan 9 only needs to be installed in a place where air can be supplied to the first heat exchanger 2.
(室内機40a、40b)
 室内機40a、40bは、それぞれ空調対象空間に設置される。室内機40aは、絞り装置3a、第2熱交換器4a及び室内ファン10aを収容しており、室内機40bは、絞り装置3b、第2熱交換器4b及び室内ファン10bを収容している。なお、室内機40a及びこれに収容される部材と、室内機40b及びこれに収容される部材とは、機能及び基本構造が同じであるため、ここでは室内機40a及びこれに収容された部材を例に説明する。
( Indoor units 40a, 40b)
The indoor units 40a and 40b are each installed in the air-conditioning target space. The indoor unit 40a houses the expansion device 3a, the second heat exchanger 4a, and the indoor fan 10a, and the indoor unit 40b houses the expansion device 3b, the second heat exchanger 4b, and the indoor fan 10b. In addition, since the function and basic structure are the same as the indoor unit 40a and the member accommodated therein, and the indoor unit 40b and the member accommodated in the indoor unit 40a, the indoor unit 40a and the member accommodated therein are here. Explained as an example.
 絞り装置3aは、第1熱交換器2と第2熱交換器4aとを接続する冷媒配管に設置されており、冷媒の流路を絞ることで通過する冷媒を膨張させて減圧する装置である。例えば、冷媒の流量を調整可能な弁を有する電動膨張弁等で絞り装置3aを構成することができる。電子膨張弁のほか、受圧部にダイアフラムを採用した機械式膨張弁、または、キャピラリーチューブ等を絞り装置3aとして用いることができる。 The expansion device 3a is installed in a refrigerant pipe that connects the first heat exchanger 2 and the second heat exchanger 4a, and is an apparatus that expands and depressurizes the refrigerant that passes by restricting the flow path of the refrigerant. . For example, the expansion device 3a can be configured by an electric expansion valve having a valve capable of adjusting the flow rate of the refrigerant. In addition to the electronic expansion valve, a mechanical expansion valve employing a diaphragm for the pressure receiving portion, a capillary tube, or the like can be used as the expansion device 3a.
 第2熱交換器4aは、暖房運転時には凝縮器として作用し、冷房運転時には蒸発器として作用する。第2熱交換器4aを流れる冷媒と、第2熱交換器4aに供給される空気との間で熱交換が行われ、暖房用空気あるいは冷房用空気が生成される。例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器等で第2熱交換器4aを構成することができる。なお、ここでは、冷媒が流れる配管とこの配管に取り付けられたフィンとを有するフィンアンドチューブ型熱交換器で構成された第2熱交換器4aを例に説明する。 The second heat exchanger 4a acts as a condenser during heating operation and acts as an evaporator during cooling operation. Heat exchange is performed between the refrigerant flowing through the second heat exchanger 4a and the air supplied to the second heat exchanger 4a to generate heating air or cooling air. For example, the 2nd heat exchanger 4a can be comprised with a fin and tube type heat exchanger, a microchannel heat exchanger, etc. Here, the second heat exchanger 4a configured by a fin-and-tube heat exchanger having a pipe through which the refrigerant flows and fins attached to the pipe will be described as an example.
 室内ファン10aは、第2熱交換器4aを流れる冷媒と熱交換する空気を、第2熱交換器4aに供給する流体搬送装置である。例えば複数の翼を有するプロペラファンで室内ファン10aを構成することができる。室内ファン10aは、第2熱交換器4aに空気を供給可能な場所に設置される。 The indoor fan 10a is a fluid transfer device that supplies air that exchanges heat with the refrigerant flowing through the second heat exchanger 4a to the second heat exchanger 4a. For example, the indoor fan 10a can be configured by a propeller fan having a plurality of blades. The indoor fan 10a is installed in a place where air can be supplied to the second heat exchanger 4a.
 複数の第2熱交換器4a、4bのそれぞれは、予め定められた暖房能力(kW)と冷房能力(kW)とを有している。暖房能力及び冷房能力は、第2熱交換器4a、4bの大きさ、室内ファン10a、10bからの送風量及び圧縮機1の能力を含め、種々のパラメータを用いて定義されうるが、暖房能力及び冷房能力の定義に用いられるパラメータは特に限定されない。冷凍サイクル装置100に設けられている複数の第2熱交換器4a、4bは、互いに暖房能力及び冷房能力が同じであってもよいし、異なっていてもよい。このことは、第2熱交換器の数が3以上であっても同様である。 Each of the plurality of second heat exchangers 4a and 4b has a predetermined heating capacity (kW) and cooling capacity (kW). The heating capacity and the cooling capacity can be defined using various parameters including the size of the second heat exchangers 4a and 4b, the amount of air blown from the indoor fans 10a and 10b, and the capacity of the compressor 1. The parameters used for defining the cooling capacity are not particularly limited. The plurality of second heat exchangers 4a and 4b provided in the refrigeration cycle apparatus 100 may have the same heating capacity and cooling capacity or may be different from each other. This is the same even if the number of second heat exchangers is three or more.
 図2は、実施の形態1に係る冷凍サイクル装置100の機能ブロック図である。制御装置20は、冷凍サイクル装置100に設けられた圧縮機1、室外ファン9、室内ファン10a、10b,絞り装置3a、3b及び冷媒流路切替装置6等のアクチュエータを制御する。制御装置20は、各アクチュエータに制御信号を送信可能に接続されている。また、制御装置20には、第1温度検出器5及びタイマ11からの信号が入力される。制御装置20は、第1温度検出器5及びタイマ11から入力される信号に基づいて、アクチュエータを制御する。なお、室内機40a、40bのそれぞれに、設定温度並びに運転の開始及び停止を入力するリモートコントローラを設け、リモートコントローラからの信号を制御装置20に入力するようにしてもよい。制御装置20は、各室内機40a、40b毎に設定される設定温度と、運転の開始及び停止の情報とに基づいて、後述する冷房運転、暖房運転及び除霜運転を実行する。 FIG. 2 is a functional block diagram of the refrigeration cycle apparatus 100 according to the first embodiment. The control device 20 controls actuators such as the compressor 1, the outdoor fan 9, the indoor fans 10a and 10b, the expansion devices 3a and 3b, and the refrigerant flow switching device 6 that are provided in the refrigeration cycle apparatus 100. The control device 20 is connected to each actuator so that a control signal can be transmitted. Further, the control device 20 receives signals from the first temperature detector 5 and the timer 11. The control device 20 controls the actuator based on signals input from the first temperature detector 5 and the timer 11. Note that each of the indoor units 40a and 40b may be provided with a remote controller that inputs the set temperature and the start and stop of the operation, and a signal from the remote controller may be input to the control device 20. The control device 20 performs a cooling operation, a heating operation, and a defrosting operation, which will be described later, based on the set temperature set for each of the indoor units 40a and 40b and information on the start and stop of the operation.
 制御装置20は、処理回路21と、記憶部22とを有する。処理回路21は、専用のハードウェア、または記憶部に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。 The control device 20 includes a processing circuit 21 and a storage unit 22. The processing circuit 21 includes dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, or a processor) that executes a program stored in a storage unit. The
 処理回路21が専用のハードウェアである場合、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、またはこれらを組み合わせたものが処理回路21に該当する。処理回路21が実現する各機能のそれぞれを、個別のハードウェアで実現してもよいし、各機能を一つのハードウェアで実現してもよい。 When the processing circuit 21 is dedicated hardware, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination of these corresponds to the processing circuit 21. To do. Each function realized by the processing circuit 21 may be realized by individual hardware, or each function may be realized by one piece of hardware.
 処理回路21がCPUの場合、処理回路21が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、処理回路21の内部メモリに格納される。処理回路21は、内部メモリに格納されたプログラムを読み出して実行することにより、各機能を実現する。内部メモリは、プログラムメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。 When the processing circuit 21 is a CPU, each function executed by the processing circuit 21 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in the internal memory of the processing circuit 21. The processing circuit 21 implements each function by reading and executing a program stored in the internal memory. The internal memory is a non-volatile or volatile semiconductor memory such as a program memory, EPROM, or EEPROM.
 なお、制御装置20の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。また、図2では各アクチュエータの制御を制御装置20が統括して行うものとして示しているが、制御装置20は物理的に図示のように構成されていることを要しない。すなわち、制御装置20の分散及び統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散又は統合して構成することができる。また、制御装置20は、室外機30に設置されうるが、制御装置20の具体的配置は限定されない。制御装置20の機能を複数の制御装置で実現する場合には、複数の制御装置を室外機30及び複数の室内機40a、40bのそれぞれに分散配置してもよい。 Note that a part of the function of the control device 20 may be realized by dedicated hardware, and a part may be realized by software or firmware. Although FIG. 2 shows that the control device 20 controls the actuators in an integrated manner, the control device 20 does not need to be physically configured as illustrated. That is, the specific form of distribution and integration of the control device 20 is not limited to the illustrated one, and all or a part thereof is functionally or physically distributed in arbitrary units according to various loads or usage conditions. Alternatively, they can be integrated. Moreover, although the control apparatus 20 can be installed in the outdoor unit 30, the specific arrangement | positioning of the control apparatus 20 is not limited. When the function of the control device 20 is realized by a plurality of control devices, the plurality of control devices may be distributed and arranged in each of the outdoor unit 30 and the plurality of indoor units 40a and 40b.
 記憶部22は、少なくとも、暖房能力情報22aを記憶する。暖房能力情報22aは、複数の第2熱交換器4a、4bのそれぞれと、予め定められた暖房能力とを対応付けた情報である。記憶部22は、暖房能力情報22aのほか、制御装置20が制御処理に用いる各種閾値を記憶する。記憶部22は、例えば不揮発性の半導体メモリで構成される。 The storage unit 22 stores at least the heating capacity information 22a. The heating capacity information 22a is information in which each of the plurality of second heat exchangers 4a and 4b is associated with a predetermined heating capacity. The memory | storage part 22 memorize | stores the various threshold values which the control apparatus 20 uses for a control process other than the heating capability information 22a. The storage unit 22 is configured by, for example, a nonvolatile semiconductor memory.
<冷凍サイクル装置100の動作>
 本実施の形態の冷凍サイクル装置100は、冷房運転、暖房運転及び除霜運転を行う。以下、冷房運転、暖房運転及び除霜運転のそれぞれにおける冷凍サイクルの作用を、冷媒の流れとともに説明する。
<Operation of the refrigeration cycle apparatus 100>
The refrigeration cycle apparatus 100 of the present embodiment performs a cooling operation, a heating operation, and a defrosting operation. Hereinafter, the operation of the refrigeration cycle in each of the cooling operation, the heating operation, and the defrosting operation will be described together with the flow of the refrigerant.
(冷房運転)
 冷房運転は、室内機40a、40bが設置された空調対象空間に、冷房用空気を供給する運転である。冷房運転のときには、冷媒流路切替装置6は、圧縮機1の吐出側が第1熱交換器2に接続される冷媒流路を形成している。圧縮機1から吐出された高温高圧のガス冷媒は、冷媒流路切替装置6を経由して、凝縮器として機能する第1熱交換器2に流入する。第1熱交換器2に流入した冷媒は、室外ファン9から送られる空気と熱交換して凝縮し、低温高圧の液冷媒となって第1熱交換器2から流出する。
(Cooling operation)
The cooling operation is an operation of supplying cooling air to the air-conditioning target space where the indoor units 40a and 40b are installed. During the cooling operation, the refrigerant flow switching device 6 forms a refrigerant flow path in which the discharge side of the compressor 1 is connected to the first heat exchanger 2. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the first heat exchanger 2 functioning as a condenser via the refrigerant flow switching device 6. The refrigerant that has flowed into the first heat exchanger 2 is condensed by exchanging heat with the air sent from the outdoor fan 9 and becomes a low-temperature and high-pressure liquid refrigerant and flows out of the first heat exchanger 2.
 第1熱交換器2から流出した低温高圧の液冷媒は、絞り装置3a、3bに並列に流入する。絞り装置3a、3bに流入した低温高圧の液冷媒は、絞り装置3a、3bによって減圧されて低温低圧の液冷媒又は二相冷媒となり、絞り装置3a、3bから流出する。絞り装置3a、3bから流出した低温低圧の冷媒は、蒸発器として機能する第2熱交換器4a、4bのそれぞれに流入する。第2熱交換器4a、4bに流入した冷媒は、室内ファン10a、10bから送られる空気と熱交換して蒸発し、低温低圧のガス冷媒となって第2熱交換器4a、4bから流出する。第2熱交換器4a、4bにおける冷媒と空気との熱交換により、冷媒が空気から吸熱することで、空調対象空間の冷房用空気が生成される。 The low-temperature and high-pressure liquid refrigerant that has flowed out of the first heat exchanger 2 flows in parallel into the expansion devices 3a and 3b. The low-temperature and high-pressure liquid refrigerant that has flowed into the expansion devices 3a and 3b is decompressed by the expansion devices 3a and 3b to become a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant, and flows out from the expansion devices 3a and 3b. The low-temperature and low-pressure refrigerant that has flowed out of the expansion devices 3a and 3b flows into the second heat exchangers 4a and 4b that function as evaporators. The refrigerant flowing into the second heat exchangers 4a and 4b evaporates by exchanging heat with the air sent from the indoor fans 10a and 10b and becomes a low-temperature and low-pressure gas refrigerant and flows out of the second heat exchangers 4a and 4b. . By the heat exchange between the refrigerant and the air in the second heat exchangers 4a and 4b, the refrigerant absorbs heat from the air, so that air for cooling the air-conditioning target space is generated.
 第2熱交換器4a、4bから流出した冷媒は、冷媒流路切替装置6及びアキュムレータ7を介して圧縮機1に吸入される。冷房運転では、このような冷凍サイクルが繰り返される。なお、複数の室内機40a、40b毎に、冷房運転の実行と停止を切り替えることもできる。例えば、室内機40aは冷房運転を実行し、室内機40bは冷房運転を停止する場合には、室内機40aの絞り装置3aは冷媒が通過する所定開度の流路を維持する一方で、室内機40bの絞り装置3bは流路を閉鎖し、第2熱交換器4bに冷媒が流入しないようにする。このようにすることで、複数の室内機40a、40bのうちの一部のみ冷房運転を実行することができる。 The refrigerant that has flowed out of the second heat exchangers 4a and 4b is sucked into the compressor 1 through the refrigerant flow switching device 6 and the accumulator 7. In the cooling operation, such a refrigeration cycle is repeated. In addition, execution and a stop of a cooling operation can also be switched for every some indoor unit 40a, 40b. For example, when the indoor unit 40a performs a cooling operation and the indoor unit 40b stops the cooling operation, the expansion device 3a of the indoor unit 40a maintains a flow path with a predetermined opening through which the refrigerant passes, The expansion device 3b of the machine 40b closes the flow path so that the refrigerant does not flow into the second heat exchanger 4b. In this way, only a part of the plurality of indoor units 40a and 40b can perform the cooling operation.
(暖房運転)
 暖房運転は、室内機40a、40bが設置された空調対象空間に、暖房用空気を供給する運転である。暖房運転のときには、冷媒流路切替装置6は、圧縮機1の吐出側が第2熱交換器4a、4bに接続される冷媒流路を形成している。圧縮機1から吐出された高温高圧のガス冷媒は、冷媒流路切替装置6を経由して、凝縮器として機能する第2熱交換器4a、4bに並列に流入する。第2熱交換器4a、4bに流入した冷媒は、室内ファン10a、10bから送られる空気と熱交換して凝縮し、低温高圧の液冷媒となって第2熱交換器4a、4bから流出する。第2熱交換器4a、4bにおける冷媒と空気との熱交換により、冷媒が空気に放熱することで、空調対象空間の暖房用空気が生成される。
(Heating operation)
The heating operation is an operation of supplying heating air to the air-conditioning target space where the indoor units 40a and 40b are installed. During the heating operation, the refrigerant flow switching device 6 forms a refrigerant flow path in which the discharge side of the compressor 1 is connected to the second heat exchangers 4a and 4b. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows in parallel into the second heat exchangers 4a and 4b functioning as condensers via the refrigerant flow switching device 6. The refrigerant flowing into the second heat exchangers 4a and 4b exchanges heat with the air sent from the indoor fans 10a and 10b, condenses, and becomes a low-temperature and high-pressure liquid refrigerant and flows out from the second heat exchangers 4a and 4b. . By the heat exchange between the refrigerant and the air in the second heat exchangers 4a and 4b, the refrigerant radiates heat to the air, thereby generating heating air in the air-conditioning target space.
 第2熱交換器4a、4bから流出した低温高圧の液冷媒は、絞り装置3a、3bのそれぞれに流入する。絞り装置3a、3bに流入した低温高圧の液冷媒は、絞り装置3a、3bによって減圧されて低温低圧の液冷媒又は二相冷媒となり、絞り装置3a、3bから流出する。絞り装置3a、3bから流出した低温低圧の冷媒は、蒸発器として機能する第1熱交換器2に流入する。第1熱交換器2に流入した冷媒は、室外ファン9から送られる空気と熱交換して蒸発し、低温低圧のガス冷媒となって第1熱交換器2から流出する。 The low-temperature and high-pressure liquid refrigerant that has flowed out of the second heat exchangers 4a and 4b flows into the expansion devices 3a and 3b, respectively. The low-temperature and high-pressure liquid refrigerant that has flowed into the expansion devices 3a and 3b is decompressed by the expansion devices 3a and 3b to become a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant, and flows out from the expansion devices 3a and 3b. The low-temperature and low-pressure refrigerant that has flowed out of the expansion devices 3a and 3b flows into the first heat exchanger 2 that functions as an evaporator. The refrigerant that has flowed into the first heat exchanger 2 evaporates by exchanging heat with the air sent from the outdoor fan 9 and flows out of the first heat exchanger 2 as a low-temperature and low-pressure gas refrigerant.
 第1熱交換器2から流出した冷媒は、冷媒流路切替装置6及びアキュムレータ7を介して圧縮機1に吸入される。暖房運転では、このような冷凍サイクルが繰り返される。なお、複数の室内機40a、40b毎に、暖房運転の実行と停止を切り替えることもできる。例えば、室内機40aは暖房運転を実行し、室内機40bは暖房運転を停止する場合には、室内機40aの絞り装置3aは冷媒が通過する所定開度の流路を維持する一方で、室内機40bの絞り装置3bは流路を閉鎖し、第2熱交換器4bに冷媒が流入しないようにする。このようにすることで、複数の室内機40a、40bのうちの一部のみ暖房運転を実行することができる。 The refrigerant that has flowed out of the first heat exchanger 2 is sucked into the compressor 1 through the refrigerant flow switching device 6 and the accumulator 7. In the heating operation, such a refrigeration cycle is repeated. In addition, execution and a stop of heating operation can also be switched for every some indoor unit 40a, 40b. For example, when the indoor unit 40a performs the heating operation and the indoor unit 40b stops the heating operation, the expansion device 3a of the indoor unit 40a maintains a flow path with a predetermined opening through which the refrigerant passes, The expansion device 3b of the machine 40b closes the flow path so that the refrigerant does not flow into the second heat exchanger 4b. By doing in this way, heating operation can be performed only for some of a plurality of indoor units 40a and 40b.
(除霜運転)
 除霜運転は、暖房運転中に蒸発器として機能する第1熱交換器2に付着した霜を溶かすための運転である。本実施の形態の除霜運転は、暖房運転のときと冷媒の流れを逆にすることによって、すなわち上述した冷房運転のときと冷媒の流れを同じにすることによって、実現される。ただし、除霜運転のときには、冷房運転のときとは異なり、制御装置20は室内ファン10a、10bの運転を停止する。
(Defrosting operation)
The defrosting operation is an operation for melting frost attached to the first heat exchanger 2 functioning as an evaporator during the heating operation. The defrosting operation of the present embodiment is realized by reversing the refrigerant flow during the heating operation, that is, by making the refrigerant flow the same as that during the cooling operation described above. However, during the defrosting operation, unlike the cooling operation, the control device 20 stops the operation of the indoor fans 10a and 10b.
 本実施の形態の除霜運転には、第1除霜運転と第2除霜運転の2種類がある。第1除霜運転と第2除霜運転とでは、冷媒の流れは同じであるが、除霜運転を開始する条件(タイミング)が異なる。さらに本実施の形態では、第1除霜運転と第2除霜運転とでは、除霜運転の時間が異なり、第2除霜運転は第1除霜運転よりも運転時間が短い。以下、具体的に説明する。 There are two types of defrosting operation of the present embodiment, a first defrosting operation and a second defrosting operation. The refrigerant flow is the same between the first defrosting operation and the second defrosting operation, but the conditions (timing) for starting the defrosting operation are different. Further, in the present embodiment, the first defrosting operation and the second defrosting operation have different times for the defrosting operation, and the second defrosting operation has a shorter operation time than the first defrosting operation. This will be specifically described below.
<暖房運転及び除霜運転の動作制御>
 図3は、実施の形態1に係る冷凍サイクル装置100の暖房運転及び除霜運転を説明するフローチャートである。図3を参照して、制御装置20が暖房運転及び除霜運転において実行する制御を説明する。
<Operation control of heating operation and defrosting operation>
FIG. 3 is a flowchart for explaining the heating operation and the defrosting operation of the refrigeration cycle apparatus 100 according to the first embodiment. With reference to FIG. 3, the control which the control apparatus 20 performs in heating operation and defrost operation is demonstrated.
 暖房運転を開始すると(S1)、制御装置20は、第1温度検出器5の検出値に基づいて、第1熱交換器2の周囲温度が、TH2以上TH1以下の温度範囲に属しているか否かを検出する。ここで、TH2<TH1の関係を満たす。温度TH1は、例えば5℃、温度TH2は、例えば-3℃である。温度TH1及び温度TH2の具体的数値はここで例示したものに限定されないが、第1熱交換器2への着霜量が多くなりやすい温度範囲の上限値及び下限値が、それぞれ温度TH1及び温度TH2として予め定められ、記憶部22に記憶されている。 When the heating operation is started (S1), the control device 20 determines whether or not the ambient temperature of the first heat exchanger 2 belongs to a temperature range between TH2 and TH1 based on the detection value of the first temperature detector 5. To detect. Here, the relationship TH2 <TH1 is satisfied. The temperature TH1 is, for example, 5 ° C., and the temperature TH2 is, for example, −3 ° C. Specific numerical values of the temperature TH1 and the temperature TH2 are not limited to those exemplified here, but the upper limit value and the lower limit value of the temperature range in which the amount of frost formation on the first heat exchanger 2 is likely to increase are the temperature TH1 and the temperature, respectively. TH2 is determined in advance and stored in the storage unit 22.
 第1熱交換器2の周囲温度が、TH2以上TH1以下の温度範囲に属していない場合(S2;NO)は、ステップS8に進み、属している場合(S2;YES)は、複数の第2熱交換器4a、4bのうち、暖房運転中のものの合計暖房能力ΣQが、予め定められた閾値である第1値Q以上であるか否かを検出する。上述したように、本実施の形態の冷凍サイクル装置100に設けられた複数の室内機40a、40bは、個別に暖房運転の実行と停止が設定されうる。このため、制御装置20は、暖房運転を実行している室内機40a、40bの第2熱交換器4a、4bそれぞれの暖房能力を加算することで合計暖房能力ΣQを演算し、合計暖房能力ΣQと第1値Qとを比較することで、ステップS3の処理を実行する。制御装置20は、記憶部22に記憶されている暖房能力情報22aに基づいて、合計暖房能力ΣQを演算する。 If the ambient temperature of the first heat exchanger 2 does not belong to the temperature range of TH2 or more and TH1 or less (S2; NO), the process proceeds to step S8, and if it belongs (S2; YES), a plurality of second It is detected whether or not the total heating capacity ΣQ j of the heat exchangers 4a and 4b during the heating operation is not less than a first value Q that is a predetermined threshold value. As described above, the plurality of indoor units 40a and 40b provided in the refrigeration cycle apparatus 100 of the present embodiment can be set to execute and stop the heating operation individually. Therefore, the control device 20 calculates the total heating capacity ΣQ j by adding the heating capacities of the second heat exchangers 4a and 4b of the indoor units 40a and 40b that are performing the heating operation, and the total heating capacity The process of step S3 is executed by comparing ΣQ j with the first value Q. The control device 20 calculates the total heating capacity ΣQ j based on the heating capacity information 22 a stored in the storage unit 22.
 合計暖房能力ΣQが第1値Q以上である場合(S3;YES)は、ステップS4に進み、第1値Q未満である場合(S3;NO)は、ステップS8に進む。 When the total heating capacity ΣQ j is greater than or equal to the first value Q (S3; YES), the process proceeds to step S4, and when it is less than the first value Q (S3; NO), the process proceeds to step S8.
 次に、ステップS2でNOの場合及びステップS3でNOの場合に進むステップS8以降の処理を説明する。ステップS8において、制御装置20は、暖房運転時間が、予め定められた閾値である第1運転時間T11以上であるか否かを検出する(S8)。暖房運転時間の定義は特に限定されないが、本実施の形態では、暖房運転における圧縮機1の運転時間を、暖房運転時間とする。制御装置20は、暖房運転を開始してからの圧縮機1の運転時間をタイマ11で計測し、計測した時間と第1運転時間T11とを対比することにより、ステップS8の処理を実行する。第1運転時間T11の値は、例えば、50分であるが、この数値に限定されない。 Next, the processing after step S8 will be described which proceeds when NO in step S2 and NO in step S3. In step S8, the control device 20 detects whether or not the heating operation time is equal to or longer than a first operation time T11 that is a predetermined threshold value (S8). Although the definition of heating operation time is not specifically limited, In this Embodiment, the operation time of the compressor 1 in heating operation is made into heating operation time. The control device 20 measures the operation time of the compressor 1 after starting the heating operation with the timer 11, and compares the measured time with the first operation time T11 to execute the process of step S8. The value of the first operating time T11 is, for example, 50 minutes, but is not limited to this value.
 ステップS8において、暖房運転時間が第1運転時間T11に到達している場合には、制御装置20は、第1除霜運転を開始する(S9)。第1除霜運転を開始すると、制御装置20は、前述したように冷媒流路切替装置6を制御して、圧縮機1から吐出される冷媒の流路を、第1熱交換器2に接続する。このようにすることで、圧縮機1から吐出された高温冷媒が第1熱交換器2に供給され、第1熱交換器2に付着した霜が溶かされる。 In step S8, when the heating operation time has reached the first operation time T11, the control device 20 starts the first defrosting operation (S9). When the first defrosting operation is started, the control device 20 controls the refrigerant flow switching device 6 as described above to connect the refrigerant flow discharged from the compressor 1 to the first heat exchanger 2. To do. By doing in this way, the high temperature refrigerant | coolant discharged from the compressor 1 is supplied to the 1st heat exchanger 2, and the frost adhering to the 1st heat exchanger 2 is melted.
 第1除霜運転の運転時間が予め定められた除霜時間T1未満の間(S10:NO)、制御装置20は第1除霜運転を継続し、第1除霜運転の運転時間が除霜時間T1以上になると(S10:YES)、制御装置20は第1除霜運転を終了する(S11)。第1除霜運転を終了すると、制御装置20は暖房運転を開始する(S1)。ここで、本実施の形態では、第1除霜運転の除霜時間T1は、後述する第2除霜運転の除霜時間T2よりも長い時間とすることができる。具体的な数値は限定されないものの、除霜時間T1は、例えば12分である。 While the operation time of the first defrosting operation is less than the predetermined defrosting time T1 (S10: NO), the control device 20 continues the first defrosting operation, and the operation time of the first defrosting operation is defrosted. If it becomes more than time T1 (S10: YES), the control apparatus 20 will complete | finish a 1st defrost driving | operation (S11). When the first defrosting operation is finished, the control device 20 starts the heating operation (S1). Here, in the present embodiment, the defrosting time T1 of the first defrosting operation can be longer than the defrosting time T2 of the second defrosting operation described later. Although a specific numerical value is not limited, the defrosting time T1 is, for example, 12 minutes.
 次に、ステップS3でYESの場合に進むステップS4以降の処理を説明する。ステップS4において、制御装置20は、暖房運転時間が、予め定められた閾値である第2運転時間T12以上であるか否かを検出する(S4)。暖房運転時間の定義は特に限定されないが、本実施の形態では、暖房運転における圧縮機1の運転時間を、暖房運転時間とする。制御装置20は、暖房運転を開始してからの圧縮機1の運転時間をタイマ11で計測し、計測した時間と第2運転時間T12とを対比することにより、ステップS4の処理を実行する。第2運転時間T12の値は、ステップS8で示す第1運転時間T11によりも短い値である。具体的な数値は限定されないものの、第2運転時間T12は、例えば40分である。 Next, the processing after step S4 that proceeds when YES is determined in step S3 will be described. In step S4, the control device 20 detects whether the heating operation time is equal to or longer than a second operation time T12 that is a predetermined threshold (S4). Although the definition of heating operation time is not specifically limited, In this Embodiment, the operation time of the compressor 1 in heating operation is made into heating operation time. The control device 20 measures the operation time of the compressor 1 after starting the heating operation with the timer 11, and compares the measured time with the second operation time T12 to execute the process of step S4. The value of the second operation time T12 is shorter than the first operation time T11 shown in step S8. Although a specific numerical value is not limited, the second operation time T12 is, for example, 40 minutes.
 ステップS4において、暖房運転時間が第2運転時間T12以上になると、制御装置20は、第2除霜運転を開始する(S5)。第2除霜運転を開始すると、制御装置20は、前述したように冷媒流路切替装置6を制御して、圧縮機1から吐出される冷媒の流路を、第1熱交換器2に接続する。このようにすることで、圧縮機1から吐出された高温冷媒が第1熱交換器2に供給され、第1熱交換器2に付着した霜が溶かされる。 In step S4, when the heating operation time becomes equal to or longer than the second operation time T12, the control device 20 starts the second defrosting operation (S5). When the second defrosting operation is started, the control device 20 controls the refrigerant flow switching device 6 as described above to connect the refrigerant flow discharged from the compressor 1 to the first heat exchanger 2. To do. By doing in this way, the high temperature refrigerant | coolant discharged from the compressor 1 is supplied to the 1st heat exchanger 2, and the frost adhering to the 1st heat exchanger 2 is melted.
 第2除霜運転の運転時間が予め定められた時間T2未満の間(S6:NO)、制御装置20は第2除霜運転を継続し、第2除霜運転の運転時間が除霜時間T2に到達すると(S6:YES)、制御装置20は第2除霜運転を終了する(S7)。第2除霜運転を終了すると、制御装置20は暖房運転を開始する(S1)。ここで、第2除霜運転の除霜時間T2は、第1除霜運転の除霜時間T1よりも短い時間でよい。具体的な数値は限定されないものの、時間T2は、例えば4分である。 While the operation time of the second defrosting operation is less than the predetermined time T2 (S6: NO), the control device 20 continues the second defrosting operation, and the operation time of the second defrosting operation is the defrosting time T2. (S6: YES), the control device 20 ends the second defrosting operation (S7). When the second defrosting operation is finished, the control device 20 starts the heating operation (S1). Here, the defrosting time T2 of the second defrosting operation may be shorter than the defrosting time T1 of the first defrosting operation. Although the specific numerical value is not limited, the time T2 is, for example, 4 minutes.
<暖房運転及び除霜運転の作用>
 本実施の形態の冷凍サイクル装置100の暖房運転及び除霜運転の作用を、図4及び図5並びに前述の図3を参照して説明する。図4は、実施の形態1に係る第1除霜運転の積算暖房能力を例示する図である。図5は、実施の形態1に係る第2除霜運転の積算暖房能力を例示する図である。図4及び図5の縦軸は暖房運転中の第2熱交換器4a、4bの暖房能力を示し、横軸は時間を示しており、繰り返し実行される暖房運転と第1除霜運転又は第2除霜運転を通じた暖房能力の変化を概念的に示している。
<Operation of heating operation and defrosting operation>
The operation of the heating operation and the defrosting operation of the refrigeration cycle apparatus 100 of the present embodiment will be described with reference to FIGS. 4 and 5 and the above-described FIG. FIG. 4 is a diagram illustrating the integrated heating capacity of the first defrosting operation according to the first embodiment. FIG. 5 is a diagram illustrating the integrated heating capacity of the second defrosting operation according to the first embodiment. The vertical axis in FIGS. 4 and 5 indicates the heating capacity of the second heat exchangers 4a and 4b during the heating operation, and the horizontal axis indicates the time. 2 conceptually shows the change in heating capacity through defrosting operation.
 図3に示したように本実施の形態では、暖房運転中に、蒸発器として機能する第1熱交換器2の周囲温度と、暖房運転中の第2熱交換器4a、4bの合計暖房能力ΣQとに基づいて、第1除霜運転と第2除霜運転のいずれかを選択し、第1除霜運転を選択した場合と第2除霜運転を選択した場合とで暖房運転を開始してから除霜運転を開始するまでの暖房運転の時間を異ならせている。ここで、図3で説明したように、第1熱交換器2の周囲温度が着霜量が多くなりやすい温度範囲内であり(ステップS2;YES)、かつ、暖房運転中の第2熱交換器4a、4bの合計暖房能力ΣQが第1値Q以上であること、を含む条件を、第1条件と称する。 As shown in FIG. 3, in the present embodiment, during the heating operation, the ambient temperature of the first heat exchanger 2 functioning as an evaporator and the total heating capacity of the second heat exchangers 4a and 4b during the heating operation. Based on ΣQ j , either the first defrosting operation or the second defrosting operation is selected, and the heating operation is started when the first defrosting operation is selected and when the second defrosting operation is selected. Then, the heating operation time from the start of the defrosting operation is varied. Here, as described with reference to FIG. 3, the ambient temperature of the first heat exchanger 2 is within a temperature range in which the amount of frost formation tends to increase (step S2; YES), and the second heat exchange during the heating operation is performed. A condition including that the total heating capacity ΣQ j of the devices 4a and 4b is equal to or greater than the first value Q is referred to as a first condition.
 まず、上述した第1条件を満たさない場合に実行する暖房運転と第1除霜運転の作用を説明する。暖房運転中に第1条件を満たさない場合、暖房運転の時間が第2運転時間T12よりも長い第1運転時間T11以上になると、暖房運転が中断され、第1除霜運転が開始される。 First, the operation of the heating operation and the first defrosting operation that are performed when the above-described first condition is not satisfied will be described. When the first condition is not satisfied during the heating operation, the heating operation is interrupted and the first defrosting operation is started when the heating operation time is equal to or longer than the first operation time T11 longer than the second operation time T12.
 図4に示すように、暖房運転を開始すると暖房能力が上昇してピークに到達し、運転時間の経過に伴って徐々に暖房能力が低下していく。暖房能力の低下は、主に、第1熱交換器2に付着する霜によって第1熱交換器2の熱交換効率が低下することによって生じる。第1条件を満たさない場合、すなわち第1熱交換器2の周囲温度が着霜量が多くなりにくい温度範囲であるか、あるいは、暖房運転中の第2熱交換器4a、4bの合計暖房能力ΣQが比較的小さいために第1熱交換器2の熱交換負荷も小さい場合には、第1熱交換器2に霜が比較的付着しにくいといえる。このため、第2除霜運転を実行する場合と比べて暖房運転の時間T11を長くしている。 As shown in FIG. 4, when the heating operation is started, the heating capacity increases and reaches a peak, and the heating capacity gradually decreases as the operation time elapses. The decrease in the heating capacity is caused mainly by a decrease in the heat exchange efficiency of the first heat exchanger 2 due to frost adhering to the first heat exchanger 2. When the first condition is not satisfied, that is, the ambient temperature of the first heat exchanger 2 is in a temperature range in which the amount of frost formation is difficult to increase, or the total heating capacity of the second heat exchangers 4a and 4b during the heating operation If ΣQ j is relatively small and the heat exchange load of the first heat exchanger 2 is also small, it can be said that frost is relatively difficult to adhere to the first heat exchanger 2. For this reason, time T11 of heating operation is lengthened compared with the case where 2nd defrost operation is performed.
 図4で示す例では、暖房運転中の暖房能力が75%(平均)の状態で、第1除霜運転が開始されている。ここで、暖房運転とこれに続く除霜運転からなる期間を通じた暖房能力を、積算暖房能力と定義する。第1除霜運転中には、暖房能力が実質ゼロになるになるため、暖房運転とこれに続く第1除霜運転からなる期間を通じた積算暖房能力は、図4の例では60%となっている。第1除霜運転を実行する場合には、1回当たりの暖房運転の時間が比較的長いため、暖房運転と除霜運転とが比較的短時間で切り替わることによる不快感を、使用者に与えにくい。 In the example shown in FIG. 4, the first defrosting operation is started with the heating capacity during heating operation being 75% (average). Here, the heating capability over the period consisting of the heating operation and the subsequent defrosting operation is defined as the integrated heating capability. Since the heating capacity becomes substantially zero during the first defrosting operation, the integrated heating capacity over the period consisting of the heating operation and the subsequent first defrosting operation is 60% in the example of FIG. ing. When performing the first defrosting operation, since the heating operation time per time is relatively long, the user is given an unpleasant feeling due to switching between the heating operation and the defrosting operation in a relatively short time. Hateful.
 次に、上述した第1条件を満たす場合に実行する暖房運転と第2除霜運転の作用を説明する。暖房運転中に第1条件を満たす場合、暖房運転の時間が第1運転時間T11よりも短い第2運転時間T12に到達すると暖房運転が中断され、第2除霜運転が開始される。 Next, the operation of the heating operation and the second defrosting operation that are performed when the first condition described above is satisfied will be described. When the first condition is satisfied during the heating operation, the heating operation is interrupted and the second defrosting operation is started when the heating operation time reaches a second operation time T12 that is shorter than the first operation time T11.
 図5に示すように、暖房運転を開始すると暖房能力が上昇してピークに到達し、運転時間の経過に伴って徐々に暖房能力が低下していく。暖房能力の低下は、主に、第1熱交換器2に付着する霜によって第1熱交換器2の熱交換効率が低下することによって生じる。本実施の形態では、第1条件を満たす場合、すなわち第1熱交換器2の周囲温度が着霜量が多くなりやすい温度範囲であり、かつ暖房運転中の第2熱交換器4a、4bの合計暖房能力ΣQが比較的大きいために第1熱交換器2の熱交換負荷も大きい場合に、比較的短時間で暖房運転を中断して第2除霜運転を開始する。このように、暖房運転の時間を短くすることで、第1熱交換器2への着霜量が過大になる前に、除霜運転を開始することができる。そして、第1熱交換器2への着霜量が比較的少ない状態で除霜運転を開始するため、第2除霜運転時間を短くすることができる。 As shown in FIG. 5, when the heating operation is started, the heating capacity increases and reaches a peak, and the heating capacity gradually decreases as the operation time elapses. The decrease in the heating capacity is caused mainly by a decrease in the heat exchange efficiency of the first heat exchanger 2 due to frost adhering to the first heat exchanger 2. In the present embodiment, when the first condition is satisfied, that is, the ambient temperature of the first heat exchanger 2 is in a temperature range in which the amount of frost formation tends to increase, and the second heat exchangers 4a and 4b in the heating operation When the total heating capacity ΣQ j is relatively large and the heat exchange load of the first heat exchanger 2 is also large, the heating operation is interrupted in a relatively short time and the second defrosting operation is started. Thus, by shortening the heating operation time, the defrosting operation can be started before the amount of frost formation on the first heat exchanger 2 becomes excessive. And since the defrosting operation is started in a state where the amount of frost on the first heat exchanger 2 is relatively small, the second defrosting operation time can be shortened.
 図5で示す例では、暖房運転中の暖房能力が80%(平均)の状態で、第2除霜運転が開始されている。第2除霜運転中には、暖房能力が実質ゼロになるになるが、上述のように第2除霜運転の時間は短くてよいので、図5の例では暖房運転とこれに続く第1除霜運転からなる期間を通じて70%の積算暖房能力が得られている。さらに、第2除霜運転の時間は比較的短いため、第2除霜運転後に実行される暖房運転における暖房能力の立ち上がりの傾きが大きく、図4の場合と比較して短時間で暖房能力を上昇させることができる。 In the example shown in FIG. 5, the second defrosting operation is started in a state where the heating capacity during the heating operation is 80% (average). During the second defrosting operation, the heating capacity becomes substantially zero. However, since the time of the second defrosting operation may be short as described above, in the example of FIG. A cumulative heating capacity of 70% is obtained throughout the period of the defrosting operation. Furthermore, since the time for the second defrosting operation is relatively short, the inclination of the rising of the heating capacity in the heating operation performed after the second defrosting operation is large, and the heating capacity can be reduced in a shorter time than in the case of FIG. Can be raised.
 以上のように本実施の形態の冷凍サイクル装置100は、圧縮機1と、第1熱交換器2と、複数の絞り装置3a、3bと、複数の第2熱交換器4a、4bとを備えている。そして、第1熱交換器2が蒸発器として機能し、複数の第2熱交換器4a、4bのうちの少なくとも一部が凝縮器として機能する暖房運転中に、第1熱交換器2の周囲温度を検出し、第1熱交換器2の周囲温度と、複数の第2熱交換器4a、4bのうち凝縮器として機能しているものの暖房能力の合計値と、前記暖房運転の運転時間とに基づいて、第1除霜運転と第2除霜運転のいずれかを選択する。そして、第1除霜運転を選択した場合には暖房運転の運転時間が第1運転時間に到達すると第1除霜運転を開始し、第2除霜運転を選択した場合には暖房運転の運転時間が第1運転時間よりも短い第2運転時間に到達すると第2除霜運転を開始する。このように、凝縮器として機能する第1熱交換器2の周囲温度と、蒸発器として機能する第2熱交換器4a、4bの暖房能力の合計値とに基づいて、暖房運転の運転時間を異ならせて、除霜運転を開始する。このため、除霜対象となる熱交換器の温度から経験則に基づいて除霜運転を開始する場合と比較して、除霜対象となる第1熱交換器2への実際の着霜状態がより反映されたタイミングで除霜運転を開始することができる。したがって、続けて実行される一組の暖房運転と除霜運転とからなる期間における、積算暖房能力の低下を抑制することができる。また、運転時間が比較的短い第2除霜運転の後には、続けて実行される暖房運転の立ち上がりに要する時間を短くすることができる。 As described above, the refrigeration cycle apparatus 100 of the present embodiment includes the compressor 1, the first heat exchanger 2, the plurality of expansion devices 3a and 3b, and the plurality of second heat exchangers 4a and 4b. ing. Then, during the heating operation in which the first heat exchanger 2 functions as an evaporator and at least a part of the plurality of second heat exchangers 4a and 4b functions as a condenser, the surroundings of the first heat exchanger 2 The temperature is detected, the ambient temperature of the first heat exchanger 2, the total heating capacity of the plurality of second heat exchangers 4a and 4b functioning as a condenser, and the operation time of the heating operation, Based on the above, one of the first defrosting operation and the second defrosting operation is selected. When the first defrosting operation is selected, the first defrosting operation is started when the operation time of the heating operation reaches the first operation time, and when the second defrosting operation is selected, the operation of the heating operation is started. When the time reaches the second operation time shorter than the first operation time, the second defrosting operation is started. Thus, based on the ambient temperature of the 1st heat exchanger 2 which functions as a condenser, and the total value of the heating capacity of the 2nd heat exchangers 4a and 4b which function as an evaporator, the operation time of heating operation is reduced. Start the defrosting operation in different ways. For this reason, compared with the case where a defrost operation is started based on an empirical rule from the temperature of the heat exchanger used as a defrost object, the actual frosting state to the 1st heat exchanger 2 used as a defrost object is The defrosting operation can be started at a more reflected timing. Therefore, it is possible to suppress a decrease in the integrated heating capacity in a period including a set of heating operations and a defrosting operation that are continuously executed. In addition, after the second defrosting operation in which the operation time is relatively short, it is possible to shorten the time required for starting up the heating operation that is subsequently performed.
 また、本実施の形態の冷凍サイクル装置100は、第1熱交換器2の周囲温度を検出する第1温度検出器5の検出値が第1温度範囲内であり、かつ、暖房能力の合計値が第1値以上である場合に、比較的時間の短い第2除霜運転を選択する。したがって、除霜対象である第1熱交換器2への着霜量が大きくなりやすい条件のときに、暖房運転を早めに中断して第2除霜運転を開始することができるので、続けて実行される一組の暖房運転と除霜運転とからなる期間における、積算暖房能力の低下を抑制することができる。 Further, in the refrigeration cycle apparatus 100 of the present embodiment, the detection value of the first temperature detector 5 that detects the ambient temperature of the first heat exchanger 2 is within the first temperature range, and the total value of the heating capacity When is greater than or equal to the first value, the second defrosting operation with a relatively short time is selected. Therefore, when the amount of frost on the first heat exchanger 2 that is a defrost target is likely to increase, the heating operation can be interrupted early and the second defrost operation can be started. It is possible to suppress a decrease in the integrated heating capacity during a period including a set of heating operation and defrosting operation that are performed.
実施の形態2.
 本実施の形態では、暖房運転時に蒸発器として機能し、除霜運転時に凝縮器として機能する第1熱交換器2の表面温度を検出する第2温度検出器12を備え、暖房運転及び除霜運転の制御においてこの第2温度検出器12の検出値を用いる。本実施の形態では、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
In this Embodiment, the 2nd temperature detector 12 which detects the surface temperature of the 1st heat exchanger 2 which functions as an evaporator at the time of heating operation and functions as a condenser at the time of defrosting operation is provided, and heating operation and defrosting are provided. The detected value of the second temperature detector 12 is used in operation control. In the present embodiment, the description will be focused on differences from the first embodiment.
 図6は、実施の形態2に係る冷凍サイクル装置100Aの回路構成の一例を示す図である。本実施の形態の冷凍サイクル装置100には、第1熱交換器2の表面温度を検出する第2温度検出器12が設けられている。第2温度検出器12は、第1熱交換器2への着霜状態を反映する第1熱交換器2の表面温度を、直接的にあるいは間接的に検出する。例えば、第2温度検出器12は、第1熱交換器2を構成する配管の表面温度を検出することができる。そのほか、第2温度検出器12は、第1熱交換器2内を流れる冷媒の温度を検出し、この冷媒の温度に基づいて第1熱交換器2の表面温度を検出してもよい。第2温度検出器12以外の構成は、実施の形態1で示したものと同様である。 FIG. 6 is a diagram illustrating an example of a circuit configuration of the refrigeration cycle apparatus 100A according to the second embodiment. In the refrigeration cycle apparatus 100 of the present embodiment, a second temperature detector 12 that detects the surface temperature of the first heat exchanger 2 is provided. The 2nd temperature detector 12 detects the surface temperature of the 1st heat exchanger 2 which reflects the frost formation state to the 1st heat exchanger 2 directly or indirectly. For example, the second temperature detector 12 can detect the surface temperature of the pipes constituting the first heat exchanger 2. In addition, the second temperature detector 12 may detect the temperature of the refrigerant flowing in the first heat exchanger 2 and detect the surface temperature of the first heat exchanger 2 based on the temperature of the refrigerant. The configuration other than the second temperature detector 12 is the same as that shown in the first embodiment.
 図7は、実施の形態2に係る冷凍サイクル装置100Aの機能ブロック図である。制御装置20には、第2温度検出器12が信号を送受信可能に接続されている。制御装置20は、第1温度検出器5及びタイマ11から入力される信号に加え、第2温度検出器12から入力される信号に基づいて、アクチュエータを制御する。 FIG. 7 is a functional block diagram of the refrigeration cycle apparatus 100A according to the second embodiment. The control device 20 is connected to the second temperature detector 12 so that signals can be transmitted and received. The control device 20 controls the actuator based on the signal input from the second temperature detector 12 in addition to the signal input from the first temperature detector 5 and the timer 11.
 図8は、実施の形態2に係る冷凍サイクル装置100Aの暖房運転及び除霜運転を説明するフローチャートである。本実施の形態の暖房運転及び除霜運転は、第1除霜運転を開始する条件と、第1除霜運転を終了する条件が、実施の形態1と異なる。具体的には、図8に示すフローチャートは、ステップS8Aの処理内容及びステップS12Aが追加されている点で、実施の形態1の図3で示したフローチャートと異なる。以下、図3との相違点を中心に説明する。 FIG. 8 is a flowchart illustrating the heating operation and the defrosting operation of the refrigeration cycle apparatus 100A according to the second embodiment. The heating operation and the defrosting operation of the present embodiment are different from the first embodiment in the condition for starting the first defrosting operation and the condition for ending the first defrosting operation. Specifically, the flowchart shown in FIG. 8 is different from the flowchart shown in FIG. 3 of Embodiment 1 in that the processing content of step S8A and step S12A are added. Hereinafter, the difference from FIG. 3 will be mainly described.
 ステップS2でNOの場合及びステップS3でNOの場合、すなわち、第2除霜運転ではなく第1除霜運転が選択された場合に、ステップS8Aに進む。ステップS8Aにおいて、制御装置20は、暖房運転時間が、予め定められた第1運転時間T11以上であるか否かを検出する。さらに、制御装置20は、第2温度検出器12の検出値に基づいて、第1熱交換器2の表面温度が、予め定められた閾値である第1温度TH3以下であるか否かを判定する。ここで、第1温度TH3は、第1熱交換器2への着霜量を判定するための温度であり、第1熱交換器2への着霜量が多くなりやすいと推定される温度が、予め記憶部22に記憶されている。第1温度TH3は、好ましくは、ステップS2における温度TH2よりも低い温度であり、具体的数値は限定されないものの、例えば-10℃である。 If NO in step S2 and NO in step S3, that is, if the first defrosting operation is selected instead of the second defrosting operation, the process proceeds to step S8A. In step S8A, control device 20 detects whether the heating operation time is equal to or longer than a predetermined first operation time T11. Further, the control device 20 determines whether or not the surface temperature of the first heat exchanger 2 is equal to or lower than a first temperature TH3 that is a predetermined threshold, based on the detection value of the second temperature detector 12. To do. Here, the first temperature TH3 is a temperature for determining the amount of frost formation on the first heat exchanger 2, and the temperature estimated that the amount of frost formation on the first heat exchanger 2 is likely to increase. Are stored in the storage unit 22 in advance. The first temperature TH3 is preferably a temperature lower than the temperature TH2 in step S2, and is, for example, −10 ° C. although a specific numerical value is not limited.
 制御装置20は、暖房運転時間が第1運転時間T11以上になり、かつ第1熱交換器2の表面温度が予め定められた第1温度TH3以下になると(S8A;YES)、第1除霜運転を開始する(S9)。 When the heating operation time is equal to or longer than the first operation time T11 and the surface temperature of the first heat exchanger 2 is equal to or lower than the first temperature TH3 that is set in advance (S8A; YES), the control device 20 performs the first defrosting. Operation is started (S9).
 第1除霜運転中に、制御装置20は、第1熱交換器2の表面温度が予め定められた閾値である第2温度TH4以上になると(S12A;YES)、第1除霜運転を終了する。ここで、第2温度TH4は、第1熱交換器2への着霜量を判定するための温度であり、第1熱交換器2の除霜が終了したと推定される温度が、予め記憶部22に記憶されている。第2温度TH4は、具体的数値は限定されないものの、例えば10℃である。第1熱交換器2の表面温度が、予め定められた閾値である第2温度TH4未満である場合には(S12A;NO)、制御装置20はステップS10に進む。ステップS10以降の処理は、図3で説明したものと同様である。 During the first defrosting operation, the control device 20 ends the first defrosting operation when the surface temperature of the first heat exchanger 2 becomes equal to or higher than a second temperature TH4 that is a predetermined threshold (S12A; YES). To do. Here, 2nd temperature TH4 is the temperature for determining the amount of frost formation to the 1st heat exchanger 2, and the temperature estimated that defrosting of the 1st heat exchanger 2 was completed is memorized beforehand. Stored in the unit 22. Although the specific value of the second temperature TH4 is not limited, it is 10 ° C., for example. When the surface temperature of the first heat exchanger 2 is lower than the second temperature TH4 which is a predetermined threshold (S12A; NO), the control device 20 proceeds to step S10. The processing after step S10 is the same as that described in FIG.
 このように本実施の形態では、実施の形態1で説明したものと同様の構成を備えており、実施の形態1と同様の効果を得ることができる。さらに本実施の形態の冷凍サイクル装置100Aは、第1除霜運転が選択された場合に、暖房運転の運転時間が第1運転時間以上になり、かつ第1熱交換器2の表面温度が第1温度TH3以下になると、第1除霜運転を開始する。暖房運転の運転時間に加え、第1熱交換器2への着霜状態が反映される第1熱交換器2の表面温度に基づいて、第1除霜運転を開始するので、除霜が必要とされるタイミングをより精度よく検出して、第1熱交換器2を除霜することができる。 Thus, in this embodiment, the same configuration as that described in the first embodiment is provided, and the same effect as in the first embodiment can be obtained. Furthermore, in the refrigeration cycle apparatus 100A of the present embodiment, when the first defrosting operation is selected, the operation time of the heating operation becomes equal to or longer than the first operation time, and the surface temperature of the first heat exchanger 2 is the first. When the temperature is equal to or lower than 1 temperature TH3, the first defrosting operation is started. Since the first defrosting operation is started based on the surface temperature of the first heat exchanger 2 in which the frosting state on the first heat exchanger 2 is reflected in addition to the operation time of the heating operation, defrosting is necessary. The first heat exchanger 2 can be defrosted by more accurately detecting the timing.
 本実施の形態の冷凍サイクル装置100Aは、第1除霜運転中に、第1熱交換器2の表面温度が第2温度TH4以上になると、第1除霜運転を終了する。第1熱交換器2の着霜状態、すなわち除霜状態が反映される第1熱交換器2の温度に基づいて、第1除霜運転の終了タイミングを決定するので、除霜不足や過剰な除霜運転を抑制できる。 The refrigeration cycle apparatus 100A of the present embodiment ends the first defrosting operation when the surface temperature of the first heat exchanger 2 becomes equal to or higher than the second temperature TH4 during the first defrosting operation. Since the end timing of the first defrosting operation is determined based on the temperature of the first heat exchanger 2 in which the defrosting state of the first heat exchanger 2, that is, the defrosting state is reflected, the defrosting is insufficient or excessive. Defrosting operation can be suppressed.
 なお、図3及び図8のステップS2、並びに図8のステップS8A及びステップS12Aにおいて、温度に関して閾値との大小関係を判定するにあたり、条件を満たす状態が所定時間経過したときに、条件を満たしたと判定して次のステップに進むようにしてもよい。図8のステップS8Aの例でいうと、制御装置20は、第1熱交換器2の表面温度が第1温度TH3以下であるか否かを判定するにあたり、第1温度TH3以下の状態が所定時間、例えば3分以上経過した場合に、第1熱交換器2の表面温度が第1温度TH3以下である、と判定してもよい。ステップS12Aについても同様であり、第1熱交換器2の表面温度が第2温度TH4以上である状態が、所定時間、例えば3分以上経過したときに、次のステップに進む。第1温度検出器5及び第2温度検出器12から出力される検出値には、外乱等によってばらつきが生じる可能性があるが、所定時間に亘る検出値に基づいて判定することで、上述したばらつきが原因の誤判定を低減できる。 In step S2 of FIG. 3 and FIG. 8, and step S8A and step S12A of FIG. 8, the condition is satisfied when the condition that satisfies the condition for determining the magnitude relationship with the threshold value is satisfied for a predetermined time. The determination may be made to proceed to the next step. In the example of step S8A in FIG. 8, the control device 20 determines whether or not the surface temperature of the first heat exchanger 2 is equal to or lower than the first temperature TH3. You may determine with the surface temperature of the 1st heat exchanger 2 being below 1st temperature TH3, when time, for example, 3 minutes or more pass. The same applies to step S12A, and when the state where the surface temperature of the first heat exchanger 2 is equal to or higher than the second temperature TH4 has elapsed for a predetermined time, for example, 3 minutes or more, the process proceeds to the next step. The detection values output from the first temperature detector 5 and the second temperature detector 12 may vary due to disturbances or the like. However, the detection values described above are determined based on the detection values over a predetermined time. Misjudgments caused by variations can be reduced.
 また、図3及び図8で示す暖房運転において、圧縮機1の運転周波数を、蒸発器として機能する第1熱交換器2の周囲温度に応じて異ならせてもよい。例えば、第1熱交換器2の周囲温度に応じた圧縮機1の周波数の制御用のテーブルを予め記憶部22に記憶しておき、第1熱交換器2の周囲温度が低い場合には、高い場合に比べて圧縮機1の運転周波数を大きな値に制御する。このようにすることで、暖房能力の低下が抑制される。 Further, in the heating operation shown in FIGS. 3 and 8, the operation frequency of the compressor 1 may be varied according to the ambient temperature of the first heat exchanger 2 functioning as an evaporator. For example, when a table for controlling the frequency of the compressor 1 according to the ambient temperature of the first heat exchanger 2 is stored in the storage unit 22 in advance, and the ambient temperature of the first heat exchanger 2 is low, The operating frequency of the compressor 1 is controlled to a large value as compared with the case where it is high. By doing in this way, the fall of heating capability is suppressed.
 また、実施の形態1、2で示した冷凍サイクル装置及び冷凍サイクル装置の除霜運転方法は、空気調和装置に限らず、冷蔵庫などの他の冷凍サイクルを用いる装置に適用することができる。また、実施の形態1、2では、暖房運転時とは逆の方向に冷媒を循環させるいわゆる逆サイクルの除霜運転を例に説明したが、除霜運転の具体的構成は、これに限定されない。実施の形態1、2で説明した第1除霜運転及び第2除霜運転の選択、開始及び終了に係る処理は、例えばヒータや温水を用いた除霜運転など、他の具体的構成による除霜運転と組み合わせることもできる。例えば、冷媒流路切替装置6に相当する構成を有しておらず冷媒が一方向に流れる暖房専用の空気調和装置に対しても、実施の形態1、2で示した第1除霜運転及び第2除霜運転の選択、開始及び終了に係る処理を適用することができる。 Further, the refrigeration cycle apparatus and the defrosting operation method of the refrigeration cycle apparatus shown in the first and second embodiments can be applied not only to an air conditioner but also to an apparatus using another refrigeration cycle such as a refrigerator. Further, in Embodiments 1 and 2, the so-called reverse cycle defrosting operation in which the refrigerant is circulated in the direction opposite to that in the heating operation has been described as an example, but the specific configuration of the defrosting operation is not limited thereto. . The processing related to the selection, start and end of the first defrosting operation and the second defrosting operation described in the first and second embodiments is performed by other specific configurations such as a defrosting operation using a heater or hot water. It can also be combined with frost operation. For example, the first defrosting operation shown in the first and second embodiments and the air conditioning apparatus dedicated to heating that does not have the configuration corresponding to the refrigerant flow switching device 6 and the refrigerant flows in one direction Processing related to selection, start, and end of the second defrosting operation can be applied.
 1 圧縮機、2 第1熱交換器、3a 絞り装置、3b 絞り装置、4a 第2熱交換器、4b 第2熱交換器、5 第1温度検出器、6 冷媒流路切替装置、7 アキュムレータ、8 逆止弁、9 室外ファン、10a 室内ファン、10b 室内ファン、11 タイマ、12 第2温度検出器、20 制御装置、21 処理回路、22 記憶部、22a 暖房能力情報、30 室外機、40a 室内機、40b 室内機、100 冷凍サイクル装置、100A 冷凍サイクル装置。 1 compressor, 2 first heat exchanger, 3a expansion device, 3b expansion device, 4a second heat exchanger, 4b second heat exchanger, 5 first temperature detector, 6 refrigerant flow switching device, 7 accumulator, 8 check valve, 9 outdoor fan, 10a indoor fan, 10b indoor fan, 11 timer, 12 second temperature detector, 20 control device, 21 processing circuit, 22 storage unit, 22a heating capacity information, 30 outdoor unit, 40a indoor Machine, 40b indoor unit, 100 refrigeration cycle apparatus, 100A refrigeration cycle apparatus.

Claims (10)

  1.  圧縮機と、
     第1熱交換器と、
     複数の絞り装置と、
     複数の第2熱交換器と、
     前記第1熱交換器の周囲温度を検出する第1温度検出器と、
     前記複数の第2熱交換器のそれぞれの暖房能力を記憶する記憶部と、
     前記第1熱交換器を蒸発器として機能させ、前記複数の第2熱交換器のうちの少なくとも一部を凝縮器として機能させる暖房運転を行う制御装置とを備え、
     前記制御装置は、
     前記暖房運転中に、前記第1温度検出器の検出値と、前記複数の第2熱交換器のうち前記凝縮器として機能しているものの暖房能力の合計値とに基づいて、第1除霜運転と第2除霜運転とのいずれかを選択し、
     前記第1除霜運転を選択した場合には前記暖房運転の運転時間が第1運転時間に到達すると前記第1除霜運転を開始し、前記第2除霜運転を選択した場合には前記暖房運転の運転時間が前記第1運転時間よりも短い第2運転時間に到達すると前記第2除霜運転を開始する
     冷凍サイクル装置。
    A compressor,
    A first heat exchanger;
    A plurality of diaphragm devices;
    A plurality of second heat exchangers;
    A first temperature detector for detecting an ambient temperature of the first heat exchanger;
    A storage unit for storing the heating capacity of each of the plurality of second heat exchangers;
    A controller for performing a heating operation in which the first heat exchanger functions as an evaporator and at least a part of the plurality of second heat exchangers functions as a condenser;
    The control device includes:
    During the heating operation, based on a detection value of the first temperature detector and a total value of heating capacity of the plurality of second heat exchangers functioning as the condenser, a first defrosting is performed. Select either operation or second defrost operation,
    When the first defrosting operation is selected, the first defrosting operation is started when the operation time of the heating operation reaches the first operation time, and when the second defrosting operation is selected, the heating is performed. The refrigeration cycle apparatus that starts the second defrosting operation when the operation time of the operation reaches a second operation time shorter than the first operation time.
  2.  前記制御装置は、
     第1条件を満たさない場合に前記第1除霜運転を選択し、
     前記第1条件を満たす場合に前記第2除霜運転を選択するものであり、
     前記第1条件は、前記第1温度検出器の検出値が第1温度範囲内であり、かつ、前記暖房能力の合計値が第1値以上であることを含む
     請求項1記載の冷凍サイクル装置。
    The control device includes:
    When the first condition is not satisfied, the first defrosting operation is selected,
    The second defrosting operation is selected when the first condition is satisfied,
    The refrigeration cycle apparatus according to claim 1, wherein the first condition includes that a detection value of the first temperature detector is within a first temperature range, and a total value of the heating capacity is equal to or greater than a first value. .
  3.  前記第1熱交換器の表面温度を検出する第2温度検出器を備え、
     前記制御装置は、前記第1除霜運転を選択した場合に、前記暖房運転の運転時間が前記第1運転時間に到達し、かつ、前記第2温度検出器の検出値が第1温度以下になると、前記第1除霜運転を開始する
     請求項1又は請求項2記載の冷凍サイクル装置。
    A second temperature detector for detecting a surface temperature of the first heat exchanger;
    When the control device selects the first defrosting operation, the operation time of the heating operation reaches the first operation time, and the detection value of the second temperature detector is equal to or lower than the first temperature. The refrigeration cycle apparatus according to claim 1 or 2, wherein the first defrosting operation is started.
  4.  前記第1熱交換器の表面温度を検出する第2温度検出器を備え、
     前記制御装置は、前記第1除霜運転の実行中に、前記第2温度検出器の検出値が第2温度以上になると、前記第1除霜運転を終了して前記暖房運転を開始する
     請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
    A second temperature detector for detecting a surface temperature of the first heat exchanger;
    The control device ends the first defrosting operation and starts the heating operation when a detection value of the second temperature detector becomes equal to or higher than a second temperature during the execution of the first defrosting operation. The refrigeration cycle apparatus according to any one of claims 1 to 3.
  5.  前記第2除霜運転の時間は、前記第1除霜運転の時間よりも短い
     請求項1~請求項4のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein a time of the second defrosting operation is shorter than a time of the first defrosting operation.
  6.  圧縮機、第1熱交換器、複数の絞り装置及び複数の第2熱交換器を備えた冷凍サイクル装置の除霜運転方法であって、
     前記第1熱交換器が蒸発器として機能し、前記複数の第2熱交換器のうちの少なくとも一部が凝縮器として機能する暖房運転中に、
     前記第1熱交換器の周囲温度を検出し、
     前記第1熱交換器の周囲温度と、前記複数の第2熱交換器のうち前記凝縮器として機能しているものの暖房能力の合計値とに基づいて、第1除霜運転と第2除霜運転とのいずれかを選択し、
     前記第1除霜運転を選択した場合には前記暖房運転の運転時間が第1運転時間に到達すると前記第1除霜運転を開始し、前記第2除霜運転を選択した場合には前記暖房運転の運転時間が前記第1運転時間よりも短い第2運転時間に到達すると前記第2除霜運転を開始する
     冷凍サイクル装置の除霜運転方法。
    A defrosting operation method for a refrigeration cycle apparatus including a compressor, a first heat exchanger, a plurality of expansion devices, and a plurality of second heat exchangers,
    During the heating operation in which the first heat exchanger functions as an evaporator and at least some of the plurality of second heat exchangers function as condensers,
    Detecting the ambient temperature of the first heat exchanger;
    Based on the ambient temperature of the first heat exchanger and the total heating capacity of the plurality of second heat exchangers functioning as the condenser, the first defrosting operation and the second defrosting are performed. Select either driving or
    When the first defrosting operation is selected, the first defrosting operation is started when the operation time of the heating operation reaches the first operation time, and when the second defrosting operation is selected, the heating is performed. The defrosting operation method of the refrigeration cycle apparatus, wherein the second defrosting operation is started when the operation time of the operation reaches a second operation time shorter than the first operation time.
  7.  前記第1除霜運転と前記第2除霜運転のいずれかを選択するステップにおいて、
     第1条件を満たさない場合に、前記第1除霜運転を選択し、
     前記第1条件を満たす場合に、前記第2除霜運転を選択し、
     前記第1条件は、前記第1熱交換器の周囲温度が第1温度範囲内であり、かつ前記暖房能力の合計値が第1値以上であることを含む
     請求項6記載の冷凍サイクル装置の除霜運転方法。
    In the step of selecting either the first defrosting operation or the second defrosting operation,
    When the first condition is not satisfied, the first defrosting operation is selected,
    When the first condition is satisfied, the second defrosting operation is selected,
    The refrigeration cycle apparatus according to claim 6, wherein the first condition includes that an ambient temperature of the first heat exchanger is within a first temperature range, and a total value of the heating capacity is equal to or higher than a first value. Defrosting operation method.
  8.  前記第1除霜運転を選択した場合に、前記暖房運転の運転時間が前記第1運転時間に到達し、かつ、前記第1熱交換器の表面温度が第1温度以下になると、前記第1除霜運転を開始する
     請求項6又は請求項7記載の冷凍サイクル装置の除霜運転方法。
    When the first defrosting operation is selected, when the operation time of the heating operation reaches the first operation time and the surface temperature of the first heat exchanger becomes equal to or lower than the first temperature, the first The defrosting operation method of the refrigeration cycle apparatus according to claim 6 or 7, wherein the defrosting operation is started.
  9.  前記第1除霜運転中に、前記第1熱交換器の表面温度が第2温度以上になると、前記第1除霜運転を終了し、
     前記第1除霜運転を終了した後に、前記暖房運転を開始する
     請求項6~請求項8のいずれか一項に記載の冷凍サイクル装置の除霜運転方法。
    During the first defrosting operation, when the surface temperature of the first heat exchanger becomes equal to or higher than the second temperature, the first defrosting operation is terminated.
    The defrosting operation method for a refrigeration cycle apparatus according to any one of claims 6 to 8, wherein the heating operation is started after the first defrosting operation is completed.
  10.  前記第2除霜運転の時間は、前記第1除霜運転の時間よりも短い
     請求項6~請求項9のいずれか一項に記載の冷凍サイクル装置の除霜運転方法。
    The defrosting operation method for a refrigeration cycle apparatus according to any one of claims 6 to 9, wherein a time of the second defrosting operation is shorter than a time of the first defrosting operation.
PCT/JP2017/015123 2017-04-13 2017-04-13 Refrigeration cycle device and defrost operation method for refrigeration cycle device WO2018189859A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1913233.1A GB2574541B (en) 2017-04-13 2017-04-13 Refrigeration cycle apparatus and defrosting operation method for the same
JP2019512125A JP6723442B2 (en) 2017-04-13 2017-04-13 Refrigeration cycle apparatus and defrosting operation method for refrigeration cycle apparatus
PCT/JP2017/015123 WO2018189859A1 (en) 2017-04-13 2017-04-13 Refrigeration cycle device and defrost operation method for refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015123 WO2018189859A1 (en) 2017-04-13 2017-04-13 Refrigeration cycle device and defrost operation method for refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018189859A1 true WO2018189859A1 (en) 2018-10-18

Family

ID=63792348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015123 WO2018189859A1 (en) 2017-04-13 2017-04-13 Refrigeration cycle device and defrost operation method for refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6723442B2 (en)
GB (1) GB2574541B (en)
WO (1) WO2018189859A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682017A (en) * 2018-12-27 2019-04-26 广东美的暖通设备有限公司 The control method and its device of air conditioner heating system
CN110470021A (en) * 2019-08-04 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
CN110513817A (en) * 2019-08-26 2019-11-29 Tcl空调器(中山)有限公司 A kind of air conditioner heat-production control method and air conditioner
US11788758B2 (en) 2018-12-27 2023-10-17 Hefei Midea Heating & Ventilating Equipment Co., Ltd. Air conditioner, and control method and device for heating system thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294890B (en) * 2021-05-07 2022-07-08 宁波奥克斯电气股份有限公司 Defrosting control method and device for air conditioning unit and air conditioning unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460753U (en) * 1977-10-06 1979-04-26
JPH01217146A (en) * 1988-02-23 1989-08-30 Sanyo Electric Co Ltd Defrosting controlling method
JPH07104082B2 (en) * 1986-07-24 1995-11-13 ダイキン工業株式会社 Heat pump system
JP2003336890A (en) * 2002-05-16 2003-11-28 Chofu Seisakusho Co Ltd Cooling/heating equipment
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device
JP2015031411A (en) * 2013-07-31 2015-02-16 株式会社富士通ゼネラル Air conditioner
JP2015203550A (en) * 2014-04-16 2015-11-16 三菱電機株式会社 air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104082A (en) * 1993-10-06 1995-04-21 Technova:Kk Storage method for hydrogen or its isotope with pd-rh alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460753U (en) * 1977-10-06 1979-04-26
JPH07104082B2 (en) * 1986-07-24 1995-11-13 ダイキン工業株式会社 Heat pump system
JPH01217146A (en) * 1988-02-23 1989-08-30 Sanyo Electric Co Ltd Defrosting controlling method
JP2003336890A (en) * 2002-05-16 2003-11-28 Chofu Seisakusho Co Ltd Cooling/heating equipment
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device
JP2015031411A (en) * 2013-07-31 2015-02-16 株式会社富士通ゼネラル Air conditioner
JP2015203550A (en) * 2014-04-16 2015-11-16 三菱電機株式会社 air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682017A (en) * 2018-12-27 2019-04-26 广东美的暖通设备有限公司 The control method and its device of air conditioner heating system
US11788758B2 (en) 2018-12-27 2023-10-17 Hefei Midea Heating & Ventilating Equipment Co., Ltd. Air conditioner, and control method and device for heating system thereof
CN110470021A (en) * 2019-08-04 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
CN110470021B (en) * 2019-08-04 2021-12-21 重庆海尔空调器有限公司 Control method and device for defrosting of air conditioner and air conditioner
CN110513817A (en) * 2019-08-26 2019-11-29 Tcl空调器(中山)有限公司 A kind of air conditioner heat-production control method and air conditioner
CN110513817B (en) * 2019-08-26 2021-05-18 Tcl空调器(中山)有限公司 Air conditioner heating control method and air conditioner

Also Published As

Publication number Publication date
GB2574541A (en) 2019-12-11
JP6723442B2 (en) 2020-07-15
GB2574541B (en) 2021-02-24
GB201913233D0 (en) 2019-10-30
JPWO2018189859A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
CN106461253B (en) Air conditioner and defrosting operation method thereof
US10508826B2 (en) Refrigeration cycle apparatus
WO2018189859A1 (en) Refrigeration cycle device and defrost operation method for refrigeration cycle device
US10415861B2 (en) Refrigeration cycle apparatus
US20160370045A1 (en) Heat source side unit and refrigeration cycle apparatus
JP6138711B2 (en) Air conditioner
US10753645B2 (en) Refrigeration cycle apparatus
US9625187B2 (en) Combined air-conditioning and hot-water supply system
JPWO2014192140A1 (en) Air conditioner
US11268737B2 (en) Refrigeration cycle apparatus
US11920841B2 (en) Air-conditioning apparatus
JP7034325B2 (en) Air conditioner
WO2015162790A1 (en) Refrigeration cycle device and air conditioner provided with same
JP6896076B2 (en) Refrigeration cycle equipment
JP7112057B1 (en) air conditioner
KR100525420B1 (en) method for controlling defrosting in heat pump
JP2023091255A (en) Refrigeration device with plurality of sensors for detecting state of refrigerant
JP2015152186A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201913233

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170413

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905277

Country of ref document: EP

Kind code of ref document: A1