JPH08330630A - Light-emitting nitride semiconductor element - Google Patents

Light-emitting nitride semiconductor element

Info

Publication number
JPH08330630A
JPH08330630A JP31784895A JP31784895A JPH08330630A JP H08330630 A JPH08330630 A JP H08330630A JP 31784895 A JP31784895 A JP 31784895A JP 31784895 A JP31784895 A JP 31784895A JP H08330630 A JPH08330630 A JP H08330630A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
doped
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31784895A
Other languages
Japanese (ja)
Other versions
JP2890396B2 (en
Inventor
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP31784895A priority Critical patent/JP2890396B2/en
Publication of JPH08330630A publication Critical patent/JPH08330630A/en
Application granted granted Critical
Publication of JP2890396B2 publication Critical patent/JP2890396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a light-emitting nitride semiconductor element in which the crystallinity of a first p-type clad layer is enhanced by a method wherein a second clad layer composed of a nitride semiconductor containing GaN or In is grown between an active layer and the first p-type clad layer. CONSTITUTION: A buffer layer 2 composed of GaN is grown on the C-plane of a sapphire substrate 1, and an n-type contact layer 3 composed of Si-doped n-type GaN is then grown. Then, an n-type clad layer 4 composed of Si-doped n-type Al0.3 Ga0.7 N is grown. Then, an active layer 5 composed of Si+Zn-doped In0.05 Ga0.95 N is grown, and, in succession, a second p-type clad layer 60 composed of Mg-doped In0.1 Ga0.9 N is grown. Then, a first p-type clad layer 6 composed of Mg-doped p-type Al0.3 Ga0.7 N is grown. The second p-type clad layer on the active layer acts as a buffer layer, and the crystallinity of the first p-type clad layer can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード(LE
D)、レーザダイオード(LD)等に使用される窒化物
半導体(InaAlbGa1-a-bN、0≦a、0≦b、a+b
≦1)よりなる発光素子に係り、特にダブルへテロ構造
を有する窒化物半導体発光素子に関する。
The present invention relates to a light emitting diode (LE
D), nitride semiconductors (In a Al b Ga 1-ab N, 0 ≦ a, 0 ≦ b, a + b used for laser diode (LD), etc.
The present invention relates to a light emitting device having ≦ 1), and particularly to a nitride semiconductor light emitting device having a double hetero structure.

【0002】[0002]

【従来の技術】紫外〜赤色に発光するLED、LD等の
発光素子の材料として窒化物半導体(InaAlbGa
1-a-bN、0≦a、0≦b、a+b≦1)が知られている。
我々はこの半導体材料を用いて、1993年11月に光
度1cdの青色LEDを発表し、1994年4月に光度
2cdの青緑色LEDを発表し、1994年10月には
光度2cdの青色LEDを発表した。これらのLEDは
全て製品化されて、現在ディスプレイ、信号等の実用に
供されている。
2. Description of the Related Art Nitride semiconductors (In a Al b Ga) have been used as materials for light emitting devices such as LEDs and LDs that emit ultraviolet to red light.
1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦ 1) are known.
Using this semiconductor material, we announced a blue LED with a luminous intensity of 1 cd in November 1993, a blue-green LED with a luminous intensity of 2 cd in April 1994, and a blue LED with a luminous intensity of 2 cd in October 1994. Announced. All of these LEDs have been commercialized and are now in practical use for displays, signals and the like.

【0003】図2に窒化物半導体よりなる従来の青色、
青緑色LEDの発光チップの構造を示す。基本的には、
基板21の上に、GaNよりなるバッファ層22、n型
GaNよりなるn型コンタクト層23と、n型AlGa
Nよりなるn型クラッド層24と、n型InGaNより
なる活性層25と、p型AlGaNよりなるp型クラッ
ド層26と、p型GaNよりなるp型コンタクト層27
とが順に積層された構造を有している。活性層25のn
型InGaNにはSi、Ge等のドナー不純物および/
またはZn、Mg等のアクセプター不純物がドープされ
ており、LED素子の発光波長は、その活性層のInG
aNのIn組成比を変更するか、若しくは活性層にドー
プする不純物の種類を変更することで、紫外〜赤色まで
変化させることが可能となっている。今のところ、活性
層にドナー不純物とアクセプター不純物とが同時にドー
プされた発光波長510nm以下のLEDが実用化され
ている。
FIG. 2 shows a conventional blue color composed of a nitride semiconductor,
The structure of the light emitting chip of a blue-green LED is shown. Basically,
On the substrate 21, a buffer layer 22 made of GaN, an n-type contact layer 23 made of n-type GaN, and an n-type AlGa
An n-type clad layer 24 made of N, an active layer 25 made of n-type InGaN, a p-type clad layer 26 made of p-type AlGaN, and a p-type contact layer 27 made of p-type GaN.
And has a structure in which they are sequentially stacked. N of the active layer 25
Type InGaN has donor impurities such as Si and Ge, and /
Alternatively, the LED element is doped with an acceptor impurity such as Zn or Mg, and the emission wavelength of the LED element is InG of the active layer.
It is possible to change from ultraviolet to red by changing the In composition ratio of aN or changing the type of impurities to be doped in the active layer. At present, an LED having an emission wavelength of 510 nm or less, in which an active layer is simultaneously doped with a donor impurity and an acceptor impurity, has been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】従来のLEDは順方向
電流20mAで発光出力は3mW近くあり、SiCより
なるLEDと比較して20倍以上の出力を有している。
しかしながらこのLEDは静電耐圧が低く、例えば逆方
向でバイアスして測定するとおよそ50〜100Vしか
ないという欠点があった。静電耐圧が低いと乾燥した雰
囲気中でLEDを取り扱うと、容易に静電気により素子
が破壊されるので、信頼性に乏しい。
The conventional LED has a forward current of 20 mA and a light emission output of about 3 mW, which is more than 20 times the output of an LED made of SiC.
However, this LED has a drawback that it has a low electrostatic withstand voltage, and when it is biased in the reverse direction and measured, it has only about 50 to 100 V. If the electrostatic withstand voltage is low, handling the LED in a dry atmosphere easily destroys the element due to static electricity, resulting in poor reliability.

【0005】従って、本発明はこのような事情を鑑みて
成されたものであって、その目的とするところは静電耐
圧が大きい窒化物半導体発光素子を実現して、窒化物半
導体発光素子の信頼性を向上させることにある。
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to realize a nitride semiconductor light emitting device having a large electrostatic breakdown voltage, and to realize a nitride semiconductor light emitting device. It is to improve reliability.

【0006】[0006]

【課題を解決するための手段】我々は従来のダブルへテ
ロ構造の窒化物半導体発光素子について、種々の実験を
重ねた結果、活性層の次に成長させるp型クラッド層
に、その原因の多くがあることを突き止め、本発明を成
すに至った。即ち、本発明の窒化物半導体発光素子は活
性層とp型クラッド層(以下、第一のp型クラッド層と
いう。)との間に、少なくともインジウムを含むp型の
窒化物半導体よりなる第二のp型クラッド層が形成され
ていることを特徴とするものである。
As a result of various experiments conducted on a conventional nitride semiconductor light emitting device having a double hetero structure, many of the causes are found in the p-type cladding layer grown next to the active layer. That is, the present invention has been accomplished. That is, the nitride semiconductor light emitting device of the present invention has a second p-type nitride semiconductor containing at least indium between the active layer and the p-type clad layer (hereinafter referred to as the first p-type clad layer). The p-type clad layer is formed.

【0007】図1は本発明の一実施例に係る発光素子の
構造を示す模式断面図である。この発光素子は基板1の
上にバッファ層2、n型コンタクト層3、n型クラッド
層4、活性層5、第二のp型クラッド層60、第一のp
型クラッド層6、p型コンタクト層7を順に積層した構
造を示している。
FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to an embodiment of the present invention. This light emitting device comprises a substrate 1, a buffer layer 2, an n-type contact layer 3, an n-type clad layer 4, an active layer 5, a second p-type clad layer 60, and a first p-type layer.
This shows a structure in which the type cladding layer 6 and the p-type contact layer 7 are sequentially stacked.

【0008】基板1にはサファイア(A面、C面、R面
を含む)の他、SiC(6H、4Hを含む)、ZnO、
Si、GaAsのような窒化物半導体と格子不整合の基
板、またNGO(ネオジウムガレート)のような酸化物
単結晶よりなる窒化物半導体と格子定数の近い基板等を
使用することができる。
The substrate 1 includes sapphire (including A-plane, C-plane and R-plane), SiC (including 6H and 4H), ZnO,
A substrate having a lattice mismatch with a nitride semiconductor such as Si or GaAs, or a substrate having a lattice constant close to that of a nitride semiconductor made of an oxide single crystal such as NGO (neodymium gallate) can be used.

【0009】バッファ層2はGaN、AlN、GaAl
N等を例えば50オングストローム〜0.1μmの膜厚
で成長させることが好ましく、例えばMOVPE法によ
ると400℃〜600℃の低温で成長させることにより
形成できる。
The buffer layer 2 is composed of GaN, AlN, GaAl.
It is preferable to grow N or the like in a film thickness of 50 angstrom to 0.1 μm, for example, and it can be formed by growing at a low temperature of 400 ° C. to 600 ° C. according to the MOVPE method.

【0010】n型コンタクト層3は負電極8を形成する
層であり、GaN、AlGaN、InAlGaN等を例
えば1μm〜10μmの膜厚で成長させることが好まし
く、その中でもGaNを選択することにより負電極の材
料と好ましいオーミック接触を得ることができる。負電
極8の材料としては例えばAl、Au、Ti等を好まし
く用いることができる。
The n-type contact layer 3 is a layer for forming the negative electrode 8. It is preferable to grow GaN, AlGaN, InAlGaN or the like to have a film thickness of, for example, 1 μm to 10 μm. Among them, by selecting GaN, the negative electrode is formed. A favorable ohmic contact with the material can be obtained. As the material of the negative electrode 8, for example, Al, Au, Ti or the like can be preferably used.

【0011】n型クラッド層4はGaN、AlGaN、
InAlGaN等を例えば500オングストローム〜
0.5μmの膜厚で成長させることが好ましく、その中
でもGaN、AlGaNを選択することにより結晶性の
良い層が得られる。また、n型クラッド層4、n型コン
タクト層3のいずれかを省略することも可能である。ど
ちらかを省略すると、残った層がn型クラッド層および
n型コンタクト層として作用する。
The n-type cladding layer 4 is composed of GaN, AlGaN,
InAlGaN or the like is, for example, 500 Å
It is preferable to grow the film with a thickness of 0.5 μm, and by selecting GaN or AlGaN among them, a layer with good crystallinity can be obtained. It is also possible to omit either the n-type cladding layer 4 or the n-type contact layer 3. If either is omitted, the remaining layer acts as an n-type cladding layer and an n-type contact layer.

【0012】活性層5はクラッド層よりもバンドギャッ
プエネルギーが小さいInGaN、InAlGaN、A
lGaN等の窒化物半導体であれば良く、特に所望のバ
ンドギャップによってインジウムの組成比を適宜変更し
たInGaNにすることが好ましい。また活性層5を例
えばInGaN/GaN、InGaN/InGaN(組
成が異なる)等の組み合わせで、それぞれの薄膜を積層
した多重量子井戸構造としてもよい。単一量子井戸構
造、多重量子井戸構造いずれの活性層においても、活性
層はn型、p型いずれでもよいが、特にノンドープ(無
添加)とすることにより半値幅の狭いバンド間発光、励
起子発光、あるいは量子井戸準位発光が得られ、LED
素子、LD素子を実現する上で特に好ましい。活性層を
単一量子井戸(SQW:single quantum well)構造若
しくは多重量子井戸(MQW:multiquantum well)構
造とすると非常に出力の高い発光素子が得られる。SQ
W、MQWとはノンドープのInGaNによる量子準位
間の発光が得られる活性層の構造を指し、例えばSQW
では活性層を単一組成のInXGa1-XN(0≦X<1)
で構成した層であり、InXGa1-XNの膜厚を100オ
ングストローム以下、さらに好ましくは70オングスト
ローム以下とすることにより量子準位間の強い発光が得
られる。またMQWは組成比の異なるInXGa1-X
(この場合X=0、X=1を含む)の薄膜を複数積層した
多層膜とする。このように活性層をSQW、MQWとす
ることにより量子準位間発光で、約365nm〜660
nmまでの発光が得られる。量子構造の井戸層の厚さと
しては、前記のように70オングストローム以下が好ま
しい。多重量子井戸構造では井戸層はInXGa1-XNで
構成し、障壁層は同じくInYGa1-YN(Y<X、この場
合Y=0を含む)で構成することが望ましい。特に好ま
しくは井戸層と障壁層をInGaNで形成すると同一温
度で成長できるので結晶性のよい活性層が得られる。障
壁層の膜厚は150オングストローム以下、さらに好ま
しくは120オングストローム以下にすると高出力な発
光素子が得られる。また、活性層5にドナー不純物およ
び/またはアクセプター不純物をドープしてもよい。不
純物をドープした活性層の結晶性がノンドープと同じで
あれば、ドナー不純物をドープするとノンドープのもの
に比べてバンド間発光強度をさらに強くすることができ
る。アクセプター不純物をドープするとバンド間発光の
ピーク波長よりも約0.5eV低エネルギー側にピーク
波長を持っていくことができるが、半値幅は広くなる。
アクセプター不純物とドナー不純物を同時にドープする
と、アクセプター不純物のみドープした活性層の発光強
度をさらに大きくすることができる。特にアクセプター
不純物をドープした活性層を実現する場合、活性層の導
電型はSi等のドナー不純物を同時にドープしてn型と
することが好ましい。活性層5は例えば数オングストロ
ーム〜0.5μmの膜厚で成長させることができる。但
し、活性層をSQW、若しくはMQWとするときは、n
型クラッド層4と活性層5との間にInを含むn型の窒
化物半導体、またはn型GaNよりなる第二のn型クラ
ッド層を形成することが望ましい。
The active layer 5 is made of InGaN, InAlGaN, A whose band gap energy is smaller than that of the cladding layer.
Any nitride semiconductor such as lGaN may be used, and in particular, InGaN in which the composition ratio of indium is appropriately changed according to a desired band gap is preferable. Further, the active layer 5 may have a multi-quantum well structure in which thin films are laminated by combining InGaN / GaN, InGaN / InGaN (having different compositions), for example. In the active layer having either a single quantum well structure or a multiple quantum well structure, the active layer may be either n-type or p-type. Luminescence or quantum well level luminescence is obtained, and LED
It is particularly preferable for realizing a device and an LD device. When the active layer has a single quantum well (SQW) structure or a multi-quantum well (MQW: multiquantum well) structure, a light emitting device having a very high output can be obtained. SQ
W and MQW refer to the structure of the active layer in which light emission between quantum levels by non-doped InGaN is obtained, and for example, SQW.
Then, the active layer is composed of a single composition of In X Ga 1-X N (0 ≦ X <1)
By making the film thickness of In X Ga 1-X N 100 angstroms or less, more preferably 70 angstroms or less, strong light emission between quantum levels can be obtained. MQW is In X Ga 1 -X N with different composition ratios.
A multilayer film is formed by laminating a plurality of thin films (including X = 0 and X = 1 in this case). Thus, by making the active layer SQW and MQW, light emission between quantum levels is about 365 nm to 660.
Emission up to nm is obtained. As described above, the thickness of the quantum well layer is preferably 70 Å or less. In the multiple quantum well structure, it is desirable that the well layer is made of In X Ga 1 -X N and the barrier layer is also made of In Y Ga 1 -Y N (Y <X, including Y = 0 in this case). Particularly preferably, when the well layer and the barrier layer are formed of InGaN, they can be grown at the same temperature, so that an active layer having good crystallinity can be obtained. When the thickness of the barrier layer is 150 angstroms or less, more preferably 120 angstroms or less, a high-power light emitting device can be obtained. Further, the active layer 5 may be doped with a donor impurity and / or an acceptor impurity. If the crystallinity of the impurity-doped active layer is the same as that of the non-doped one, doping with the donor impurity can further increase the interband emission intensity as compared with the non-doped one. Doping with an acceptor impurity can bring the peak wavelength to a low energy side of about 0.5 eV lower than the peak wavelength of band-to-band emission, but the full width at half maximum becomes wider.
When the acceptor impurity and the donor impurity are doped at the same time, the emission intensity of the active layer doped with only the acceptor impurity can be further increased. Particularly when realizing an active layer doped with an acceptor impurity, it is preferable that the conductivity type of the active layer be n-type by simultaneously doping with a donor impurity such as Si. The active layer 5 can be grown to have a film thickness of, for example, several angstroms to 0.5 μm. However, when the active layer is SQW or MQW, n
It is desirable to form a second n-type clad layer made of n-type nitride semiconductor containing In or n-type GaN between the type clad layer 4 and the active layer 5.

【0013】次に本発明の最も特徴である第二のp型ク
ラッド層60は少なくともインジウムを含むp型の窒化
物半導体(InXAlYGa1-X-YN、0<X、Y≦0、X+
Y<1)またはp型のGaNで形成する必要がある。そ
の中でもInGaN、またはGaN等のAlを含まない
窒化物半導体で形成することが特に好ましい。さらに第
二のp型クラッド層60の膜厚は200オングストロー
ム以下、さらに好ましくは100オングストローム以下
の膜厚で形成することが好ましい。なぜなら、200オ
ングストローム以下の膜厚に調整することにより、発光
素子の発光出力をほとんど維持したまま、発光素子の静
電耐圧を上げることが可能となるからである。逆にその
膜厚が200オングストロームよりも厚いと、発光素子
の出力が低下する傾向にある。
Next, the second p-type cladding layer 60, which is the most characteristic feature of the present invention, is a p-type nitride semiconductor containing at least indium (In X Al Y Ga 1-XY N, 0 <X, Y ≦ 0, X +
It must be formed of Y <1) or p-type GaN. Among them, it is particularly preferable to use InGaN or a nitride semiconductor containing no Al such as GaN. Furthermore, it is preferable that the second p-type cladding layer 60 is formed to have a film thickness of 200 angstroms or less, and more preferably 100 angstroms or less. This is because by adjusting the film thickness to 200 angstroms or less, it becomes possible to increase the electrostatic breakdown voltage of the light emitting element while almost maintaining the light emission output of the light emitting element. On the other hand, if the film thickness is thicker than 200 Å, the output of the light emitting element tends to decrease.

【0014】第一のp型クラッド層6はGaN、AlG
aN、InAlGaN等を例えば500オングストロー
ム〜0.5μmの膜厚で成長させることが好ましく、そ
の中でもGaN、AlGaNを選択することにより結晶
性の良い層が得られる。また、第二のp型クラッド層6
0の組成と第一のp型クラッド層6の構成が同じである
場合、第一のp型クラッド層6の組成比を変化させて、
バンドギャップエネルギーを第二のp型クラッド層60
と同じとするか、または大きくする。
The first p-type cladding layer 6 is GaN or AlG.
It is preferable to grow aN, InAlGaN, or the like to a film thickness of, for example, 500 angstrom to 0.5 μm, and by selecting GaN or AlGaN among them, a layer with good crystallinity can be obtained. In addition, the second p-type cladding layer 6
When the composition of 0 and the configuration of the first p-type cladding layer 6 are the same, the composition ratio of the first p-type cladding layer 6 is changed to
The bandgap energy is transferred to the second p-type cladding layer 60.
Same as or larger than.

【0015】p型コンタクト層7は正電極9を形成する
層であり、例えばGaN、AlGaN、InAlGaN
等を成長させることが好ましく、その中でもGaNを選
択することにより正電極の材料と好ましいオーミック接
触を得ることができる。正電極材料としてはNi、Au
等を好ましく用いることができる。また、p型コンタク
ト層7、第一のp型クラッド層6のいずれかを省略する
ことも可能である。どちらかを省略すると、残った層が
第一のp型クラッド層およびp型コンタクト層として作
用する。
The p-type contact layer 7 is a layer forming the positive electrode 9, and is, for example, GaN, AlGaN, InAlGaN.
Etc. are preferably grown, and among them, by selecting GaN, preferable ohmic contact with the material of the positive electrode can be obtained. Ni, Au as the positive electrode material
Etc. can be preferably used. Further, either the p-type contact layer 7 or the first p-type cladding layer 6 can be omitted. If either is omitted, the remaining layers act as the first p-type cladding layer and the p-type contact layer.

【0016】本発明の発光素子は例えばMOVPE(有
機金属気相成長法)、MBE(分子線気相成長法)、H
DVPE(ハイドライド気相成長法)等の気相成長法を
用いて、基板上にInaAlbGa1-a-bN(0≦a、0≦
b、a+b≦1)をn型、p型等の導電型で積層すること
によって得られる。n型の窒化物半導体はノンドープの
状態でも得られるが、Si、Ge、S等のドナー不純物
を結晶成長中に半導体層中に導入することによって得ら
れる。これらのドナー不純物濃度を調整することによ
り、n型層のキャリア濃度を調整できる。一方、p型の
窒化物半導体層はMg、Zn、Cd、Ca、Be、C等
のアクセプター不純物を同じく結晶成長中に半導体層中
に導入するか、または導入後400℃以上でアニーリン
グを行うことにより得られる。同様にこれらアクセプタ
ー不純物濃度を調整することにより、p型層のキャリア
濃度を調整することができる。バッファ層2は基板1と
窒化物半導体との格子不整合を緩和するために設けられ
るが、SiC、ZnOのような窒化物半導体と格子定数
が近い基板、窒化物半導体と格子整合した基板を使用す
る際にはバッファ層が形成されないこともある。
The light emitting device of the present invention is, for example, MOVPE (metal organic chemical vapor deposition), MBE (molecular beam vapor deposition), H
In a Al b Ga 1 -ab N (0 ≦ a, 0 ≦ is formed on the substrate by using a vapor phase growth method such as DVPE (hydride vapor phase growth method).
It is obtained by stacking b, a + b ≦ 1) with conductivity types such as n-type and p-type. Although the n-type nitride semiconductor can be obtained in a non-doped state, it can be obtained by introducing a donor impurity such as Si, Ge, and S into the semiconductor layer during crystal growth. The carrier concentration of the n-type layer can be adjusted by adjusting the concentration of these donor impurities. On the other hand, in the p-type nitride semiconductor layer, acceptor impurities such as Mg, Zn, Cd, Ca, Be, and C should be introduced into the semiconductor layer during crystal growth, or after the introduction, annealing should be performed at 400 ° C. or higher. Is obtained by Similarly, the carrier concentration of the p-type layer can be adjusted by adjusting the acceptor impurity concentration. The buffer layer 2 is provided to alleviate the lattice mismatch between the substrate 1 and the nitride semiconductor, but a substrate having a lattice constant close to that of the nitride semiconductor such as SiC or ZnO, or a substrate lattice-matched to the nitride semiconductor is used. In doing so, the buffer layer may not be formed.

【0017】[0017]

【作用】従来のLEDでは例えばInを含む活性層の上
にAlを含む第一のp型クラッド層を成長させていた。
一方、本発明では新たに活性層と第一のp型クラッド層
との間にGaNまたはInを含む窒化物半導体よりなる
第二のp型クラッド層を成長させている。この構成によ
り発光素子の静電耐圧を向上させることができる。これ
は活性層の上の第二のp型クラッド層がバッファ層の作
用をして、第一のp型クラッド層の結晶性を良くして素
子の静電耐圧を向上させている。窒化物半導体はバンド
ギャップエネルギーの大きい順、AlN>GaN>In
Nの順に結晶自体が柔らかい性質を持っている。つま
り、Inを含む窒化物半導体、またはGaNよりなる第
二のp型クラッド層は、第二のp型クラッド層よりもバ
ンドギャップエネルギーが大きい第一のp型クラッド層
に比べて結晶自体が柔らかい。この柔らかい結晶である
第二のp型クラッド層がバッファ層の作用をすることに
より、その第二のp型クラッド層の上に成長させる第一
のp型クラッド層の結晶性が良くなり、格子欠陥が少な
くなるので、素子全体の静電耐圧が向上するのである。
In the conventional LED, the first p-type clad layer containing Al is grown on the active layer containing In, for example.
On the other hand, in the present invention, a second p-type clad layer made of a nitride semiconductor containing GaN or In is newly grown between the active layer and the first p-type clad layer. With this configuration, the electrostatic breakdown voltage of the light emitting element can be improved. This is because the second p-type clad layer on the active layer acts as a buffer layer to improve the crystallinity of the first p-type clad layer and improve the electrostatic breakdown voltage of the device. Nitride semiconductors have the highest band gap energy, AlN>GaN> In
The crystal itself has a soft property in the order of N. In other words, the crystal itself of the second p-type clad layer made of a nitride semiconductor containing In or GaN is softer than that of the first p-type clad layer whose bandgap energy is larger than that of the second p-type clad layer. . The second p-type clad layer, which is a soft crystal, acts as a buffer layer, so that the crystallinity of the first p-type clad layer grown on the second p-type clad layer is improved and the lattice Since the number of defects is reduced, the electrostatic breakdown voltage of the entire device is improved.

【0018】バッファ層として好適に作用する第二のp
型クラッド層の膜厚は200オングストローム以下が好
ましい。第二のp型クラッド層を厚く積むほど静電耐圧
は向上する傾向にあるが、膜厚が厚すぎると、その第二
のp型クラッド層自体に結晶欠陥が多く発生してしまい
バッファ層として作用しにくくなる傾向にある。結晶欠
陥の多い第二のp型クラッド層の上に第一のp型クラッ
ド層を成長させると、結晶欠陥が第一のp型クラッド層
にまで伝わってしまうので、結晶性の良い第一のp型ク
ラッド層が成長しにくくなる。このため第二のp型クラ
ッド層の膜厚が厚すぎると、発光素子の出力が低下する
傾向にある。第二のp型クラッド層の膜厚の下限は特に
限定するものではなく、例えば1原子層、2原子層にあ
たるような数オングストロームの膜厚で形成してもよ
い。
A second p that preferably acts as a buffer layer.
The film thickness of the mold cladding layer is preferably 200 angstroms or less. The electrostatic breakdown voltage tends to improve as the thickness of the second p-type clad layer increases, but if the thickness is too large, many crystal defects occur in the second p-type clad layer itself, resulting in a buffer layer. It tends to be hard to work. When the first p-type clad layer is grown on the second p-type clad layer having many crystal defects, the crystal defects are transmitted to the first p-type clad layer. It becomes difficult for the p-type cladding layer to grow. Therefore, if the thickness of the second p-type cladding layer is too large, the output of the light emitting device tends to decrease. The lower limit of the film thickness of the second p-type cladding layer is not particularly limited, and it may be formed to have a film thickness of several angstroms, which corresponds to, for example, one atomic layer or two atomic layers.

【0019】[0019]

【実施例】以下本発明を具体的な実施例に基づいて説明
する。以下の実施例はMOVPE法による成長方法を示
している。
EXAMPLES The present invention will be described below based on specific examples. The following example shows a growth method by the MOVPE method.

【0020】[実施例1]図1を元に実施例1について
説明する。まず、TMG(トリメチルガリウム)とNH
3とを用い、反応容器にセットしたサファイア基板1の
C面に500℃でGaNよりなるバッファ層2を500
オングストロームの膜厚で成長させる。
[First Embodiment] A first embodiment will be described with reference to FIG. First, TMG (trimethylgallium) and NH
With 3 and the buffer layer 2 of GaN at 500 ° C. in the C-plane of the sapphire substrate 1 was set in the reaction vessel 500
It is grown to a film thickness of angstrom.

【0021】次に温度を1050℃まで上げ、TMG、
NH3に加えシランガスを用い、Siドープn型GaN
よりなるn型コンタクト層23を4μmの膜厚で成長さ
せる。
Next, the temperature is raised to 1050 ° C. and TMG,
Si-doped n-type GaN using silane gas in addition to NH 3.
The n-type contact layer 23 is made to have a thickness of 4 μm.

【0022】続いて原料ガスにTMA(トリメチルアル
ミニウム)を加え、同じく1050℃でSiドープn型
Al0.3Ga0.7N層よりなるn型クラッド層4を0.1
μmの膜厚で成長させる。
Subsequently, TMA (trimethylaluminum) was added to the source gas, and the n-type cladding layer 4 consisting of Si-doped n-type Al0.3Ga0.7N layer was also formed at 0.150 ° C.
Grow with a film thickness of μm.

【0023】次に温度を800℃に下げ、TMG、TM
I(トリメチルインジウム)、NH 3、シランガス、D
EZ(ジエチルジンク)を用い、Si+Znドープn型
In0.05Ga0.95Nよりなる活性層5を0.1μmの膜
厚で成長させる。
Next, the temperature is lowered to 800 ° C. and TMG, TM
I (trimethylindium), NH 3, Silane gas, D
Si + Zn-doped n-type using EZ (diethyl zinc)
The active layer 5 made of In0.05Ga0.95N has a thickness of 0.1 μm.
Grow thick.

【0024】続いて800℃にて、TMG、TMI(ト
リメチルインジウム)、NH3、Cp2Mg(シクロペン
タジエニルマグネシウム)ガスを用い、Mgドープp型
In0.01Ga0.99Nよりなる第二のp型クラッド層60
を50オングストローム成長させる。
Subsequently, at 800 ° C., a second p-type clad made of Mg-doped p-type In0.01Ga0.99N is used using TMG, TMI (trimethylindium), NH 3 and Cp 2 Mg (cyclopentadienyl magnesium) gas. Layer 60
To 50 angstroms.

【0025】次に温度を1050℃に上げ、TMG、T
MA、NH3、Cp2Mg(シクロペンタジエニルマグネ
シウム)を用い、Mgドープp型Al0.3Ga0.7Nより
なる第一のp型クラッド層6を0.1μmの膜厚で成長
させる。
Next, the temperature is raised to 1050 ° C. and TMG, T
Using MA, NH 3 , and Cp2Mg (cyclopentadienylmagnesium), a first p-type cladding layer 6 made of Mg-doped p-type Al0.3Ga0.7N is grown to a thickness of 0.1 μm.

【0026】続いて1050℃でTMG、NH3、Cp2
Mgを用い、Mgドープp型GaNよりなるp型コンタ
クト層7を0.5μmの膜厚で成長させる。
Then, at 1050 ° C., TMG, NH 3 , Cp 2
Using Mg, a p-type contact layer 7 made of Mg-doped p-type GaN is grown to a film thickness of 0.5 μm.

【0027】反応終了後、温度を室温まで下げてウェー
ハを反応容器から取り出し、700℃でウェーハのアニ
ーリングを行い、p型層をさらに低抵抗化する。次に最
上層のp型コンタクト層7の表面に所定の形状のマスク
を形成し、n型コンタクト層3の表面が露出するまでエ
ッチングする。エッチング後、n型コンタクト層3の表
面にTiとAlよりなる負電極8、p型コンタクト層7
の表面にNiとAuよりなる正電極9を形成する。電極
形成後、ウェーハを350μm角のチップに分離した
後、LED素子とした。このLED素子はIf20mA
でVf3.6V、発光ピーク波長450nm、半値幅7
0nmの青色発光を示し、発光出力は3mWであった。
さらに、このLEDの両電極に逆バイアスをかけて静電
耐圧を測定したところ、400Vまで素子が破壊しなか
った。
After the reaction is completed, the temperature is lowered to room temperature, the wafer is taken out of the reaction container, and the wafer is annealed at 700 ° C. to further reduce the resistance of the p-type layer. Next, a mask having a predetermined shape is formed on the surface of the uppermost p-type contact layer 7, and etching is performed until the surface of the n-type contact layer 3 is exposed. After etching, the negative electrode 8 made of Ti and Al and the p-type contact layer 7 are formed on the surface of the n-type contact layer 3.
A positive electrode 9 made of Ni and Au is formed on the surface of. After the electrodes were formed, the wafer was separated into chips of 350 μm square to obtain LED elements. This LED element is If20mA
Vf3.6V, emission peak wavelength 450nm, half-width 7
It showed blue emission of 0 nm, and the emission output was 3 mW.
Further, when the electrostatic withstand voltage was measured by applying a reverse bias to both electrodes of this LED, the device did not break down to 400V.

【0028】[実施例2]第二のp型クラッド層60の
膜厚を100オングストロームとする他は実施例1と同
様にしてLED素子を得たところ、発光出力は3mWと
同一で、静電耐圧は450Vまで向上していた。
[Embodiment 2] An LED device was obtained in the same manner as in Embodiment 1 except that the film thickness of the second p-type cladding layer 60 was set to 100 Å. The breakdown voltage had improved to 450V.

【0029】[実施例3]第二のp型クラッド層60の
膜厚を200オングストロームとする他は実施例1と同
様にしてLED素子を得たところ、発光出力は2.5m
W、静電耐圧は550Vまで向上していた。
[Embodiment 3] An LED device was obtained in the same manner as in Embodiment 1 except that the film thickness of the second p-type cladding layer 60 was set to 200 Å.
The W and electrostatic withstand voltage had improved to 550V.

【0030】[実施例4]第二のp型クラッド層60の
膜厚を300オングストロームとする他は実施例1と同
様にしてLED素子を得たところ、静電耐圧は650V
まで向上したが、発光出力は1mWまで低下した。
[Embodiment 4] An LED element was obtained in the same manner as in Embodiment 1 except that the film thickness of the second p-type cladding layer 60 was set to 300 Å, and the electrostatic breakdown voltage was 650V.
However, the light emission output decreased to 1 mW.

【0031】[実施例5]第二のp型クラッド層60に
Mgドープp型GaNを10オングストロームの膜厚で
形成する他は実施例1と同様にしてLED素子を得たと
ころ、発光出力は実施例1と同じ3mW、静電耐圧は3
60Vであった。
[Embodiment 5] An LED device was obtained in the same manner as in Embodiment 1 except that Mg-doped p-type GaN was formed on the second p-type cladding layer 60 to have a film thickness of 10 Å. Same as Example 1, 3 mW, electrostatic withstand voltage is 3
It was 60V.

【0032】[実施例6]図3は実施例6に係る発光素
子の構造を示す模式的な断面図である。この発光素子が
図1の発光素子と異なるところは、n型クラッド層4と
活性層5との間に新たなバッファ層としてInを含むn
型の窒化物半導体、またはn型GaNよりなる第二のn
型クラッド層40を形成しているところである。この第
二のクラッド層40は10オングストローム以上、0.
1μm以下の膜厚で形成することが望ましく、さらに第
二のn型クラッド層40と活性層5の膜厚を300オン
グストローム以上にすると、Inを含む第一のn型クラ
ッド層40とInを含む活性層5とがバッファ層として
作用し、n型クラッド層4、p型クラッド層6にクラッ
クが入らず結晶性良く成長できる。さらに、この第二の
n型クラッド層40を成長させることにより、不純物を
ドープしない活性層が実現でき、半値幅が狭く、出力の
高い発光を得ることができる。
[Sixth Embodiment] FIG. 3 is a schematic sectional view showing the structure of a light emitting device according to a sixth embodiment. The difference between this light emitting device and the light emitting device of FIG. 1 is that n containing In is added as a new buffer layer between the n-type cladding layer 4 and the active layer 5.
-Type nitride semiconductor or a second n-type composed of n-type GaN
The mold cladding layer 40 is being formed. This second clad layer 40 has a thickness of 10 angstroms or more, 0.
It is desirable to form the first n-type cladding layer 40 containing In and In when the thickness of the second n-type cladding layer 40 and the active layer 5 is 300 angstroms or more. The active layer 5 acts as a buffer layer, and the n-type clad layer 4 and the p-type clad layer 6 can be grown with good crystallinity without cracks. Furthermore, by growing the second n-type cladding layer 40, an active layer in which no impurities are doped can be realized, and the half width and the output can be increased.

【0033】この第二のn型クラッド層40は、活性層
5とAlとGaとを含むn型クラッド層4との間のバッ
ファ層として作用する。つまりInとGaとを含む第二
のn型クラッド層40が結晶の性質として柔らかい性質
を有しているので、AlとGaとを含むn型クラッド層
4と活性層5との格子定数不整と熱膨張係数差によって
生じる歪を吸収する働きがある。従って活性層5を膜厚
が薄い量子構造を有するSQW、MQWとしても、活性
層5、n型クラッド層4にクラックが入らないので、活
性層を量子構造にしても活性層が弾性的に変形し、活性
層の結晶欠陥が少なくなる。つまり活性層の膜厚が薄い
状態においても、活性層の結晶性が良くなるので発光出
力が増大する。さらに、活性層は膜厚を薄くしたことに
より量子効果および励起子効果により発光出力が増大す
る。言い換えると、従来の発光素子では単一の活性層の
膜厚を例えば1000オングストローム以上と厚くする
ことにより、クラッド層、活性層にクラックが入るのを
防止していた。しかしながら活性層には常に熱膨張係数
差、格子不整による歪が係っており、従来の発光素子で
は活性層の厚さが弾性的に変形可能な臨界膜厚を超えて
いるので、弾性的に変形することができず、活性層中に
多数の結晶欠陥を生じ、バンド間発光ではあまり光らな
い。この第二のn型クラッド層40を形成することによ
り、量子構造の活性層において、発光素子の発光出力を
飛躍的に向上させることが可能である。
The second n-type clad layer 40 acts as a buffer layer between the active layer 5 and the n-type clad layer 4 containing Al and Ga. That is, since the second n-type cladding layer 40 containing In and Ga has a soft crystal property, the lattice constant mismatch between the n-type cladding layer 4 containing Al and Ga and the active layer 5 is caused. It has the function of absorbing the strain caused by the difference in thermal expansion coefficient. Therefore, even if the active layer 5 is SQW or MQW having a thin quantum structure, cracks do not occur in the active layer 5 and the n-type clad layer 4, so that the active layer is elastically deformed even if the active layer has a quantum structure. However, the crystal defects of the active layer are reduced. That is, even when the thickness of the active layer is thin, the crystallinity of the active layer is improved, so that the light emission output is increased. Further, the thinning of the active layer increases the light emission output due to the quantum effect and the exciton effect. In other words, in the conventional light emitting device, the thickness of the single active layer is increased to, for example, 1000 angstroms or more to prevent cracks from forming in the cladding layer and the active layer. However, the active layer is always affected by the difference in coefficient of thermal expansion and strain due to lattice misalignment, and in conventional light emitting devices, the thickness of the active layer exceeds the elastically deformable critical film thickness. It cannot be deformed, many crystal defects are generated in the active layer, and the band-to-band emission does not emit much. By forming the second n-type cladding layer 40, it is possible to dramatically improve the light emission output of the light emitting element in the active layer having the quantum structure.

【0034】具体的には、実施例1においてn型クラッ
ド層4を成長させた後、温度を800℃に下げ、TM
G、TMI(トリメチルインジウム)、NH3、シラン
ガスを用い、Siドープn型In0.01Ga0.99Nよりな
る第二のn型クラッド層40を500オングストローム
の膜厚で成長させる。
Specifically, after growing the n-type cladding layer 4 in Example 1, the temperature was lowered to 800 ° C.
A second n-type cladding layer 40 made of Si-doped n-type In0.01Ga0.99N is grown to a thickness of 500 Å using G, TMI (trimethylindium), NH 3 , and silane gas.

【0035】続いてTMG、TMI、NH3を用い80
0℃でノンドープn型In0.05Ga0.95Nよりなる単一
量子井戸構造の活性層5を80オングストロームの膜厚
で成長させる。後は実施例1と同様にして、第二のp型
クラッド層60と、第一のp型クラッド層6、p型コン
タクト層7を成長させてLED素子としたところ、この
LED素子は、If20mAでVf3.2V、発光ピー
ク波長400nmの青色発光を示し、発光出力は12m
Wであった。さらに、発光スペクトルの半値幅は20n
mであり、非常に色純度の良い発光を示した。また静電
耐圧も実施例1と同様に400Vであった。
Then, using TMG, TMI and NH 3 , 80
An active layer 5 having a single quantum well structure and made of non-doped n-type In0.05Ga0.95N is grown to a thickness of 80 Å at 0 ° C. After that, when the second p-type cladding layer 60, the first p-type cladding layer 6 and the p-type contact layer 7 were grown into an LED element in the same manner as in Example 1, the LED element showed an If of 20 mA. Blue emission with Vf3.2V and emission peak wavelength of 400 nm, and emission output of 12 m
It was W. Furthermore, the full width at half maximum of the emission spectrum is 20n
m, and emitted light with very good color purity. The electrostatic breakdown voltage was 400 V as in Example 1.

【0036】[実施例7]実施例6において、活性層5
の組成をノンドープIn0.05Ga0.95Nよりなる井戸層
を25オングストロームと、ノンドープIn0.01Ga0.
99Nよりなる障壁層を50オングストロームの膜厚で成
長させる。この操作を13回繰り返し、最後に井戸層を
積層して総厚1000オングストロームの活性層6を成
長させた。後は実施例1と同様にして、第二のp型クラ
ッド層60と、第一のp型クラッド層6、p型コンタク
ト層7を成長させてLED素子としたところ、このLE
D素子は、If20mAでVf3.2V、発光ピーク波
長400nmの青色発光を示し、発光出力は12mWで
あった。さらに、発光スペクトルの半値幅は20nmで
あり、非常に色純度の良い発光を示した。また静電耐圧
は500Vであった。これは単一量子井戸構造の活性層
よりも、多重量子井戸構造の活性層を有する素子の方が
静電耐圧が高いことを示している。
[Embodiment 7] In Embodiment 6, the active layer 5 is used.
The composition of the non-doped In0.05Ga0.95N is 25 angstroms for the well layer and the non-doped In0.01Ga0.
A barrier layer of 99N is grown to a thickness of 50 Å. This operation was repeated 13 times, and finally well layers were laminated to grow the active layer 6 having a total thickness of 1000 angstroms. After that, when the second p-type cladding layer 60, the first p-type cladding layer 6 and the p-type contact layer 7 were grown to be an LED element in the same manner as in Example 1, this LE was obtained.
The D element showed Vf3.2 V at If20 mA, blue light emission with an emission peak wavelength of 400 nm, and had an emission output of 12 mW. Further, the full width at half maximum of the emission spectrum was 20 nm, and the emission showed very good color purity. The electrostatic breakdown voltage was 500V. This indicates that the device having the active layer having the multiple quantum well structure has a higher electrostatic breakdown voltage than the active layer having the single quantum well structure.

【0037】[実施例8]活性層5の膜厚を500オン
グストロームとする他は実施例6と同様にしてLED素
子を得たところ、このLED素子は活性層の膜厚が厚く
なったので、発光出力は3mWまで低下したが、発光ピ
ーク波長390nmで、半値幅20nmの青色発光を示
し、静電耐圧は400Vであった。
[Embodiment 8] An LED element was obtained in the same manner as in Example 6 except that the thickness of the active layer 5 was set to 500 Å. The thickness of the active layer of this LED element was increased. Although the light emission output was reduced to 3 mW, blue light emission with an emission peak wavelength of 390 nm and a half width of 20 nm was exhibited, and the electrostatic breakdown voltage was 400V.

【0038】[実施例9]第二のp型クラッド層60の
膜厚を200オングストロームとする他は実施例6と同
様にしてLED素子を得たところ、実施例6と同じく発
光ピーク波長400nm、半値幅20nmの青色発光を
示し、発光出力は10mW、静電耐圧は550Vまで向
上していた。
[Example 9] An LED element was obtained in the same manner as in Example 6 except that the film thickness of the second p-type cladding layer 60 was set to 200 Å. Blue light emission with a half-value width of 20 nm was exhibited, the emission output was improved to 10 mW, and the electrostatic breakdown voltage was improved to 550V.

【0039】[0039]

【発明の効果】従来の窒化物半導体発光素子では静電耐
圧に弱く、特に乾燥した環境中では静電気により容易に
素子が破壊してしまい信頼性に乏しかった。しかし本発
明により発光素子の静電耐圧が向上するので、素子が容
易に破壊されにくくなり信頼性が極めて向上した。
The conventional nitride semiconductor light emitting device is weak in electrostatic withstand voltage, and the device is easily broken by static electricity, especially in a dry environment, and the reliability is poor. However, since the electrostatic withstand voltage of the light emitting element is improved by the present invention, the element is less likely to be easily broken and the reliability is extremely improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る発光素子の構造を示
す模式断面図。
FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

【図2】 従来の発光素子の構造を示す模式断面図。FIG. 2 is a schematic cross-sectional view showing the structure of a conventional light emitting element.

【図3】 本発明の他の実施例に係る発光素子の構造を
示す模式断面図。
FIG. 3 is a schematic cross-sectional view showing the structure of a light emitting device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・バッファ層 3・・・・n型コンタクト層 4・・・・n型クラッド層 5・・・・活性層 60・・・・第二のp型クラッド層 6・・・・第一のp型クラッド層 7・・・・p型コンタクト層 8・・・・負電極 9・・・・正電極 1 ... Substrate 2 ... Buffer layer 3 ... N-type contact layer 4 ... N-type cladding layer 5 ... Active layer 60 ... Second p-type cladding layer 6 ... First p-type cladding layer 7 ... P-type contact layer 8 ... Negative electrode 9 ... Positive electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性層とp型クラッド層との間に、少な
くともインジウムを含むp型の窒化物半導体、またはp
型のGaNよりなる第二のp型クラッド層が形成されて
いることを特徴とする窒化物半導体発光素子。
1. A p-type nitride semiconductor containing at least indium between the active layer and the p-type cladding layer, or p
Type p-type clad layer made of p-type GaN is formed.
【請求項2】 前記第二のp型クラッド層の膜厚が20
0オングストローム以下であることを特徴とする請求項
1に記載の窒化物半導体発光素子。
2. The film thickness of the second p-type cladding layer is 20.
The nitride semiconductor light emitting device according to claim 1, wherein the thickness is 0 angstrom or less.
JP31784895A 1995-03-27 1995-12-06 Nitride semiconductor light emitting device Expired - Lifetime JP2890396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31784895A JP2890396B2 (en) 1995-03-27 1995-12-06 Nitride semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6662695 1995-03-27
JP7-66626 1995-03-27
JP31784895A JP2890396B2 (en) 1995-03-27 1995-12-06 Nitride semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33085898A Division JP3267250B2 (en) 1995-12-06 1998-11-20 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH08330630A true JPH08330630A (en) 1996-12-13
JP2890396B2 JP2890396B2 (en) 1999-05-10

Family

ID=26407824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31784895A Expired - Lifetime JP2890396B2 (en) 1995-03-27 1995-12-06 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2890396B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7193246B1 (en) 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
JP2007311619A (en) * 2006-05-19 2007-11-29 Hitachi Cable Ltd Nitride semiconductor light emitting diode
JP2009021643A (en) * 1997-01-31 2009-01-29 Panasonic Corp Light-emitting apparatus and manufacturing method thereof
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
JP2014103384A (en) * 2012-11-19 2014-06-05 Genesis Photonics Inc Nitride semiconductor structure and semiconductor light-emitting device
US9231376B2 (en) 2004-05-10 2016-01-05 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
US9780255B2 (en) 2012-11-19 2017-10-03 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021643A (en) * 1997-01-31 2009-01-29 Panasonic Corp Light-emitting apparatus and manufacturing method thereof
US7402838B2 (en) 1998-03-12 2008-07-22 Nichia Corporation Nitride semiconductor device
US7193246B1 (en) 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
US7947994B2 (en) 1998-03-12 2011-05-24 Nichia Corporation Nitride semiconductor device
US8546787B2 (en) 2001-05-30 2013-10-01 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US9112083B2 (en) 2001-05-30 2015-08-18 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US8044384B2 (en) 2001-05-30 2011-10-25 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US8227268B2 (en) 2001-05-30 2012-07-24 Cree, Inc. Methods of fabricating group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7312474B2 (en) 2001-05-30 2007-12-25 Cree, Inc. Group III nitride based superlattice structures
US9231376B2 (en) 2004-05-10 2016-01-05 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US9793435B2 (en) 2004-05-10 2017-10-17 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US10529892B2 (en) 2005-06-01 2020-01-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
JP2007311619A (en) * 2006-05-19 2007-11-29 Hitachi Cable Ltd Nitride semiconductor light emitting diode
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
JP2014103384A (en) * 2012-11-19 2014-06-05 Genesis Photonics Inc Nitride semiconductor structure and semiconductor light-emitting device
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
US9780255B2 (en) 2012-11-19 2017-10-03 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same

Also Published As

Publication number Publication date
JP2890396B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
US7166874B2 (en) Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3622562B2 (en) Nitride semiconductor light emitting diode
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3658112B2 (en) Nitride semiconductor laser diode
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3135041B2 (en) Nitride semiconductor light emitting device
JP2780691B2 (en) Nitride semiconductor light emitting device
JPH09148678A (en) Nitride semiconductor light emitting element
JP3651260B2 (en) Nitride semiconductor device
JP3366188B2 (en) Nitride semiconductor device
JPH11191639A (en) Nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH09219556A (en) Nitride semiconductor laser element
JP3371830B2 (en) Nitride semiconductor light emitting device
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3924973B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device
JP3952079B2 (en) Manufacturing method of nitride semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term