JPH08329938A - Nickel electrode for alkaline storage battery and alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery and alkaline storage battery

Info

Publication number
JPH08329938A
JPH08329938A JP7310659A JP31065995A JPH08329938A JP H08329938 A JPH08329938 A JP H08329938A JP 7310659 A JP7310659 A JP 7310659A JP 31065995 A JP31065995 A JP 31065995A JP H08329938 A JPH08329938 A JP H08329938A
Authority
JP
Japan
Prior art keywords
nickel
copper
electrode
zinc
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7310659A
Other languages
Japanese (ja)
Inventor
Masaharu Watada
正治 綿田
Yukio Yamamoto
幸雄 山本
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP7310659A priority Critical patent/JPH08329938A/en
Publication of JPH08329938A publication Critical patent/JPH08329938A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a nickel electrode for an alkaline storage battery with high discharging performance, and high charging efficiency at high temperature by containing zinc or cobalt and copper in a solid solution state in the crystal of nickel hydroxide of a main active material. CONSTITUTION: In a nickel electrode having an active material whose main component is nickel hydroxide, zinc and/or cobalt and copper are contained in a solid solution state in the crystal of the nickel hydroxide. When zinc, cobalt, and copper are contained, about 1-5wt.% zinc, about 1-6wt.% cobalt, and about 0.1-5wt.% copper are preferable, when zinc and copper are contained, about 1-5wt.% zinc and about 1-3wt.% copper are preferable, and when cobalt and copper are contained, about 1-5wt.% cobalt and about 1-3.wt% copper are preferable. A high-performance alkaline storage battery in which the swelling of the electrode is sufficiently suppressed to lengthen the life, and environmentally harmful cadmium is not used is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池例
えばニッケル金属水素化物電池、ニッケル亜鉛電池、ニ
ッケルカドミウム電池、ニッケル鉄電池等に用いられる
ニッケル電極、及び該ニッケル電極を備えたアルカリ蓄
電池、に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery such as a nickel metal hydride battery, a nickel zinc battery, a nickel cadmium battery, a nickel iron battery and the like, and an alkaline storage battery provided with the nickel electrode. Is.

【0002】[0002]

【従来の技術】電動車両用の高エネルギー密度電池とし
ては、正極にペースト式ニッケル電極を用いたニッケル
金属水素化物電池やニッケル亜鉛電池等が開発されてい
るが、そのニッケル電極には、サイクル寿命が長く且つ
高温時の充電効率が高いことが要望されている。
2. Description of the Related Art As high energy density batteries for electric vehicles, nickel metal hydride batteries and nickel zinc batteries using a pasted nickel electrode for the positive electrode have been developed. It is required that the charging efficiency is long and the charging efficiency at high temperature is high.

【0003】そのような要望を満たすべく、ニッケル電
極の高性能化を図る方法としては、活物質である水酸化
ニッケルへの異種元素の固溶体添加が有効な方法として
知られている。例えば、ニッケル電極の膨潤の原因であ
るγ−NiOOHの生成を抑制して長寿命化を図るため
に、亜鉛、カドミウム等のII族元素やIb族元素を添加し
ている。また、酸素過電圧を大きくして高温時の充電効
率を向上させるために、ニッケル電極の酸化電位を卑に
する作用を有するコバルトを添加したり、酸素発生電位
を貴にする作用を有する酸化亜鉛、酸化カドミウム等の
II族元素化合物を混合したりしている。これらの元素は
複合添加しても、各元素の作用がそれぞれ発揮される。
As a method for improving the performance of nickel electrodes to meet such demands, it is known that adding a solid solution of a different element to nickel hydroxide as an active material is effective. For example, Group II elements such as zinc and cadmium and Group Ib elements are added in order to suppress the formation of γ-NiOOH, which is the cause of swelling of the nickel electrode, and prolong the life. In addition, in order to increase the oxygen overvoltage and improve the charging efficiency at high temperature, cobalt having the action of making the oxidation potential of the nickel electrode base is added, or zinc oxide having the action of making the oxygen generation potential noble, Such as cadmium oxide
I am mixing group II element compounds. Even if these elements are added in combination, the action of each element is exhibited.

【0004】[0004]

【発明が解決しようとする課題】コバルトを添加した場
合では、添加量に比例して酸素過電圧は大きくなるが、
放電電圧の低下も伴うために添加量が制限される。ま
た、コバルトは、希少元素であるため、高価である。II
族元素化合物を添加した場合では、45℃以上の高温領
域で、殆んど効果がなく充電効率が顕著に低下してしま
う。一方、カドミウムは、環境面から使用が規制されて
いる。
When cobalt is added, the oxygen overvoltage increases in proportion to the addition amount.
Since the discharge voltage is also reduced, the addition amount is limited. In addition, cobalt is a rare element and therefore expensive. II
When the group element compound is added, there is almost no effect in the high temperature region of 45 ° C. or higher, and the charging efficiency is significantly reduced. On the other hand, the use of cadmium is regulated from the environmental aspect.

【0005】このように、電動車両用のニッケル電極の
実用化には、電極膨潤を効果的に抑制すること、高温時
の充電効率を向上させること、環境悪化の原因とならな
いことが、必要条件であるが、上記事情から、従来の実
用化されたニッケル電極としては、水酸化ニッケルに亜
鉛とコバルトとを固溶体添加したもの以外に、効果的な
ものは見い出されていない。しかも、そのニッケル電極
でも、高温時の充電効率が50℃で70〜80%程度で
あり、更なる改良が望まれている。
As described above, in order to put a nickel electrode for an electric vehicle into practical use, it is necessary to effectively suppress electrode swelling, improve charging efficiency at high temperatures, and not cause environmental deterioration. However, from the above-mentioned circumstances, no other effective nickel electrode has been found as a conventional nickel electrode that has been put into practical use, other than the one in which zinc and cobalt are added as a solid solution to nickel hydroxide. Moreover, even with the nickel electrode, the charging efficiency at high temperature is about 70 to 80% at 50 ° C., and further improvement is desired.

【0006】本発明は、放電性能に優れ、電極膨潤を十
分に抑制でき、高温時の充電効率が十分に高く、環境悪
化の原因とならない、アルカリ蓄電池用ニッケル電極、
及び該ニッケル電極を備えたアルカリ蓄電池を、提供す
ることを目的とする。
The present invention provides a nickel electrode for an alkaline storage battery, which has excellent discharge performance, can sufficiently suppress electrode swelling, has sufficiently high charging efficiency at high temperatures, and does not cause environmental deterioration.
Another object of the present invention is to provide an alkaline storage battery including the nickel electrode.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の内、請求項1記載のアルカリ蓄電池用ニッ
ケル電極は、水酸化ニッケルを主体とする活物質を有す
るニッケル電極において、水酸化ニッケルが、その結晶
中に、亜鉛及びコバルトの少なくとも一方と銅とを固溶
状態で含有していることを特徴としている。
In order to achieve the above object, the nickel electrode for an alkaline storage battery according to claim 1 of the present invention is a nickel electrode having an active material mainly composed of nickel hydroxide. It is characterized in that nickel contains at least one of zinc and cobalt and copper in a solid solution state in its crystal.

【0008】請求項2記載の発明は、請求項1記載のニ
ッケル電極において、亜鉛及びコバルトの両方と銅とを
含有している。なお、請求項2記載の発明において各成
分の含有量は、次の通りとするのが好ましい。即ち、亜
鉛:1〜5重量%、コバルト:1〜6重量%、銅:0.
1〜5重量%。
According to a second aspect of the present invention, in the nickel electrode according to the first aspect, both zinc and cobalt and copper are contained. In addition, in the invention described in claim 2, the content of each component is preferably as follows. That is, zinc: 1 to 5% by weight, cobalt: 1 to 6% by weight, copper: 0.
1-5% by weight.

【0009】請求項3記載の発明は、請求項1記載のニ
ッケル電極において、亜鉛と銅とを含有している。な
お、請求項3記載の発明において各成分の含有量は、次
の通りとするのが好ましい。即ち、亜鉛:1〜5重量
%、銅:1〜3重量%。
According to a third aspect of the present invention, the nickel electrode according to the first aspect contains zinc and copper. In addition, in the invention described in claim 3, the content of each component is preferably as follows. That is, zinc: 1 to 5% by weight, copper: 1 to 3% by weight.

【0010】請求項4記載の発明は、請求項1記載のニ
ッケル電極において、コバルトと銅とを含有している。
なお、請求項4記載の発明において各成分の含有量は、
次の通りとするのが好ましい。即ち、コバルト:1〜5
重量%、銅:1〜3重量%。
According to a fourth aspect of the present invention, the nickel electrode according to the first aspect contains cobalt and copper.
In the invention of claim 4, the content of each component is
The following is preferable. That is, cobalt: 1-5
% By weight, copper: 1-3% by weight.

【0011】請求項5記載のアルカリ蓄電池は、水酸化
ニッケルを主体とする活物質を有するニッケル電極を備
えたアルカリ蓄電池において、水酸化ニッケルが、その
結晶中に、亜鉛及びコバルトの少なくとも一方と銅とを
固溶状態で含有していることを特徴としている。
The alkaline storage battery according to claim 5 is an alkaline storage battery provided with a nickel electrode having an active material mainly composed of nickel hydroxide, wherein nickel hydroxide is contained in the crystal of at least one of zinc and cobalt and copper. And is contained in a solid solution state.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施形態1)以下に示すニッケル電極、試験用セル、
及びアルカリ蓄電池を作製した。
(Embodiment 1) Nickel electrode, test cell shown below,
And the alkaline storage battery was produced.

【0013】ニッケル電極 (1)水酸化ニッケル粉末の作製 まず、亜鉛、コバルト、及び銅を固溶状態で含有した水
酸化ニッケル粉末を、次のようにして作製した。即ち、
硫酸ニッケルに所定量の硫酸亜鉛、硫酸コバルト、及び
硫酸銅を加えた水溶液を調製し、この水溶液に硫酸アン
モニウムを添加して、ニッケル、亜鉛、コバルト、及び
銅の、それぞれのアンミン錯体を生成させ、これに水酸
化ナトリウム水溶液を激しく攪拌しながら滴下し且つア
ルカリ度をpH11〜13に制御して、水酸化ニッケル
を沈澱析出させた。
Nickel Electrode (1) Preparation of Nickel Hydroxide Powder First, nickel hydroxide powder containing zinc, cobalt, and copper in a solid solution state was prepared as follows. That is,
A predetermined amount of zinc sulfate, cobalt sulfate, and copper sulfate were added to nickel sulfate to prepare an aqueous solution, and ammonium sulfate was added to this aqueous solution to form an ammine complex of nickel, zinc, cobalt, and copper, respectively. An aqueous sodium hydroxide solution was added dropwise thereto with vigorous stirring, and the alkalinity was adjusted to pH 11 to 13 to precipitate nickel hydroxide.

【0014】ここでは、亜鉛3重量%、コバルト5重量
%、及び銅1重量%を固溶状態で含有した水酸化ニッケ
ル粉末を得た。この水酸化ニッケル粉末は、次のような
物性を有する球状の粉末であった。即ち、タップ密度:
2.0〜2.1g/ml、BET比表面積:7〜17m
2 /g、窒素吸着法による吸着等温線(脱離側)から求
めた細孔容積:0.01〜0.03ml/gであった。
従って、従来法で得た水酸化ニッケル粉末に比して、高
密度であった。なお、従来法で得た水酸化ニッケル粉末
の物性は、タップ密度:約1.6g/ml、細孔容積:
約0.14ml/gであった。従来法とは、硫酸ニッケ
ルの水溶液に水酸化ナトリウム水溶液を激しく攪拌しな
がら滴下して、水酸化ニッケルを沈澱析出させる方法で
ある。
Here, a nickel hydroxide powder containing 3% by weight of zinc, 5% by weight of cobalt and 1% by weight of copper in a solid solution was obtained. This nickel hydroxide powder was a spherical powder having the following physical properties. That is, tap density:
2.0-2.1 g / ml, BET specific surface area: 7-17 m
2 / g, pore volume determined from adsorption isotherm (desorption side) by the nitrogen adsorption method: 0.01 to 0.03 ml / g.
Therefore, the density was higher than that of the nickel hydroxide powder obtained by the conventional method. The physical properties of the nickel hydroxide powder obtained by the conventional method are as follows: tap density: about 1.6 g / ml, pore volume:
It was about 0.14 ml / g. The conventional method is a method in which an aqueous solution of sodium hydroxide is dropped into an aqueous solution of nickel sulfate with vigorous stirring to precipitate nickel hydroxide.

【0015】(2)電極の作製 次に、得られた水酸化ニッケル粉末に、導電性ネットワ
ーク作製剤である一酸化コバルト粉末10重量%を混合
し、カルボキシメチルセルロースの増粘液を加えてペー
スト状とし、この所定量を約95%の多孔度のニッケル
金属多孔体基板に充填し、乾燥・加圧を行なってニッケ
ル電極を作製した。得られたニッケル電極の容量密度は
約600mAh/mlであり、従来法で得た水酸化ニッ
ケル粉末を用いて同様に作製したニッケル電極(約50
0mAh/ml)より、高い容量密度を示した。
(2) Preparation of Electrode Next, the nickel hydroxide powder thus obtained was mixed with 10% by weight of cobalt monoxide powder, which is a conductive network preparation agent, and a thickening solution of carboxymethyl cellulose was added to form a paste. Then, this predetermined amount was filled in a nickel metal porous substrate having a porosity of about 95%, dried and pressed to produce a nickel electrode. The obtained nickel electrode had a capacity density of about 600 mAh / ml, and a nickel electrode (about 50 mm) prepared in the same manner using the nickel hydroxide powder obtained by the conventional method.
0 mAh / ml), a higher capacity density was exhibited.

【0016】試験用セル 上記ニッケル電極を正極とし、水素吸蔵合金電極を負極
とし、セパレータを介在させて、開放形セルを構成し
た。電解液は6mol/l水酸化カリウム水溶液を用い
た。
Test Cell An open cell was constructed by using the nickel electrode as a positive electrode, the hydrogen storage alloy electrode as a negative electrode, and a separator interposed. The electrolytic solution used was a 6 mol / l potassium hydroxide aqueous solution.

【0017】アルカリ蓄電池 上記ニッケル電極を正極とし、水素吸蔵合金電極、亜鉛
電極、鉄電極、又はカドミウム電極を負極とし、ポリプ
ロピレン系不織布からなるセパレータを介在させて、巻
回し又は積層し、例えば水酸化カリウム水溶液等のアル
カリ電解液を注液して、円筒型又は角型の電池を作製し
た。
Alkaline storage battery The nickel electrode is used as a positive electrode, the hydrogen storage alloy electrode, the zinc electrode, the iron electrode, or the cadmium electrode is used as a negative electrode, and the separator is made of polypropylene nonwoven fabric and is wound or laminated, for example, hydroxylated. An alkaline electrolyte such as an aqueous potassium solution was poured to prepare a cylindrical or prismatic battery.

【0018】(実施形態2)硫酸ニッケルに加える化合
物を硫酸亜鉛及び硫酸銅とし、他は実施形態1と同様に
して、亜鉛及び銅を固溶状態で含有した水酸化ニッケル
粉末を得、更にニッケル電極を作製し、試験用セル及び
アルカリ蓄電池を構成した。なお、セルの負極はカドミ
ウム電極とした。
(Embodiment 2) Zinc sulfate and copper sulfate were used as compounds added to nickel sulfate, and nickel hydroxide powder containing zinc and copper in a solid solution was obtained in the same manner as in Embodiment 1 except that nickel nickel powder was further added. An electrode was produced to construct a test cell and an alkaline storage battery. The negative electrode of the cell was a cadmium electrode.

【0019】ここでは、亜鉛3重量%及び銅3重量%を
固溶状態で含有した水酸化ニッケル粉末を得た。この水
酸化ニッケル粉末は、次のような物性を有する球状又は
卵状の粉末であった。即ち、タップ密度:2.1g/m
l、BET比表面積:10m2 /g、窒素吸着法による
吸着等温線(脱離側)から求めた細孔容積:0.03m
l/gであった。従って、上記従来法で得た水酸化ニッ
ケル粉末に比して、高密度であった。
Here, a nickel hydroxide powder containing 3% by weight of zinc and 3% by weight of copper in a solid solution was obtained. This nickel hydroxide powder was a spherical or egg-like powder having the following physical properties. That is, tap density: 2.1 g / m
1, BET specific surface area: 10 m 2 / g, pore volume obtained from adsorption isotherm (desorption side) by nitrogen adsorption method: 0.03 m
It was 1 / g. Therefore, the density was higher than that of the nickel hydroxide powder obtained by the conventional method.

【0020】(実施形態3)硫酸ニッケルに加える化合
物を硫酸コバルト及び硫酸銅とし、他は実施形態1と同
様にして、コバルト及び銅を固溶状態で含有した水酸化
ニッケル粉末を得、更にニッケル電極を作製し、試験用
セル及びアルカリ蓄電池を構成した。なお、セルの負極
はカドミウム電極とした。
(Embodiment 3) A nickel hydroxide powder containing cobalt and copper in a solid solution state was obtained in the same manner as in Embodiment 1 except that the compounds added to nickel sulfate were cobalt sulfate and copper sulfate. An electrode was produced to construct a test cell and an alkaline storage battery. The negative electrode of the cell was a cadmium electrode.

【0021】ここでは、コバルト5重量%及び銅5重量
%を固溶状態で含有した水酸化ニッケル粉末を得た。こ
の水酸化ニッケル粉末は、次のような物性を有する球状
の粉末であった。即ち、タップ密度:2.0〜2.1g
/ml、BET比表面積:10〜30m2 /g、窒素吸
着法による吸着等温線(脱離側)から求めた細孔容積:
0.01〜0.05ml/gであった。従って、上記従
来法で得た水酸化ニッケル粉末に比して、高密度であっ
た。
Here, a nickel hydroxide powder containing 5% by weight of cobalt and 5% by weight of copper in a solid solution was obtained. This nickel hydroxide powder was a spherical powder having the following physical properties. That is, tap density: 2.0 to 2.1 g
/ Ml, BET specific surface area: 10 to 30 m 2 / g, pore volume obtained from adsorption isotherm (desorption side) by nitrogen adsorption method:
It was 0.01-0.05 ml / g. Therefore, the density was higher than that of the nickel hydroxide powder obtained by the conventional method.

【0022】(比較形態1)硫酸ニッケルに何も加え
ず、他は実施形態1と同様にして、水酸化ニッケル粉末
を得、更にニッケル電極を作製し、試験用セルを構成し
た。
Comparative Example 1 Nickel hydroxide powder was obtained in the same manner as in Example 1 except that nothing was added to nickel sulfate, and a nickel electrode was prepared to form a test cell.

【0023】(比較形態2)硫酸ニッケルに加える化合
物を硫酸亜鉛のみとし、他は実施形態1と同様にして、
亜鉛を固溶状態で含有した水酸化ニッケル粉末を得、更
にニッケル電極を作製し、試験用セルを構成した。ここ
では、亜鉛3重量%を固溶状態で含有した水酸化ニッケ
ル粉末を得た。
(Comparative form 2) The compound added to nickel sulfate was only zinc sulfate, and the other conditions were the same as in the first embodiment.
A nickel hydroxide powder containing zinc in a solid solution state was obtained, a nickel electrode was further prepared, and a test cell was constructed. Here, a nickel hydroxide powder containing 3% by weight of zinc in a solid solution state was obtained.

【0024】(比較形態3)硫酸ニッケルに加える化合
物を硫酸コバルトのみとし、他は実施形態1と同様にし
て、コバルトを固溶状態で含有した水酸化ニッケル粉末
を得、更にニッケル電極を作製し、試験用セルを構成し
た。ここでは、コバルト3重量%を固溶状態で含有した
水酸化ニッケル粉末を得た。
(Comparative Example 3) A nickel hydroxide powder containing cobalt in a solid solution state was obtained in the same manner as in Example 1 except that the compound added to nickel sulfate was only cobalt sulfate, and a nickel electrode was prepared. , A test cell was constructed. Here, a nickel hydroxide powder containing 3% by weight of cobalt in a solid solution state was obtained.

【0025】(比較形態4)硫酸ニッケルに加える化合
物を硫酸銅のみとし、他は実施形態1と同様にして、銅
を固溶状態で含有した水酸化ニッケル粉末を得、更にニ
ッケル電極を作製し、試験用セルを構成した。ここで
は、銅3重量%を固溶状態で含有した水酸化ニッケル粉
末を得た。
(Comparative Example 4) A nickel hydroxide powder containing copper in a solid solution state was obtained in the same manner as in Example 1 except that the compound added to nickel sulfate was only copper sulfate, and a nickel electrode was prepared. , A test cell was constructed. Here, a nickel hydroxide powder containing 3% by weight of copper in a solid solution state was obtained.

【0026】(比較形態5)硫酸ニッケルに加える化合
物を硫酸亜鉛及び硫酸コバルトとし、他は実施形態1と
同様にして、亜鉛及びコバルトを固溶状態で含有した水
酸化ニッケル粉末を得、更にニッケル電極を作製し、試
験用セルを構成した。ここでは、亜鉛3重量%及びコバ
ルト5重量%を固溶状態で含有した水酸化ニッケル粉末
を得た。
(Comparative Example 5) Zinc sulfate and cobalt sulfate were used as compounds added to nickel sulfate, and nickel hydroxide powder containing zinc and cobalt in a solid solution state was obtained in the same manner as in Example 1 except that nickel nickel powder was further added. An electrode was prepared and a test cell was constructed. Here, a nickel hydroxide powder containing 3% by weight of zinc and 5% by weight of cobalt in a solid solution state was obtained.

【0027】(性能試験及び結論)実施形態1〜3及び
比較形態1〜5のニッケル電極について、活物質利用
率、高温時の充電効率、及び電極膨潤度を調べた。
(Performance Test and Conclusion) For the nickel electrodes of Embodiments 1 to 3 and Comparative Embodiments 1 to 5, the active material utilization rate, charging efficiency at high temperature, and electrode swelling degree were examined.

【0028】(1)活物質利用率 一般に、水酸化ニッケルの結晶化度が低ければ、活物質
利用率は高い。そこで、水酸化ニッケルについて、X線
回折線(001)面の半値幅を調べた。半値幅は結晶化
度の目安となることが知られており、一般に、半値幅が
大きければ結晶化度は小さい。
(1) Utilization rate of active material Generally, when the crystallinity of nickel hydroxide is low, the utilization rate of active material is high. Therefore, with respect to nickel hydroxide, the full width at half maximum of the X-ray diffraction line (001) plane was examined. It is known that the full width at half maximum is a measure of the crystallinity, and generally, the larger the half width is, the smaller the crystallinity is.

【0029】比較形態5では、水酸化ニッケル粉末の半
値幅は0.4度であり、ニッケル電極の活物質利用率は
85%であった。これに対し、実施形態1では、水酸化
ニッケル粉末の半値幅は0.9度であり、ニッケル電極
の活物質利用率は98%であった。従って、銅が固溶状
態で共存することにより、実施形態1の水酸化ニッケル
粉末の結晶化度は抑制されている。即ち、銅には、結晶
化を抑制して活物質利用率を向上させる作用がある。
In Comparative Example 5, the full width at half maximum of the nickel hydroxide powder was 0.4 degrees, and the nickel electrode active material utilization rate was 85%. On the other hand, in Embodiment 1, the full width at half maximum of the nickel hydroxide powder was 0.9 degree, and the active material utilization rate of the nickel electrode was 98%. Therefore, the coexistence of copper in a solid solution state suppresses the crystallinity of the nickel hydroxide powder of the first embodiment. That is, copper has the effect of suppressing crystallization and improving the utilization rate of the active material.

【0030】実施形態2,3のニッケル電極も、活物質
利用率は98〜99%という高い値を示した。
The nickel electrodes of Embodiments 2 and 3 also showed a high active material utilization rate of 98 to 99%.

【0031】また、図1は実施形態2のニッケル電極と
比較形態5におけるコバルトの含有量を3重量%とした
ニッケル電極との放電性能を示す。なお、充放電条件
は、充電を0.1C率で基準容量の150%まで行なう
こと、放電を0.2C率で酸化水銀参照電極に対して0
Vまで行なうこととした。充放電温度は20℃とした。
図1からわかるように、実施形態2のニッケル電極で
は、比較形態5のニッケル電極のような放電電圧の低下
は見られず、良好な放電性能を呈した。
FIG. 1 shows the discharge performance of the nickel electrode of Embodiment 2 and the nickel electrode of Comparative Embodiment 5 in which the cobalt content is 3% by weight. The charging / discharging conditions were that charging was performed at a rate of 0.1 C up to 150% of the reference capacity, and discharging was performed at a rate of 0.2 C with respect to the mercury oxide reference electrode.
I decided to go up to V. The charge / discharge temperature was 20 ° C.
As can be seen from FIG. 1, in the nickel electrode of Embodiment 2, no decrease in discharge voltage was observed as in the nickel electrode of Comparative Embodiment 5, and good discharge performance was exhibited.

【0032】(2)高温時の充電効率 充電効率は、所定条件の充放電を、20℃、40℃、5
0℃、及び60℃の、各温度で行ない、その放電容量を
測定し、20℃での放電容量を基準とした百分率で評価
した。充放電条件は上記(1)の充放電条件と同じとし
た。更に、酸素発生電位、平均酸化電位、及び両電位の
電位差(η値)を求めた。表1はその結果を示す。
(2) Charging efficiency at high temperature As for charging efficiency, charging / discharging under predetermined conditions is performed at 20 ° C, 40 ° C, 5 ° C.
The discharge capacity was measured at 0 ° C. and 60 ° C., and the discharge capacity at 20 ° C. was evaluated as a percentage. The charging / discharging conditions were the same as the charging / discharging conditions in (1) above. Furthermore, the oxygen generation potential, the average oxidation potential, and the potential difference (η value) between the two potentials were determined. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】一般に、ニッケル電極の充電効率は、酸素
過電圧の目安となるη値が大きい程、活物質である水酸
化ニッケルの酸化反応が酸素発生を伴うことなく進行す
るために、向上する。実施形態1のニッケル電極が大き
なη値を示すのは、酸化電位が卑へ大きくシフトするこ
とに起因するが、これは固溶体添加されたコバルトの作
用に基づいている。従って、表1に示すように、実施形
態1及び比較形態5のニッケル電極は、共に、大きなη
値を示し、40〜50℃での充電効率が高い。しかし、
実施形態1のニッケル電極は、比較形態5に比して、6
0℃での充電効率が高い。
Generally, the charging efficiency of the nickel electrode is improved as the η value, which is a measure of the oxygen overvoltage, is larger because the oxidation reaction of nickel hydroxide as the active material proceeds without generating oxygen. The large η value of the nickel electrode of Embodiment 1 is due to the large shift of the oxidation potential to base, which is based on the action of cobalt added as a solid solution. Therefore, as shown in Table 1, the nickel electrodes of Embodiment 1 and Comparative Embodiment 5 both have large η.
The value shows the charging efficiency at 40 to 50 ° C. But,
The nickel electrode of the first embodiment is 6
High charging efficiency at 0 ° C.

【0035】そこで、高温時の充電効率に関して、より
詳細にその結果を見るために、次のような試験を行なっ
た。即ち、亜鉛、コバルト、及び銅の含有量をそれぞれ
5重量%の範囲内で変動させて、η値の異なる水酸化ニ
ッケル粉末を作製し、それらを用いたニッケル電極の充
電効率を測定した。なお、水酸化ニッケル粉末及びニッ
ケル電極の作製は実施形態1と同様に行なった。図2は
それらニッケル電極の充電効率と20℃でのη値との関
係を示す。図2からわかるように、45℃での充電効率
に関しては、実施形態1のニッケル電極と比較形態5の
ニッケル電極との間で差は殆んどなく、充電効率は単に
η値に依存している。しかし、60℃での充電効率に関
しては、η値が同じであっても実施形態1のニッケル電
極の方が比較形態5のニッケル電極よりも高くなってい
る。このように、実施形態1のニッケル電極は、比較形
態5に比して、60℃での充電効率も向上しており、高
温時の充電効率が高い。
Therefore, in order to see the result in more detail regarding the charging efficiency at high temperature, the following test was conducted. That is, the contents of zinc, cobalt, and copper were varied within the range of 5% by weight to prepare nickel hydroxide powders having different η values, and the charging efficiency of the nickel electrode using them was measured. The nickel hydroxide powder and the nickel electrode were manufactured in the same manner as in the first embodiment. FIG. 2 shows the relationship between the charging efficiency of those nickel electrodes and the η value at 20 ° C. As can be seen from FIG. 2, regarding the charging efficiency at 45 ° C., there is almost no difference between the nickel electrode of Embodiment 1 and the nickel electrode of Comparative Example 5, and the charging efficiency depends solely on the η value. There is. However, regarding the charging efficiency at 60 ° C., the nickel electrode of Embodiment 1 is higher than the nickel electrode of Comparative Form 5 even if the η value is the same. As described above, the nickel electrode of Embodiment 1 has improved charging efficiency at 60 ° C. as compared with Comparative Embodiment 5, and has high charging efficiency at high temperature.

【0036】実施形態2において銅の含有量を変化させ
たニッケル電極と、比較形態2,4において亜鉛,銅の
含有量を変化させたニッケル電極と、比較形態1のニッ
ケル電極とについて、40℃での充電効率を調べた。充
放電条件は上記(1)の充放電条件と同じとした。その
結果を図3に示す。図3からわかるように、銅には高温
時の充電効率を向上させる作用があり、その作用は亜鉛
と併用することにより大きくなる。銅の添加量は1〜3
重量%が望ましい。
With respect to the nickel electrode in which the content of copper was changed in the second embodiment, the nickel electrode in which the contents of zinc and copper were changed in the second and fourth comparison examples, and the nickel electrode of the first comparison example, 40 ° C. I checked the charging efficiency. The charging / discharging conditions were the same as the charging / discharging conditions in (1) above. The result is shown in FIG. As can be seen from FIG. 3, copper has an effect of improving the charging efficiency at high temperature, and the effect is increased by using it in combination with zinc. Addition amount of copper is 1-3
Weight percent is preferred.

【0037】実施形態3のニッケル電極と、比較形態1
のニッケル電極と、比較形態4において銅の含有量を1
重量%とした場合及び3〜5重量%とした場合のニッケ
ル電極とについて、充放電温度と充電効率との関係を調
べた。その結果を図4に示す。図4からわかるように、
銅をコバルトと併用することによって、高温時の充電効
率が顕著に向上している。
Nickel electrode of Embodiment 3 and Comparative Embodiment 1
Of the nickel electrode of Comparative Example 4 and the copper content of Comparative Example 4 are 1
The relationship between the charging / discharging temperature and the charging efficiency was examined for the nickel electrode in the case of weight% and in the range of 3 to 5% by weight. FIG. 4 shows the results. As you can see from Figure 4,
By using copper in combination with cobalt, the charging efficiency at high temperatures is significantly improved.

【0038】(3)電極膨潤度 電極膨潤(電極厚み変化)の原因であるγ−NiOOH
の生成率を調べた。γ−NiOOHの生成を効果的に抑
制するには、3重量%以上の亜鉛を水酸化ニッケルに固
溶体添加することが必要であると言われている。そこ
で、実施形態1及び比較形態2のニッケル電極について
γ−NiOOHの生成率を次のようにして測定した。即
ち、5℃の低温で0.5Cの充電率で過充電した時に生
成するγ−NiOOH粉末をX線回折ピークにより計測
した。その結果、比較形態2のニッケル電極では7%で
あったが、実施形態1のニッケル電極では6%であっ
た。即ち、実施形態1のニッケル電極でも、γ−NiO
OHの生成が抑制されていた。
(3) Electrode swelling degree γ-NiOOH which is a cause of electrode swelling (change in electrode thickness)
Was investigated. It is said that it is necessary to add 3% by weight or more of zinc to nickel hydroxide as a solid solution in order to effectively suppress the production of γ-NiOOH. Therefore, the production rates of γ-NiOOH of the nickel electrodes of Example 1 and Comparative Example 2 were measured as follows. That is, the γ-NiOOH powder generated when overcharged at a charge rate of 0.5 C at a low temperature of 5 ° C. was measured by an X-ray diffraction peak. As a result, it was 7% for the nickel electrode of Comparative Example 2, but was 6% for the nickel electrode of Embodiment 1. That is, even in the nickel electrode of the first embodiment, γ-NiO
Generation of OH was suppressed.

【0039】実施形態2において銅の含有量を変化させ
たニッケル電極と、比較形態4において銅の含有量を変
化させたニッケル電極と、比較形態1のニッケル電極と
について、γ−NiOOHの生成率を調べた。図5はそ
の結果を示す。図5からわかるように、銅には、γ−N
iOOH生成を抑制する作用があり、その作用は亜鉛と
併用することにより顕著になっている。
With respect to the nickel electrode having a changed copper content in Embodiment 2, the nickel electrode having a changed copper content in Comparative Embodiment 4, and the nickel electrode of Comparative Embodiment 1, the production rate of γ-NiOOH. I checked. FIG. 5 shows the result. As can be seen from FIG. 5, copper has γ-N
It has an action of suppressing iOOH production, and its action becomes remarkable by using it in combination with zinc.

【0040】実施形態3のニッケル電極と、比較形態4
において銅の含有量を1,3,5重量%としたニッケル
電極と、比較形態1のニッケル電極とについて、電極膨
潤とγ−NiOOHの生成率との関係を調べた。図6は
その結果を示す。図6からわかるように、銅にはγ−N
iOOH生成を抑制する作用があり、この作用はコバル
トと併用しても阻害されずに発揮される。なお、5重量
%を超える銅の添加は、γ−NiOOH生成の抑制に対
しては過剰となる。
Nickel electrode of Embodiment 3 and Comparative Embodiment 4
In the above, the relationship between the electrode swelling and the production rate of γ-NiOOH was examined for the nickel electrode having a copper content of 1, 3, 5 wt% and the nickel electrode of Comparative Example 1. FIG. 6 shows the result. As can be seen from FIG. 6, copper has γ-N
It has an effect of suppressing the production of iOOH, and this effect is exhibited without being inhibited even when used in combination with cobalt. It should be noted that the addition of copper in excess of 5 wt% is excessive for suppressing the production of γ-NiOOH.

【0041】(4)結論 活物質である水酸化ニッケルに固溶状態で添加された亜
鉛は、従来から知られている作用を奏する。即ち、ニッ
ケル電極の膨潤の原因である低密度なγ−NiOOHの
生成を抑制する。
(4) Conclusion Zinc added in a solid solution state to nickel hydroxide, which is an active material, has a conventionally known effect. That is, it suppresses the generation of low-density γ-NiOOH which causes the swelling of the nickel electrode.

【0042】同じく固溶状態で添加されたコバルトは、
従来から知られている作用を奏する。即ち、ニッケル電
極の酸素過電圧を高めて高温時の充電効率を向上させ
る。
Similarly, the cobalt added in a solid solution state is
It has a conventionally known effect. That is, the oxygen overvoltage of the nickel electrode is increased to improve the charging efficiency at high temperature.

【0043】そして、同じく固溶状態で添加された銅
は、次の〜の作用を奏する。なお、銅を亜鉛やコバ
ルトと併用しても、亜鉛やコバルトの作用を阻害しな
い。 水酸化ニッケルの結晶化を抑制し、活物質利用率を向
上させる。ちなみに、水酸化ニッケルの活物質利用率
は、一般に結晶化度と相関関係があり、結晶化度が高い
即ち結晶性が高くなるほど、活物質利用率は低くなる傾
向がある。 ニッケル電極の酸素過電圧を高めて高温時の充電効率
を向上させる。この作用は、亜鉛やコバルトと併用する
ことにより、顕著となる。 γ−NiOOHの生成を抑制して、電極膨潤を抑制す
る。この作用は、亜鉛と併用することにより大きくな
る。
Copper, which is also added in a solid solution state, exhibits the following actions (1) to (3). Even if copper is used in combination with zinc or cobalt, the action of zinc or cobalt is not hindered. It suppresses the crystallization of nickel hydroxide and improves the utilization rate of the active material. Incidentally, the active material utilization rate of nickel hydroxide generally has a correlation with the crystallinity, and the higher the crystallinity, that is, the higher the crystallinity, the lower the active material utilization rate tends to be. The oxygen overvoltage of the nickel electrode is increased to improve the charging efficiency at high temperature. This effect becomes remarkable when used in combination with zinc or cobalt. It suppresses the generation of γ-NiOOH and suppresses electrode swelling. This effect becomes greater when used in combination with zinc.

【0044】以上のように、実施形態1のニッケル電極
では、亜鉛によるγ−NiOOH生成抑制作用及びコバ
ルトによる40〜50℃における充電効率向上作用に加
えて、銅による活物質利用率向上作用、高温時の充電効
率向上作用、及びγ−NiOOH生成抑制作用が発揮さ
れている。特に、銅による高温時の充電効率向上作用は
亜鉛及びコバルトと併用することにより大きくなってお
り、γ−NiOOH生成抑制作用は亜鉛と併用すること
により大きくなっている。
As described above, in the nickel electrode of Embodiment 1, in addition to the γ-NiOOH production suppressing effect of zinc and the charging efficiency improving effect of cobalt at 40 to 50 ° C., the active material utilization improving effect of copper and the high temperature In this case, the charging efficiency improving effect and the γ-NiOOH production suppressing effect are exhibited. In particular, the effect of copper for improving charging efficiency at high temperatures is increased by using it in combination with zinc and cobalt, and the effect of suppressing γ-NiOOH production is increased by using it in combination with zinc.

【0045】実施形態2のニッケル電極では、亜鉛によ
るγ−NiOOH生成抑制作用に加えて、銅による活物
質利用率向上作用、高温時の充電効率向上作用、及びγ
−NiOOH生成抑制作用が発揮されている。特に、銅
による高温時の充電効率向上作用及びγ−NiOOH生
成抑制作用は亜鉛と併用することにより大きくなってい
る。
In the nickel electrode of the second embodiment, in addition to the effect of suppressing the production of γ-NiOOH by zinc, the effect of using copper to improve the utilization rate of the active material, the effect of improving the charging efficiency at high temperatures, and
-The effect of suppressing NiOOH production is exhibited. In particular, the effect of improving the charging efficiency at high temperature and the effect of suppressing the production of γ-NiOOH by copper are increased by using together with zinc.

【0046】実施形態3のニッケル電極では、コバルト
による40〜50℃における充電効率向上作用に加え
て、銅による活物質利用率向上作用、高温時の充電効率
向上作用、及びγ−NiOOH生成抑制作用が発揮され
ている。特に、銅による高温時の充電効率向上作用はコ
バルトと併用することにより大きくなっている。
In the nickel electrode of the third embodiment, in addition to the charging efficiency improving effect of cobalt at 40 to 50 ° C., the active material utilization improving effect of copper, the charging efficiency improving effect at high temperature, and the γ-NiOOH production suppressing effect. Is being demonstrated. In particular, the effect of improving the charging efficiency of copper at high temperature is increased by using it in combination with cobalt.

【0047】従って、実施形態1〜3のニッケル電極は
いずれも、放電性能が優れており、γ−NiOOH生成
を抑制して電極膨潤を十分に抑制でき、高温時の充電効
率が十分に高い。また、ニッケル電極内にカドミウムを
含有していないので、環境悪化の原因にもならない。
Therefore, all of the nickel electrodes of Embodiments 1 to 3 are excellent in discharge performance, can suppress the swelling of the electrodes by suppressing the production of γ-NiOOH, and have a sufficiently high charging efficiency at high temperatures. In addition, since cadmium is not contained in the nickel electrode, it does not cause environmental deterioration.

【0048】また、実施形態1〜3のアルカリ蓄電池に
おいては、次の及びの作用を奏する。即ち、 ニッケル電極の上記作用に基づいて良好な性能が発揮
される。 ニッケル電極内にカドミウムを含有していないので、
カドミウムによって電池反応が阻害されることはなく、
安定した電池系を提供する。即ち、電池においては、長
期間充放電した場合に、ニッケル電極に添加されていた
元素が電解液中に一部溶出し、元素の種類によっては負
極に悪影響をもたらすことが知られている。特に電極膨
潤防止剤としてカドミウムが添加されたニッケル電極
を、ニッケル金属水素化物電池に用いた場合、溶出した
カドミウムは負極である水素吸蔵合金電極の表面に析出
して反応を阻害する。
In addition, the alkaline storage batteries of Embodiments 1 to 3 have the following functions and. That is, good performance is exerted on the basis of the above action of the nickel electrode. Since the nickel electrode does not contain cadmium,
Cadmium does not interfere with the battery reaction,
Provide a stable battery system. That is, in a battery, it is known that, when the battery is charged and discharged for a long period of time, the element added to the nickel electrode is partially eluted into the electrolytic solution, which adversely affects the negative electrode depending on the kind of the element. In particular, when a nickel electrode to which cadmium is added as an electrode swelling inhibitor is used in a nickel metal hydride battery, the eluted cadmium is deposited on the surface of the hydrogen storage alloy electrode, which is the negative electrode, and inhibits the reaction.

【0049】[0049]

【発明の効果】請求項1記載のニッケル電極によれば、
亜鉛及び銅の少なくとも一方による効果に加えて、銅に
より、活物質利用率を向上でき、高温時の充電効率を向
上でき、更に、電極膨潤を抑制できる。従って、請求項
1記載のニッケル電極は、放電性能が優れており、γ−
NiOOH生成を抑制して電極膨潤を十分に抑制でき、
高温時の充電効率が十分に高い。また、ニッケル電極内
にカドミウムを含有していないので、環境悪化の原因に
もならない。
According to the nickel electrode of claim 1,
In addition to the effect of at least one of zinc and copper, copper can improve the utilization rate of the active material, improve the charging efficiency at high temperature, and further suppress the swelling of electrodes. Therefore, the nickel electrode according to claim 1 has excellent discharge performance, and
NiOOH generation can be suppressed and electrode swelling can be suppressed sufficiently,
Charging efficiency at high temperature is sufficiently high. In addition, since cadmium is not contained in the nickel electrode, it does not cause environmental deterioration.

【0050】請求項2記載の発明によれば、亜鉛により
γ−NiOOH生成を抑制でき、コバルトにより40〜
50℃における充電効率を向上でき、それに加えて、銅
により請求項1記載の効果を発揮できる。特に、亜鉛及
びコバルトと併用したことによって、銅により、高温時
の充電効率を顕著に向上でき、また、γ−NiOOH生
成を顕著に抑制できる。
According to the second aspect of the present invention, the production of γ-NiOOH can be suppressed by zinc, and the cobalt content of 40-
The charging efficiency at 50 ° C. can be improved, and in addition, the effect of claim 1 can be exhibited by copper. In particular, when used in combination with zinc and cobalt, copper can remarkably improve the charging efficiency at high temperatures, and remarkably suppress the production of γ-NiOOH.

【0051】請求項3記載の発明によれば、亜鉛により
γ−NiOOH生成を抑制でき、それに加えて、銅によ
り請求項1記載の効果を発揮できる。特に、亜鉛と併用
したことによって、銅により、高温時の充電効率を顕著
に向上でき、また、γ−NiOOH生成を顕著に抑制で
きる。
According to the invention of claim 3, the production of γ-NiOOH can be suppressed by zinc, and in addition, the effect of claim 1 can be exhibited by copper. In particular, when used in combination with zinc, copper can remarkably improve the charging efficiency at high temperatures and remarkably suppress the production of γ-NiOOH.

【0052】請求項4記載の発明によれば、コバルトに
より40〜50℃における充電効率を向上でき、それに
加えて、銅により請求項1記載の効果を発揮できる。特
に、コバルトと併用したことによって、銅により、高温
時の充電効率を顕著に向上できる。
According to the invention of claim 4, cobalt can improve the charging efficiency at 40 to 50 ° C., and in addition, copper can exert the effect of claim 1. In particular, when used in combination with cobalt, copper can significantly improve charging efficiency at high temperatures.

【0053】請求項5記載のアルカリ蓄電池によれば、
請求項1〜4に記載の効果を発揮できる。また、ニッケ
ル電極内にカドミウムを含有していないので、カドミウ
ムによって電池反応が阻害されるのを防止でき、安定し
た電池系を提供できる。
According to the alkaline storage battery of claim 5,
The effects described in claims 1 to 4 can be exhibited. Further, since cadmium is not contained in the nickel electrode, it is possible to prevent the cell reaction from being hindered by cadmium and to provide a stable cell system.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施形態2のニッケル電極と比較形態5にお
けるコバルトの含有量を3重量%としたニッケル電極と
の放電性能を示す図である。
FIG. 1 is a diagram showing discharge performance between a nickel electrode of Embodiment 2 and a nickel electrode in which a cobalt content in Comparative Embodiment 5 is 3% by weight.

【図2】 実施形態1と比較形態5においてη値の異な
る水酸化ニッケル粉末を有するニッケル電極の充電効率
と20℃でのη値との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a charging efficiency of a nickel electrode having nickel hydroxide powders having different η values and a η value at 20 ° C. in Embodiment 1 and Comparative Embodiment 5.

【図3】 実施形態2において銅の含有量を変化させた
ニッケル電極と、比較形態2,4において亜鉛,銅の含
有量を変化させたニッケル電極と、比較形態1のニッケ
ル電極とについて、亜鉛、銅の添加量と40℃での充電
効率との関係を示す図である。
FIG. 3 is a diagram showing a nickel electrode having a changed copper content in Embodiment 2, a nickel electrode having a changed content of zinc and copper in Comparative Embodiments 2 and 4 and a nickel electrode of Comparative Embodiment 1; FIG. 5 is a diagram showing the relationship between the amount of copper added and the charging efficiency at 40 ° C.

【図4】 実施形態3のニッケル電極と、比較形態1の
ニッケル電極と、比較形態4において銅の含有量を1重
量%とした場合及び3〜5重量%とした場合のニッケル
電極とについて、充放電温度と充電効率との関係を示す
図である。
FIG. 4 shows a nickel electrode according to a third embodiment, a nickel electrode according to a first comparative example, and a nickel electrode according to a fourth comparative example in which the copper content is 1% by weight and 3 to 5% by weight. It is a figure which shows the relationship between charging / discharging temperature and charging efficiency.

【図5】 実施形態2において銅の含有量を変化させた
ニッケル電極と、比較形態4において銅の含有量を変化
させたニッケル電極と、比較形態1のニッケル電極とに
ついて、銅の添加量とγ−NiOOHの生成率との関係
を示す図である。
FIG. 5 shows the amount of copper added with respect to the nickel electrode of Embodiment 2 in which the content of copper is changed, the nickel electrode of Embodiment 4 in which the content of copper is changed, and the nickel electrode of Comparison 1. It is a figure which shows the relationship with the production rate of (gamma) -NiOOH.

【図6】 実施形態3のニッケル電極と、比較形態4に
おいて銅の含有量を1,3,5重量%としたニッケル電
極と、比較形態1のニッケル電極とについて、電極膨潤
とγ−NiOOHの生成率との関係を示す図である。
FIG. 6 shows the electrode swelling and γ-NiOOH of the nickel electrode of Embodiment 3, the nickel electrode of Comparative Embodiment 4 having a copper content of 1, 3, 5 wt%, and the nickel electrode of Comparative Embodiment 1. It is a figure which shows the relationship with a production rate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主体とする活物質を有
するニッケル電極において、 水酸化ニッケルが、その結晶中に、亜鉛及びコバルトの
少なくとも一方と銅とを固溶状態で含有していることを
特徴とするアルカリ蓄電池用ニッケル電極。
1. A nickel electrode having an active material mainly composed of nickel hydroxide, wherein the nickel hydroxide contains at least one of zinc and cobalt and copper in a solid solution state in the crystal thereof. Characteristic nickel electrode for alkaline storage battery.
【請求項2】 亜鉛及びコバルトの両方と銅とを含有し
ている請求項1記載のアルカリ蓄電池用ニッケル電極。
2. The nickel electrode for an alkaline storage battery according to claim 1, which contains both zinc and cobalt and copper.
【請求項3】 亜鉛と銅とを含有している請求項1記載
のアルカリ蓄電池用ニッケル電極。
3. The nickel electrode for an alkaline storage battery according to claim 1, which contains zinc and copper.
【請求項4】 コバルトと銅とを含有している請求項1
記載のアルカリ蓄電池用ニッケル電極。
4. The composition according to claim 1, which contains cobalt and copper.
The nickel electrode for an alkaline storage battery described.
【請求項5】 水酸化ニッケルを主体とする活物質を有
するニッケル電極を備えたアルカリ蓄電池において、 水酸化ニッケルが、その結晶中に、亜鉛及びコバルトの
少なくとも一方と銅とを固溶状態で含有していることを
特徴とするアルカリ蓄電池。
5. In an alkaline storage battery provided with a nickel electrode having an active material mainly composed of nickel hydroxide, nickel hydroxide contains at least one of zinc and cobalt and copper in a solid solution state in its crystal. Alkaline storage battery characterized by having.
JP7310659A 1995-03-31 1995-11-29 Nickel electrode for alkaline storage battery and alkaline storage battery Pending JPH08329938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7310659A JPH08329938A (en) 1995-03-31 1995-11-29 Nickel electrode for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-74315 1995-03-31
JP7431595 1995-03-31
JP7310659A JPH08329938A (en) 1995-03-31 1995-11-29 Nickel electrode for alkaline storage battery and alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH08329938A true JPH08329938A (en) 1996-12-13

Family

ID=26415456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7310659A Pending JPH08329938A (en) 1995-03-31 1995-11-29 Nickel electrode for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH08329938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059465B2 (en) 2008-04-17 2015-06-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for secondary battery, and lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059465B2 (en) 2008-04-17 2015-06-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for secondary battery, and lithium ion battery

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
US5366831A (en) Nickel electrode for alkaline battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
JP3744716B2 (en) Sealed alkaline storage battery
EP1035602B1 (en) Nickel-hydrogen storage battery
JPH08329938A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH0745281A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using this nickel electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3113891B2 (en) Metal hydride storage battery
JPH09115543A (en) Alkaline storage battery
JP2000149933A (en) Nickel hydrogen storage battery
JPH09204930A (en) Nickel hydrogen storage battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JP3263603B2 (en) Alkaline storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH04301045A (en) Hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JPH09199119A (en) Alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH06150925A (en) Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
JPH04368777A (en) Nickel electrode for alkaline storage battery
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JP3362400B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608